Multidimensional “smart Kd-matrices” for realistic description of sorption processes


Multidimensional “smart Kd-matrices” for realistic description of sorption processes

Stockmann, M.; Brendler, V.; Flügge, J.; Noseck, U.

Sorption on mineral surfaces is an important retardation process to be considered in safety assessments of both chemotoxic and radioactive waste repositories. Most often conventional conservative concepts with temporally and spatially constant distribution coefficients (Kd values) are applied in reactive transport simulations.
In this work, the reactive transport program r³t is extended towards a more realistic description of the contaminant migration by implementing pre-computed multidimensional smart Kd matrices that are able to reflect changing geochemical conditions, e.g. caused by climatic changes.
Three computer codes were coupled to form one tool: PHREEQC, UCODE and SIMLAB. This strategy has various benefits: (1) One can calculate smart Kd values for a reasonable numbers of environmental parameter combinations; (2) It is possible to perform uncertainty and sensitivity analysis based on such smart Kd matrices; (3) The approach is highly flexible with respect to chemical reactions and environmental conditions; (4) The overall methodology is much more efficient in computing time than a direct coupling of the geochemical speciation code with the transport code r3t.
The capability of this new methodology is demonstrated for the sorption of repository-relevant radionuclides on a natural sandy aquifer. This proof-of-concept is able to describe the sorption behavior in dependence of changing geochemical conditions quite well.

Keywords: Waste Disposal, Safety Assessment; Smart Kd; Sorption; Radionuclides; Sensitivity and Uncertainty Analysis

  • Lecture (Conference)
    Water-Rock Interaction, 16.-21.10.2016, Évora, Portugal

Permalink: https://www.hzdr.de/publications/Publ-23408