Bandwidth-controlled metallization in pressurized VO₂ revealed by optical pump – THz probe spectroscopy


Bandwidth-controlled metallization in pressurized VO₂ revealed by optical pump – THz probe spectroscopy

Braun, J. M.; Schneider, H.; Helm, M.; Mirek, R.; Boatner, L. A.; Marvel, R. E.; Haglund, R. F.; Pashkin, A.

Vanadium dioxide (VO₂) is a classic example of a transition metal oxide showing a sharp first- order insulator-to-metal transition (IMT) around 340 K accompanied by a pronounced structural transformation. Pressure-induced metallization of VO₂ has been demonstrated by infrared spectroscopy [1] and resistivity measurements [2]. Remarkably, in contrast to the temperature-driven IMT, the crystal structure is not affected and remains monoclinic in the metallic phase [1-3].

Here we apply ultrafast optical pump – THz probe spectroscopy in order to reveal the nature of the pressure-induced IMT in a single crystal of VO₂. The probe pulses with a central frequency of 30 THz were generated by difference frequency mixing and focused down to a 35-𝜇m-spot on the sample mounted inside a diamond anvil pressure cell. Using THz radiation with photon energies far below the bandgap of VO₂ gives us an extremely sensitive probe of the dynamics of metallization [4].

Fig. 1(a) demonstrates that above a certain excitation fluence, a non-zero pump-probe signal survives on a multi-ps timescale indicating the long-lived photoinduced metallic state [4]. Here we define the threshold fluence 𝛷th as a crossing point of linearly extrapolated pump-probe signals in the low- and high-excitation regimes, as shown in Fig. 1(b). Surprisingly, the threshold behavior typical for the insulating state of VO₂ is also observed above the IMT that occurs between 6 and 8 GPa. This indicates a strongly correlated character of the pressure-induced metallic phase in which a part of the electrons remains localized - as predicted for a bandwidth-controlled Mott-Hubbard transition.

Fig. 1(c) shows that 𝛷th initially increases with pressure evidencing that the monoclinic structure stabilizes under hydrostatic compression. However, at the pressure-induced IMT, we observe a sudden drop of 𝛷th. This may be related to the partial screening of Coulomb correlations by delocalized electrons in the metallic state that lowers the critical excitation density necessary for a complete closure of the correlation gap. Our results attest to a purely electronic pressure-induced Mott-Hubbard transition in VO₂ and yield important insights into the nature of the correlated metallic state.

Figure 1: (a) Typical pump-probe response of VO₂ under a pressure of 2.9 GPa at different excitation fluences 𝛷;
(b) Amplitude of pump-probe in the metastable photoinduced state 1 ps after the excitation at different pressures;
(c) Dependence of the threshold fluence 𝛷th as a function of applied pressure. pc marks the region of the insulator-metal
transition.

[1] E. Arcangeletti et al., Phys. Rev. Lett. 98, 196406 (2007).
[2] L. Bai et al., Phys. Rev. B. 91, 104110 (2015).
[3] W.-P. Hsieh et al., Appl. Phys. Lett. 104, 021917 (2014).
[4] C. Kübler et al., Phys. Rev. Lett. 99, 116401 (2007).

Keywords: optical pump - THz probe spectroscopy; pressure-induced metallization; bandwidth-controlled Mott-Hubbard transition; insulator-to-metal transition; high pressure; diamond anvil cell; vanadium dioxide; VO₂

  • Lecture (Conference)
    Optical Terahertz Science and Technology (OTST 2017), 02.-07.04.2017, London, United Kingdom

Permalink: https://www.hzdr.de/publications/Publ-26398