Inhomogeneous electron gas under warm dense conditions


Inhomogeneous electron gas under warm dense conditions

Moldabekov, Z.; Dornheim, T.; Vorberger, J.

Warm dense matter (WDM) is a state of matter with parameters between solids and
dense plasmas. WDM is characterized by the relevance of quantum degeneracy, thermal
excitations, and strong correlations. Many questions regarding the interplay of these
effects in WDM remain open. In this paper, we use an externally perturbed electron gas
to investigate how electronic structure and excitations are affected by thermal excitations
and density inhomogeneities. The results are reported in our recent articles [1-4]. We
present a study of the quality of various exchange-correlation functionals in the KS-DFT
method [1,2]. In addition, we show how electronic excitations change due to strong
inhomogeneity and thermal effects [3]. Based, on these results, we present a new KS-DFT
based methodology for the investigation of the non-linear response of electrons across
temperature regimes relevant for WDM [4].

References
[1] Z. Moldabekov, T.Dornheim, M. Boehme, J. Vorberger, A. Cangi, The Journal of Chem-
ical Physics 155, 124116 (2021).
[2] Z. Moldabekov, T.Dornheim, J. Vorberger, A. Cangi, Phys. Rev. B 105, 035134 (2022).
[3] Z. Moldabekov, T.Dornheim, A. Cangi, Scientific Reports 12, 1093 (2022)
[4] Z.Moldabekov, J. Vorberger, T. Dornheim, Journal of Chemical Theory and Computation,
accepted for publication (2022); arXiv:2201.01623.

Keywords: warm dense matter; exchange-correlation functionals; non-linear response

  • Lecture (Conference)
    The 13th International Conference on High Energy Density Laboratory Astrophysics HEDLA 2022, 23.-27.05.2022, Lisbon, Portugal

Permalink: https://www.hzdr.de/publications/Publ-35901