Stable and High-Quality Electron Beams from Staged Laser and Plasma Wakefield Accelerators


Stable and High-Quality Electron Beams from Staged Laser and Plasma Wakefield Accelerators

Foerster, F. M.; Döpp, A.; Haberstroh, F.; Grafenstein, K. V.; Campbell, D.; Chang, Y.-Y.; Corde, S.; Couperus Cabadağ, J. P.; Debus, A.; Gilljohann, M. F.; Habib, A. F.; Heinemann, T.; Hidding, B.; Irman, A.; Irshad, F.; Knetsch, A.; Kononenko, O.; Martinez De La Ossa, A.; Nutter, A.; Pausch, R.; Schilling, G.; Schletter, A.; Schöbel, S.; Schramm, U.; Travac, E.; Ufer, P.; Karsch, S.

We present experimental results on a plasma wakefield accelerator (PWFA) driven by high-current
electron beams from a laser wakefield accelerator (LWFA). In this staged setup stable and high-quality
(low-divergence and low energy spread) electron beams are generated at an optically generated hydro-
dynamic shock in the PWFA. The energy stability of the beams produced by that arrangement in the PWFA
stage is comparable to both single-stage laser accelerators and plasma wakefield accelerators driven by
conventional accelerators. Simulations support that the intrinsic insensitivity of PWFAs to driver energy
fluctuations can be exploited to overcome stability limitations of state-of-the-art laser wakefield
accelerators when adding a PWFA stage. Furthermore, we demonstrate the generation of electron bunches
with energy spread and divergence superior to single-stage LWFAs, resulting in bunches with dense phase
space and an angular-spectral charge density beyond the initial drive beam parameters. These results
unambiguously show that staged LWFA-PWFA can help to tailor the electron-beam quality for certain
applications and to reduce the influence of fluctuating laser drivers on the electron-beam stability. This
encourages further development of this new class of staged wakefield acceleration as a viable scheme
toward compact, high-quality electron beam sources.

Keywords: hybrid lwfa-pwfa

Involved research facilities

  • Draco

Downloads

Permalink: https://www.hzdr.de/publications/Publ-35980