Ion beam synthesis of Fe nanoparticles in MgO and YSZ


Ion beam synthesis of Fe nanoparticles in MgO and YSZ

Potzger, K.; Reuther, H.; Zhou, S.; Mücklich, A.; Grötzschel, R.; Eichhorn, F.; Liedke, M.; Fassbender, J.; Lichte, H.; Lenk, A.

In order to prepare epitaxially oriented Fe nanoparticles embedded below the surface of an oxide single crystalline host material the method of ion beam synthesis has been explored for MgO(001) and YSZ(001). At a fixed implantation energy and fluence the implantation temperature has been varied between *room temperature* and 1273 K. It was found, that for MgO substrates the fraction of metallic Fe increases up to a maximum of 60% (at 1073 K) as a function of implantation temperature, whilst the Fe depth profile remains the same. The Fe nanoparticles are nonmagnetic at room temperature exhibiting fcc structure. They show a mean diameter of 5 nm and an exclusive orientation relationship to the host. In YSZ the fraction of metallic Fe increases with increasing implantation temperature reaching 100% at 1273 K. However, the nanoparticles formed are of bcc structure with a mean diameter of 13 nm located mainly close to the sample surface. The ferromagnetic behavior is reflected by a magnetic hyperfine field of 330 kOe and a hysteretic magnetization reversal. Electron holography measurements have been carried out in order to visualize the stray field of the particles.

Keywords: MgO; YSZ; magnetic nanoparticles; ion beam synthesis; mossbauer spectroscopy

  • Lecture (Conference)
    Frühjahrstagung des Arbeitskreises Festkörperphysik zusammen mit der Condensed Matter Division der EPS (DPG-Tagung), 26.-31.03.06, Dresden, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-8129