Effect of Ion Energy on Structure and Composition of Cathodic Arc Deposited Alumina Thin Films


Effect of Ion Energy on Structure and Composition of Cathodic Arc Deposited Alumina Thin Films

Rosen, J.; Mraz, S.; Kreissig, U.; Music, D.; Schneider, J. M.

The effect of energy supplied to the growing alumina film on the composition and structure has been investigated by varying substrate temperature and substrate bias potential. The constitution and composition were studied by X-ray diffraction and elastic recoil detection analysis, respectively. Increasing the substrate bias potential from −50 to −100 V caused the amorphous or weakly crystalline films to evolve into stoichiometric, crystalline films with a mixture of the α- and γ-phase above 700 oC, and γ-phase dominated films at temperatures as low as 200 oC. All films had a grain size of <10 nm. The combined constitution and grain size data is consistent with previous work stating that γ-alumina is thermodynamically stable at grain sizes <12 nm [McHale et al., Science 277, 788 (1997)]. In order to correlate phase formation with synthesis conditions, the plasma chemistry and ion energy distributions were measured at synthesis conditions. These results indicate that for a substrate bias potential of −50 V, ion energies in excess of 100 eV are attained, both from a high energy tail and the accelerated ions with charge >1. These results are of importance for an increased understanding of the evolution of film composition and microstructure, also providing a pathway to γ-alumina growth at temperatures as low as 200 o C.

Keywords: Alumina; ion energy; plasma chemistry; composition; microstructure

  • Plasma Chemistry and Plasma Processing 25(2005)4, 303-317

Permalink: https://www.hzdr.de/publications/Publ-8146