Deep-level defects in n-type 6H silicon carbide induced by He-implantation


Deep-level defects in n-type 6H silicon carbide induced by He-implantation

Ling, C. C.; Chen, X. D.; Brauer, G.; Anwand, W.; Skorupa, W.; Wang, H. Y.; Weng, H. M.

Defects in He-implanted n-type 6H–SiC samples have been studied with deep-level transient spectroscopy. A deep-level defect was identified by an intensity with a logarithmical dependence on the filling pulse width, which is characteristic of dislocation defects. Combined with information extracted from positron-annihilation spectroscopic measurements, this defect was associated with the defect vacancy bound to a dislocation. Defect levels at 0.38/0.44 eV (E1/E2), 0.50, 0.53, and 0.64/0.75 eV (Z1/Z2) were also induced by He implantation. Annealing studies on these samples were also performed and the results were compared with those obtained from e–-irradiated (0.3 and 1.7 MeV) and neutron-irradiated n-type 6H–SiC samples. The E1/E2 and the Z1/Z2 signals found in the He-implanted sample are more thermally stable than those found in the electron-irradiated or the neutron-irradiated samples.

Permalink: https://www.hzdr.de/publications/Publ-8157