Publications Repository - Helmholtz-Zentrum Dresden-Rossendorf

1 Publication

Plasma dynamics between laser-induced breakdown and relativistically induced transparency: An investigation of high-intensity laser-solid interactions by time-resolved off-harmonic optical shadowgraphy

Bernert, C.

Abstract

Laser-plasma-based ion accelerators are becoming a versatile platform to drive different fields of applied research and life sciences, for example translational research in radiation oncology. To ensure stable accelerator performance, complete control over the ion source, i.e., the high-intensity laser-solid interaction, is required. However, idealized interaction conditions are almost impossible to reach, as the utilized high-power lasers always feature a non-negligible amount of light preceding the laser peak. This leading edge of the laser pulse usually exceeds the ionization potential of bound electrons much earlier than the arrival of the high-power laser peak and the solid-density target undergoes significant modifications even before the actual high-intensity laser-plasma interaction starts. Control over this so-called target pre-expansion is a key requirement to achieve quantitative agreement between numerical simulations and experiments of high-intensity laser-solid interactions.
This thesis investigates several aspects that are relevant to improve the capability of simulations to model realistic experimental scenarios. The corresponding experiments are conducted with cryogenic hydrogen-jet targets and the DRACO-PW laser at peak intensities between 10^12 W/cm^2 and 10^21 W/cm^2 . The experimental implementation of time-resolved optical-probing diagnostics and technical innovations with respect to the technique of off-harmonic optical probing overcome the disturbances by parasitic plasma self-emission and allow for unprecedented observations of the target evolution during the laser-target interactions. The laser-induced breakdown of solids, i.e., the phase transition from the solid to the plasma state, can be considered as an heuristic starting point of high-intensity laser-solid interactions. As it is highly relevant to simulations of target pre-expansion, Chapter 3 of this thesis presents time-resolved measurements of laser-induced breakdown in laser-target interactions at peak intensities between 0.6 * 10^21 W/cm^2 and 5.7 * 10^21 W/cm^2 . By increasing the peak intensity, a lowering of the applicable threshold intensity of laser-induced breakdown well below the appearance intensity of barrier-suppression ionization occurs. The observation demonstrates the relevance of the pulse-duration dependence of laser-induced breakdown and laser-induced damage threshold to the starting point of high-intensity laser-solid interactions. To apply the results to other laser-target assemblies, we provide a detailed instruction of how to pinpoint the starting point by comparing measurements of the laser contrast with a characterization study of the target-specific thresholds of laser-induced breakdown at low laser intensity. Chapter 4 of this thesis presents an example of how optical-probing diagnostics are able to estimate target pre-expansion as a starting condition for particle-in-cell simulations. The measurement allows to restrict the surface gradient of the pre-expanded plasma density to an exponential scalelength between 0.06 um and 0.13 um. Furthermore, the plasma-expansion dynamics induced by the ultra-relativistic laser peak are computed and post-processed by ray-tracing simulations. A comparison to the experimental results yields that the formation of the measured shadowgrams is governed by refraction in the plasma-density gradients and that the observed volumetric transparency of the target at 1.4 ps after the laser peak is not caused by relativistically induced transparency but by plasma expansion into vacuum instead. Chapter 5 of this thesis shows that a precise adjustment of the target density to the arrival of the ultra-relativistic laser peak by all-optical target-density tailoring in combination with the low solid density of the cryogenic hydrogen-jet target allows to explore the laser-target interaction in the nearcritical density regime. The chapter presents an experimental demonstration of all-optical target-density tailoring by isochoric heating via ultra-short laser pulses with a dimensionless vector potential a_0 ∼ 1. A hybrid of hydrodynamics and ray-tracing simulations allows to determine the evolution of the full target-density distribution after isochoric heating. Finally, the utilization of the method as a testbed platform to experimentally benchmark collisional particle-in-cell simulations is proposed and an experimental exploration of future possibilities of all-optical target-density tailoring is given.

Keywords: high-intensity; laser-solid; laser-induced breakdown; realtivistic transparency; off-harmonic; optical probing; shadowgraphy

Involved research facilities

  • Draco
  • Open Access Logo Wissenschaftlich-Technische Berichte / Helmholtz-Zentrum Dresden-Rossendorf; HZDR-130 2024
    ISSN: 2191-8708, eISSN: 2191-8716

Downloads

Permalink: https://www.hzdr.de/publications/Publ-39006