Practical trainings, student assistants and theses

Softwareentwicklung zum Kontrollsystem EPICS (Id 330)

Student Assistant

Foto: EPICS - Kommunikationsschema ©Copyright: Markus MeyerSie unterstützen uns bei der Implementierung von Schnittstellen für ein neues Beschleunigersystem am HZDR.
Dabei lernen Sie EPICS als Kontrollsystem näher kennen.
Die Entwicklung von 2 IOCs zum Auslesen und Steuern von Oszilloskopen bzw. Funktionsgeneratoren über TCP/IP liegt in Ihrer Hand.

  • Recherche über existierende IOCs
  • Anpassung oder Neuentwicklung
  • Test mit dem Gerät
  • GUI-Erstellung mit EpicsQt

Department: Instrumentation

Contact: Wagner, Nicole, Meyer, Markus

Requirements

  • Kenntnisse C++, Linux erforderlich
  • Kenntnisse Qt wünschenswert

Conditions

  • Beginn ab sofort möglich
  • Sie entwickeln und testen über einen längeren Zeitraum, parallel zu unseren Entwicklern (w/m/d)
  • Home-Office bzw. Remote-Arbeit unterstützen wir - der regelmäßige Abgleich erfolgt über digitale Infrastrukturen

Online application

Please apply online: english / german

Druckversion


Numerical simulation of particles in rising gas bubbles (Id 327)

Master theses / Diploma theses / Compulsory internship

The separation of aerosol particles by a moving gas-liquid fluidic interface is central to a wide variety of industrial and natural applications, among which stand out air purification systems and precipitation scavenging. The particle size significantly affects the separation rate. The diffusion of particles in the nanometer range is largely dominated by molecular diffusion. In this regime, predictive models accurately estimate the separation rates. Model inaccuracy increases, however, significantly when the particle size ranges from 0.1 μm to 2.5 μm. In this impaction-dominated regime, the complex interplay between the flow dynamics on both sides of the fluidic interface and the particle inertia makes it difficult to develop suitable models.

In this work, the student will numerically investigate whether enforcing bubble deformation into a non-spherical shape leads to a higher deposition rate, hereby making the particle separation process more efficient. The results will lead to the development of an improved and reliable separation model accounting for the deformation of the fluidic interface and the associated flow changes.

Institute: Institute of Fluid Dynamics

Contact: Dr. Lecrivain, Gregory

Requirements

  • General interest in fluid mechanics
  • Preliminary experience in code development (c++) is desirable
  • Good written and oral communication skills in either English or German

Conditions

  • Either an immediate start or a start in 2022 is possible
  • Duration of the internship is anticipated to be 6 months but can be modified according to study regulations
  • Remuneration according to HZDR internal regulations

Online application

Please apply online: english / german

Druckversion


Bioleaching of metals from sulfidic mine waste (Id 326)

Master theses / Diploma theses

Mine waste is one of the major waste streams in the EU. An estimated 633 Mtonne of extractive waste is generated per year in the EU and is mainly stored in dumps or tailing ponds. Poor management of mine waste can lead to significant environmental hazards such as acid mine drainage. Reprocessing of mine waste could reduce environmental risks and recover valuable raw materials. Bioleaching is an environmentally friendly technique that uses biological systems (such as microorganisms) to expedite the extraction and recovery of metals from ores and/or waste materials.
The aim of this project is to extract valuable and hazardous elements from sulfidic mine waste, using various bacterial strains (including acidophilic bacteria and marine sulfur-oxidizing bacteria). The mine wastes that will be studied are tailings and waste rock samples from three mines in Europe (Germany, Belgium, and Portugal).

Institute: Helmholtz Institute Freiberg for Resource Technology

Contact: Opara, Chiamaka Belsonia, Dr. Kutschke, Sabine, Dr. Pollmann, Katrin

Requirements

  • Field of study: Microbiology, Biotechnology or related disciplines
  • Experience with Microbiology practical laboratory work
  • Good oral and written communication skills in English
  • Organised, accurate and independent working style
  • Experience with microbial cell culturing
  • Motivation and interest in bioleaching and general microbiology

Conditions

  • working in an international team
  • start: April 2022 or as soon as possible
  • duration: minimum of 6 months
  • location: Dresden-Rossendorf

Online application

Please apply online: english / german

Druckversion


Techno-economic assessment of a load-flexible power-to-methanol process under different renewable power supply scenarios (Id 325)

Master theses / Diploma theses

The Institute of Fluid Dynamics of the Helmholtz-Center Dresden-Rossendorf (HZDR) is engaged in research concerning topics such as modeling and simulation of closely coupled power-to-X systems as well as the analysis of their detailed process behavior and techno-economic performance under fluctuating loads. At the center of the research activities lies the power-to-methanol technology driven by renewable energy based on high temperature electrolysis (SOEC) and the subsequent conversion of H2 together with anthropogenic CO2 into valuable products such as methanol as a climate neutral feedstock or fuel of the future.
Based on an existing system model of a power-to-methanol process as well as a basic techno-economic model, the economic performance of the decentralized production of methanol is to be studied under different scenarios (e.g. grid connection, coupling with PV and wind farms).
The topic includes the following tasks:

  • detailed literature study on the techno-economic assessment (TEA) of power-to-methanol processes as well as the economic characterization of intermittent operating scenarios,
  • gather detailed data of capital expenditures with respect to the purchase costs of all employed components in the system (SOEC, synthesis reactor, compressors, heat exchangers, etc.),
  • further development of the existing techno-economic model within Matlab to assess the methanol production price under fluctuating operation of the decentralized plant in a renewable energy framework,
  • study of the economic performance of a coupling of the power-to-methanol process with a battery storage of suitable size under the premise of a PV or wind farm renewable energy supply.

Department: Experimental Thermal Fluid Dynamics

Contact: Fogel, Stefan

Requirements

  • students (f/m/d) of industrial engineering, chemical engineering, mechanical engineering, process engineering or any other suitable university education with a bachelor degree of higher merit
  • profound knowledge in using Matlab
  • accurate, creative and independent working style
  • good written and oral communication skills
  • interest in scientific work

Conditions

Time frame: 6 months

Online application

Please apply online: english / german

Druckversion


Rising drops in liquid metal: imaging measurements with neutrons and X-rays (Id 318)

Student practical training / Bachelor theses / Master theses / Diploma theses / Student Assistant

Foto: Rising drops in liquid metal: imaging measurements with neutrons and X-rays ©Copyright: Dr. Tobias LappanMetallurgical processes are based on multi-phase flows in molten metals. Bubble injection via gas sparers plays an important role in metal purification, homogenisation as well as alloying. The principle of bubble flotation is of particular high impact in the aluminium and steel-making industries.

From the fluid dynamics view, liquid drops that are insoluble in a liquid metal show many similarities with gas bubbles. Both, drops and bubbles, may change their shape dynamically, collide with each other, and merge or split up by reducing or enlarging the interfacial area. Although liquid and gaseous phases are different in terms of density, interfacial tension or viscosity, dimensionless quantities such as Eötvös, Morton and Reynolds numbers allow comparing the characteristics of drops and bubbles in liquid metals, thus drawing conclusions on bubble flows in metallurgical processing.

In order to visualize rising drops in an optically opaque liquid metal, we have recently performed neutron radiographic measurements at the NEUTRA beamline of the Swiss spallation neutron source (SINQ), Paul Scherrer Institute, Switzerland. The neutron image sequences acquired at high temporal resolution give a unique insight into the motion of ascending drops in a low-melting gallium metal alloy.

The student research project offered here is mainly concerned with image processing and analysis of the acquired neutron image data. In addition, we intend to perform supplementary X-ray radiographic measurements with the same experimental setup in our X-ray laboratory at HZDR. From the neutron and X-ray images, we aim to reveal the size and shape of drops along their motion paths while ascending in the liquid metal. Using the above-mentioned dimensionless quantities, we then can compare the characteristics of these drops with bubbles observed in lab-scale experiments or applied in industrial-scale processes.

Department: Magnetohydrodynamics

Contact: Dr. Lappan, Tobias, Dr. Sarma, Martins

Requirements

  • field of study: chemical engineering, process engineering, fluid mechanics, or similar focus in chemistry or physics
  • experience with data analysis, particularly image processing, e.g. with ImageJ or MATLAB
  • experience with laboratory work and imaging measurement techniques is beneficial
  • motivation and interest in the subject
  • careful, structured and independent way of working
  • good oral and written communication skills in English or German
  • enjoyment of scientific work

Conditions

  • working in a multi-disciplinary and international team
  • place of work: HZDR
  • start: from February 2022
  • duration: min. 3 month
  • remuneration according to HZDR internal regulations

Online application

Please apply online: english / german

Druckversion


Student assistant at the DeltaX School Lab (Id 308)

Student Assistant / Research Assistant

Foto: Schülerlabor DeltaX - Experimentiertage Magnetismus ©Copyright: André WirsigThe DeltaX student laboratory makes research at the Helmholtz-Zentrum Dresden-Rossendorf an experience for students. We are looking for tutors who enjoy teaching science, research and technology and who would like to support students conducting their experiments. Apply as a student assistant in the DeltaX school laboratory and become part of a young and open-minded team.

Department: School Lab DeltaX

Contact: Dr. Streller, Matthias, Gneist, Nadja

Requirements

  • Study of a scientific subject
  • Remaining study duration of at least 2 semesters
  • Pleasure in teaching science and research- Good to very good grades
  • Very good knowledge of German (B2 / C1 level)

Conditions

  • 5 - 10 h / week on whole weekdays
  • Start of hiring according to agreement

Links:

Online application

Please apply online: english / german

Druckversion


Organisch-chemische Synthese neuer Radioliganden für die Diagnostik und Therapie von Krebserkrankungen (Id 295)

Student practical training / Master theses / Diploma theses

Wir beschäftigen uns mit der Entwicklung von PET-Radiotracern, die Rezeptoren im Tumormikromilieu (TME = tumor microenvironment) für die Diagnostik und Therapie von Krebs sichtbar machen. Dazu werden geeignete tumoraffine Leitstrukturen identifiziert (niedermolekulare organische Moleküle, Peptide und Peptidomimetika), synthetisiert und mit einem geeigneten Radionuklid kovalent (z.B. Fluor-18, Iod-123) oder über einen Chelator (z.B. Gallium-68, Lutetium-177) markiert. Diese Radioliganden werden in vitro an Tumorzelllinien und in vivo im Tiermodell hinsichtlich einer Anwendung in der Nuklearmedizin getestet. Langfristiges Ziel ist die Translation der entwickelten Radiotracer in die Klinik als Diagnosewerkzeug (PET/CT) oder nach Markierung mit einem Beta- oder Alphastrahler für die Endoradiotherapie von Tumorerkrankungen.
Im Rahmen eines Studentenpraktikums oder einer Abschlussarbeit (Bachelor/Master/Diplom) sollen organische Wirkstoffmoleküle synthetisiert und für eine anschließende radiochemische Markierung modifiziert werden. Die neuen Radioliganden werden dann biologisch in vitro und in vivo untersucht.

Department: Translational TME Ligands

Contact: Dr. Stadlbauer, Sven

Requirements

  • Studium der Chemie mit abgeschlossenem Bachelor
  • Gute Noten in organischer Synthesechemie
  • Fähigkeit sich in ein interdisziplinäres Wissenschaftler-Team einzugliedern
  • Bereitschaft zum Umgang mit Radioaktivität
  • Gute Kenntnisse der deutschen und englischen Sprache

Conditions

  • Beginn nach Absprache jederzeit möglich
  • Praktikumsdauer mindestens 8 Wochen, mit möglichst täglicher Anwesenheit (keine wiss. Hilfskräfte)
  • Vergütung erfolgt nach HDZR-Richtlinien

Links:

Online application

Please apply online: english / german

Druckversion


Materialien für Solarkraftwerke (Id 241)

Bachelor theses / Master theses / Diploma theses

Foto: solarthermisches Turmkraftwerk ©Copyright: @AbengoaTurmkraftwerke stellen die neueste Generation von Anlagen zur solarthermischen Elektroenergieerzeugung dar. Extrem konzentriertes Sonnenlicht wird dabei auf einen zentralen Absorber gerichtet, der die Wärme auf eine Wärmeträgerflüssigkeit überträgt (s. Foto). Zur Erhöhung des Wirkungsgrades von Turmkraftwerken soll die Arbeitstemperatur von derzeit maximal 550°C deutlich erhöht werden. Dafür sollen werkstoffwissenschaftliche Lösungen weiter verfolgt werden, die im Rahmen eines EU-RISE-Projektes entwickelt wurden.

Als Themen für Graduierungsarbeit werden

i) die Optimierung von optischen und elektrischen Schichteigenschaften
ii) die Verbesserung der Schichthaftung auf Hochleistungslegierungen und
iii) die Komplettierung eines neuen Schichtsystems angeboten.

Zur Charakterisierung der untersuchten Materialien stehen modernste in situ und ex situ Analysemethoden zur Verfügung.

Department: Nanocomposite Materials

Contact: Dr. Krause, Matthias

Requirements

1. Studium der Werkstoffwissenschaften, Physik oder Chemie mit überdurchschnittlichen Leistungen (Notendurchschnitt ≤ 2.0)
2. Interesse und Freude an experimenteller wissenschaftlicher Arbeit
3. Grundkenntnisse in Programmierung und sicherer Umgang mit Büro- und wissenschaftlicher Software
4. Fachkundige Englischsprachkenntnisse

Conditions

internationale Forschungsumgebung, ortsübliche Aufwandsentschädigung

Online application

Please apply online: english / german

Druckversion