Practical trainings, student assistants and theses

Physical separation and recovery of valuable metals from the printed circuit boards fine dust production waste (Id 456)

Master theses

Summary: Printed Circuit Boards (PCBs) are an essential part of electronic devices and often contain substantial quantities of valuable and precious metals (20%) along with huge amount of organics (70%). While recycling of these end life electronic or production waste (EEW), copper is obtained as a major metallic component along with precious metals such as gold, silver, palladium, and platinum in the alloy phase. The organics are base and filler materials form PCB such as epoxy resins, fire retardants and fibers. During PCB manufacturing, processing, or disposal, dust generated may contain these valuable metals. Such fine dust (20 - 75 µm) makes recovery of precious metals and separation from organics challenging. Separating and analyzing these precious metals from PCB dust can offer economic benefits and reduce environmental harm. Present thesis work will focus on detailed feed analytics of the fine fractions. Physicochemical and particle based methods for metal identification, extraction, and refining will be designed and developed. The right combination of techniques will depend on the specific metal composition, particle size, and concentration of the precious metals in the dust. This will help in valorize fine dust based hazardous waste using circular economy approach.
In this thesis project, at HIF, HZDR (Department of mineral processing) we will pursue the innovation along following steps:
1. Pre-processing of PCB dust (Splitting and Sieving)
2. Initial Characterization in order to know about the size distribution, elemental assay, present phases using (LD, ICP-AAS, OES, XRF, SEM, CT)
3. Apply analytical separation techniques (gravity separation)
4. Liquid –liquid particle extraction- optimization of the process
5. Froth flotation- e.g. reverse froth flotation- optimization of the process
6. Leaching of concentrated fractions and recovery of Cu and other possible metals
7. Final characterization of recovered fractions (LD, TGA, ICP-AAS, OES, SEM, XRF and CT)
8. Conclude with optimizing the economical process for recovery

Department: Processing

Contact: Dr. Patil, Suvarna Ajay, Ahn, Sohyun, Dr. Rudolph, Martin

Requirements

  • Educational background: Chemcial engineering, Process engineering or related field
  • Knowledge of mechanical separation processes, basic laboratory skills, or analytical techniques (such as TGA, ICP, XRF, CT)
  • Good English skills
  • Ability to work independently

Conditions

  • Duration: 6 months
  • Start date: as soon as possible
  • Workplace: Freiberg

Online application

Please apply online: english / german

Druckversion


Sample preparation for both XRF and (handheld) LIBS measurements (Id 455)

Bachelor theses / Master theses / Diploma theses

X-ray fluorescence analysis (XRF) is a standard method to analyse a wide range of elements. Unfortunately, light elements (Z<11) are hard or impossible to analyse using XRF. On the other hand, LIBS (Laser induced breakdown spectroscopy) is able to analyse these elements. Especially the analysis of Lithium in solid samples is an urgent and currently needed topic. We aim to combine the two methods by developing an integrated workflow using fused beads, which is a standard technique for XRF sample preparation, for XRF analysis of the major elements and subsequent LIBS analysis for elements like e.g. Li.
Besides the development of a simple procedure to produce fused beads appropriate for both methods, calibration for both XRF and LIBS have to be implemented. The outcome of this (Master’s, Bachelor’s) thesis should be a as simple as possible workflow (including sample preparation), a sufficient number of reference materials (by e.g. mixing pure components), calibrations for XRF and LIBS, respectively and an evaluation of the desired method’s limitations. Motivated students of analytical chemistry, geosciences or adequate subjects are addressed.

Department: X-ray and bulk analytics

Contact: Dr. Möckel, Robert, Ebert, Doreen, Dr. Renno, Axel

Online application

Please apply online: english / german

Druckversion


Optimization of innovative Heat Exchangers equipped with advanced structures by CFD for sCO2 power cycles (Id 454)

Master theses

Storing energy is a promising solution to address the intermittent nature of renewables sources and to increase their share in the energy mix. Indeed, during periods of surplus production, energy can be stored as heat and later released to a power cycle when demand peaks. Since the involved temperatures are high to store a maximum of energy, power cycles with supercritical CO2 (sCO2) show higher efficiency than any traditional power cycle. Hence, each component of the system must be carefully optimized, with this work focusing specifically on the heat exchangers.
Printed Circuit Heat Exchangers (PCHEs) have drawn attention as potential heat exchangers for sCO2 power cycles for the past 40 years, due to the compact design and high thermal efficiency. The channels have a characteristic cross-flow section in the order of 1 mm2 and they exhibit a large variety of shapes, ranging from straight channels to more complex shapes like airfoils fins. The optimization of such heat exchangers is a promising topic to improve processes within the energy system. However, most optimization algorithms are based on Nusselt number and friction factor correlations, which limited to simple designs and are not suitable for the complex geometry.
For this reason, developing a Computational Fluid Dynamics (CFD)-aided optimization algorithm is essential to maximize the heat transfer performance, while minimizing pressure drop, especially when no established correlation exists. The first step will involve the creation of a Python or MATLAB script to automatically generate and mesh the geometries in Ansys. Next, the model will be validated by an objective function or experimental data from the literature. Ideally, the algorithm would be extend to handle more complex geometries.

Department: Thermal energy technology

Contact: Guille-Bourdas, Alexandre Florian

Requirements

  • Academic studies in the field of process engineering, chemical engineering, mechanical engineering or comparable fields of study
  • Knowledge of thermodynamics, heat and mass transfer phenomena
  • Knowledge of Python or MATLAB
  • Knowledge of Ansys Package

Conditions

  • Duration: 6 months
  • Funding: Remuneration according to HZDR internal regulations
  • Start Date: As soon as possible

Online application

Please apply online: english / german

Druckversion


Bachelor student (m/f/d) Characterization of binding, mutation and amplification properties of single phages (Id 452)

Student practical training / Bachelor theses / Compulsory internship

Within the FINEST project, the phage surface display was used to identify phages that potentially bind to different types of plastic. In order to carry out further experiments, the respective phage clones must be amplified and tested for their binding properties. Phage clones can have different amplification rates and mutation rates which can distort the results of the binding studies of the individual phage clones and lead to a false evaluation of the phage clone. The aforementioned properties are to be investigated in the advertised work using basic molecular and microbiological methods.

Department: Pep2Rec

Contact: Harter, Sonja Dorothea, Dr. Lederer, Franziska, Dr. Schönberger, Nora

Requirements

  • Ongoing studies in biotechnology, molecular biology, biochemistry, biology or a related natural science degree program
  • Practical experience in the basics of molecular biology
  • Interested in working independently after instruction
  • Independent, conscientious way of working

Conditions

  • Possible start from February 2025
  • Duration according to study regulations or at least 3 months
  • Presentation and written report on work and results
  • Laboratory language: English

Online application

Please apply online: english / german

Druckversion


Numerical Investigation of Particle Mixing (Id 451)

Master theses / Diploma theses / Compulsory internship

Fine-grained solid particles from various industrial sources, which would otherwise be discarded, should ideally be processed to valuable products or inert residues. They contain valuable residuals, such as metals, that can be returned to the industrial cycle instead of being landfilled. This is one aim of the Helmholtz project FINEST in which this work is embedded.
The different finest powders need to be mixed and agglomerated for further processing. Our work in the project deals with the granular mixing. One aim is to describe the process using flow simulations in OpenFOAM.
The particle flow is described based on the rheology of the bulk material, while the mixing process between the particles is described using a transport equation. In addition, there are terms for the segregation that takes place in parallel.
We are looking for someone with experience in CFD or other modelling to refine the implementation of this model and then perform parameter studies and validation using experimental data.

Institute: Institute of Fluid Dynamics

Contact: Baecke, Anna Magdalena, Dr. Lecrivain, Gregory

Requirements

  • Student of e.g. Computational Engineering, Modelling and Simulation, Mechanical Engineering, Process Engineering, Chemical Engineering
  • General interest in fluid mechanics and simulations
  • Preliminary experience in CFD, ideally OpenFOAM
  • Preliminary experience in code development (C++) optional

Conditions

  • Start from March 2025
  • Duration of internship or thesis according to study regulations
  • Remuneration available, scholarship holders (e.g. ERASMUS+) welcome

Online application

Please apply online: english / german

Druckversion


F3AST for Focused ion beam induced deposition (Id 450)

Master theses / Diploma theses

Foto: Orion NanoFab ©Copyright: Carl ZeissFocused ion beam induced deposition (FIBID) allows the high resolution 3D printing of insulating, conducting, semiconducting and superconducting nanostructures with nearly arbitrary shape. However, while being similar to focused electron beam induced deposition (FEBID) the physical processes are different enough that successful printing strategies from FEBID can not be transferred one to one to the FIBID process. FEBID 3D Algorithm for Stream File generation (F3AST) is a software package developed by our partners at the Vienna University of Technology (TU Wien) that has been successfully used to predict growth parameters for FEBID. The package is agnostic to the underlying charged particle technique and should be capable—potentially with some minor modifications—to also be used for the FIBID process.

The objective of this master thesis is to obtain calibration parameters for FIBID using the helium ion microscope (HIM). The HIM is a focused ion beam (FIB) technique that allows the imaging and fabrication of nanostructures with an optimum resolution in the sub-nanometer range. It utilizes a 0.5 nm wide focused beam of He ions to raster scan the surface. This beam of energetic (typically 10 keV to 30 keV) ions can be used for high resolution imaging and materials processing. After successful calibration of the model complex 3D nanostructures will be created to demonstrate the applicability of the
F3AST software for ion beam based 3D printing.

The researchers at the TU Wien will provide a modified version of the F3AST code able to generate input files for the FIBICS NPVE pattern generator. HIM and a W(CO)6 precursor gas will be used to grow simple 3D structures for the calibration of the software. HIM and scanning electron microscope (SEM) imaging will be used to obtain high resolution images of the nanostructures and extract the required geometrical parameters which will be feed to the F3AST software. Transmission electron microscope (TEM) investigations will be used to assess the composition of selected structures.
After successful completion of the calibration complex 3D structures will be grown and their fidelity will be qualitatively and where possible quantitatively evaluated.

Department: Ion Induced Nanostructures

Requirements

Bachelor in Physics or Materials Science
Ability to work in a nanotechnology lab using delicate equipment
Ability to create simple scripts using python or similar languages
Presentation and office skills

Conditions

You will be embedded in the ion induced nanostructures group (FWIZ-N) at the ion beam center (IBC) of the HZDR.

Links:

Online application

Please apply online: english / german

Druckversion


Selective Separation of Platinum Group Metals by Sequential Transport through Supported Liquid Membranes (SLM) using Task Specific Organic Carriers from Secondary Waste Streams (Id 449)

Master theses / Diploma theses / Compulsory internship

Platinum group metals (PGMs), particularly rhodium (Rh), palladium (Pd), and platinum (Pt), are regarded as the "vitamins" used in the modern industry. PGMs are crucial components of fuel cells, jewelry, computers, cell phones, automobile catalysts, etc. Their distinct physical and chemical characteristics, such as their corrosion resistance, chemical inertia, and catalytic activity, account for their extensive application and create alloys to enhance the characteristics of other transition metals. Because of their unique properties, PGMs are seldom replaced with other elements or compounds in applications. However, PGM deposits in the earth's crust are limited. The utilization of secondary resources, such as recycling waste materials, could mitigate the issue of PGM scarcity. Several conventional methods have been used for recovering PGM from secondary sources. Among the separation technologies, membrane separation offers the continuous and selective recovery of individual PGMs with no adverse environmental effects.
Supported liquid membranes (SLM) are a chemically driven membrane method in which a solvent phase contains an organic ligand that preferentially binds to a metal in the feed solution. The metal-ligand combination is subsequently diffusively carried across the membrane support and discharged into the receiving phase. This approach is particularly useful for metal ion separation because the organic carrier generates lipophilic metal-organic ligand complexes. This continuous permeation technique combines extraction and stripping procedures with less chemical reagents. The objective of the thesis work deals with the employment of task-specific organic ligands as carriers in the supported liquid membrane system for the selective recovery of platinum group metals from secondary source leachates and understanding the transport mechanism using different mathematical modeling approaches.

Department: Process Metallurgy

Contact: Dr. Patil, Ajay Bhagwan, Dr. Kelly, Norman, Kantamani, Rama Swami

Requirements

  • Conduct literature research on supported liquid membranes using various organic carriers and their applications in metal recovery
  • Design and conduct laboratory experiments using supported liquid membrane studies using task-specific organic carriers with several parameters such as pH, concentration, the thickness of membrane, feed solutions, etc.
  • Analyse and interpret data on membrane selectivity, flux rates, fouling resistance, and metal recovery efficiency
  • Optimize experimental conditions targeting high recovery rates for Platinum, Palladium, and Rhodium
  • Prepare a thesis report and present findings at conferences or workshops

Conditions

  • Bachelor's degree in Chemistry, Chemical Engineering, Environmental Engineering or related field
  • Knowledge of hydrometallurgical processes and membrane separation technologies
  • Knowledge of analytical techniques such as ICP-OES, AAS, or similar for metal concentration analysis
  • Duration: 6 months
  • Start Date: Start in 2025 is possible
  • Funding: Remuneration according to HZDR internal regulations

Online application

Please apply online: english / german

Druckversion


Numerical simulation of fibre-laden drops – mandatory internship or final thesis (Master, Diplom) opportunity (Id 448)

Master theses / Diploma theses / Compulsory internship

Understanding the behaviour of fibre-laden drops is critical due to their presence in various industrial applications, including microelectronics fabrication, portable medical devices, and biofuel production. Our work focuses on the numerical simulation of fibre-laden drops, specifically investigating a single long deformable fibre within a drop impacting a solid substrate. The study aims to elucidate the dynamic interactions between the fibre and the drop. Key objectives include determining the changes in drop dynamics due to the fibre and observing fibre deformation upon impact.

This work will involve computational fluid dynamics (CFD), particularly finite volume methods, with a focus on interface tracking using the Volume of Fluid approach. The simulation will incorporate surface wettability to enhance our understanding of elasto-capillary interactions, offering insights relevant to real-world applications.

We are seeking a motivated student with prior experience in CFD (preferably OpenFOAM) or similar modelling software.

Department: Particle dynamics

Contact: Radhakrishnakumar, Subhadrakutty, Dr. Lecrivain, Gregory

Requirements

  • Enrolled in a degree program such as Process Engineering, Mechanical Engineering, or Computational Modelling and Simulation
  • Strong interest in particle-fluid dynamics and numerical simulations
  • Preliminary experience in CFD, ideally with OpenFOAM
  • Basic coding skills, preferably in C++

Conditions

  • Immediate start possible
  • Duration of internship or thesis as per university regulations
  • Remuneration available, scholarship holders (e.g. ERASMUS+) are welcome

Online application

Please apply online: english / german

Druckversion


Investigation and Optimization of Membrane Filtration Process for Optimal Recovery of Metals and Acids (Id 447)

Bachelor theses / Master theses / Diploma theses

Vanadium and manganese are essential in high-strength steel alloys, battery technologies (notably vanadium redox flow batteries), and various chemical processes. Due to their industrial significance, recovering these metals from residual wash water along with leaching acids promotes environmental and economic sustainability. This study aims to Investigate and optimize a membrane filtration (nanofiltration) process for the selective recovery of vanadium and manganese, along with acid reclamation, from both acid raffinate and residue wash water solutions. The research evaluates the performance of various membranes focusing on their efficiency in concentrating vanadium and manganese while minimizing the co-permeation of iron, calcium, and other minor elements.
The objective of the work is to develop a process yielding a concentrated solution rich in vanadium and manganese for further precipitation, solid-liquid separation and hydrometallurgical steps, ultimately facilitating the recovery of vanadium as vanadium pentoxide (V₂O₅). The outcomes will offer valuable insights into the design and operation of membrane filtration systems for recovering critical metals and leaching agents from industrial effluents, supporting sustainable resource management practices in the metallurgical industry.
In addition to metal recovery, this research addresses acid reclamation following solvent extraction (SX) and supported liquid membrane process, with the goal of reducing chemical consumption. Acid recovery from the raffinate will be also explored, with organic contaminants removed via sorbents, such as activated charcoal. The reclaimed acid can then be recycled back into the leaching circuit, establishing a more sustainable process loop.

Department: Process Metallurgy

Contact: Dr. Kelly, Norman, Kantamani, Rama Swami, Viswamsetty, Lakshmi Kanth

Requirements

  • Educational Background: Bachelor's / Master’s degree in Metallurgical Engineering, Chemical Engineering, Environmental Engineering or related field
Preferred Skills:
  • Knowledge of hydrometallurgical processes and membrane separation technologies
  • Basic laboratory skills and familiarity with equipment for Nano filtration, filtration testing, and solution analysis
  • Knowledge of analytical techniques such as ICP-MS, AAS, or similar for metal concentration analysis

Conditions

  • Conduct a literature review on nanofiltration technology and its application in metal and acid recovery
  • Design and carry out laboratory experiments with selected nanofiltration membranes, focusing on variables like pressure, pH, and concentration
  • Analyze and interpret data on membrane selectivity, flux rates, fouling resistance, and metal-acid recovery efficiency
  • Optimize filtration conditions through experimentation, targeting high recovery rates for vanadium and manganese
  • Prepare a comprehensive thesis report and, if possible, present findings at relevant conferences or workshops
  • Duration: 6 months
  • Start Date: Start in 2025 is possible
  • Funding: Remuneration according to HZDR internal regulations
  • Supervision and Support: The candidate (f/m/d) will be supervised with regular guidance, training on laboratory protocols, and support in analytical techniques

Online application

Please apply online: english / german

Druckversion


Development and experimental investigation of a multi-channel flow body sensor (Id 421)

Bachelor theses / Master theses / Diploma theses / Compulsory internship

The development of a multi-channel flow body sensor according to patent WO 2010/069307 A1 aims to quantify the gas content in flow-carrying components. A decisive advantage of this sensor lies in its optical measuring principle, which is based on fiber-optic coupling and the analysis of the light output signal. This avoids electrical potentials in the measuring area, offering significant advantages over electrical measuring methods (intrinsic safety), especially for explosive mixtures.

Preliminary tests at the Institute for Experimental Fluid Dynamics at the Helmholtz Center Dresden-Rossendorf on gas-liquid flows showed that a clear binarization of the sensor output signal can be achieved due to the capillary effects in narrow channels and the different refractive indices of the gas and liquid phases. Building on previous work with a single-channel sensor prototype based on a polymer optical fiber (POF) with a diameter of 1 mm, the following tasks must be completed as part of further research.

Tasks:

  • Adjusting the POF diameter to 1.5 mm in the single-channel configuration.
  • Conducting experimental investigations of the new single-channel prototype using the already developed test system and evaluation programs.
  • Designing a multi-channel sensor body for gas content measurements in the system.
  • Developing a transition adapter to optimize the flow distribution between the DN10 flow pipe and the sensor body.

Department: Fluid process engineering

Contact: Condriuc, Ivan, Dr. Kipping, Ragna

Requirements

  • Students majoring in fields such as process engineering, mechanical engineering, or chemical engineering.
  • Interest in fluid mechanics and the development of measurement technology.
  • Experience with 3D CAD tools.
  • Basic knowledge of Python programming

Conditions

Start date: 01.01.2025
Duration: according to the respective study regulations

Online application

Please apply online: english / german

Druckversion


Unterstützung im Rechnungswesen (Id 408)

Student Assistant

Die Abteilung Finanzen, Finanzcontrolling und Drittmittel ist für das Finanzmanagement des Helmholtz-Zentrum Dresden-Rossendorf verantwortlich. Im Bereich Rechnungswesen (Haupt-, Banken-, Debitoren-, Kreditoren- und Anlagenbuchhaltung) wird Ihre Hilfe benötigt.

Ihre Aufgaben:

  • Unterstützung (SAP) bei der Erfassung von Geschäftsvorfällen
  • Unterstützung (SAP) bei der Stammdatenpflege, insbesondere Kreditoren
  • Sonstige Unterstützungstätigkeiten

Department: Finance, Financial Controlling and Third-party Funds

Contact: Hartwig, Patrick

Requirements

  • Begonnenes Studium der Wirtschaftswissenschaften
  • Erste Kenntnisse in den Grundlagen des Rechnungswesens (Buchführung, Kosten- und Leistungsrechnung)
  • Selbstständige und verantwortungsvolle Arbeitsweise

Conditions

  • Arbeitsbeginn ab sofort
  • Mindestens 6 Monate
  • Tätigkeitsort: Standort Dresden-Rossendorf

Wir bieten Ihnen die Möglichkeit, im Studium Erlerntes praxisnah umzusetzen! Es erwarten Sie ein
motiviertes und kollegiales Arbeitsumfeld, tatkräftige Unterstützung bei der Umsetzung Ihrer Aufgaben sowie spannende Einblicke in die finanztechnische Schaltzentrale unseres Forschungsstandortes.

Online application

Please apply online: english / german

Druckversion


Automatisierte Auswertung von 1D- und 2D-Ramanspektroskopischen Meßreihen (Id 393)

Bachelor theses / Master theses / Diploma theses

Foto: Ramanmapping of 2D materials ©Copyright: Dr. Matthias Krause1D- und 2D-Ramanspektroskopische Meßreihen oder auch Maps liefern detaillierte ortsaufgelöste chemische Informationen über die untersuchten Proben. Damit kann z. B. die Komponentenverteilung in Stoffgemischen quantitativ bestimmt oder die Homogenität einphasiger Proben gezeigt werden. Andererseits lassen sich lokale Strukturveränderungen, Spannungszustände, Stapelfolgenänderungen in 2D-Materialien und Punktdefekte charakterisieren. Voraussetzung dabei ist eine möglichst engmaschige Datenerfassung bis hin zur Auflösungsgrenze der verwendeten Laserstrahlung sowie eine große Anzahl an Messpunkten. Mit modernen Spektrometern sind Messzeiten im Sekundenbereich gut realisierbar. Die Umsetzung der spektroskopischen in eine chemische Information erfordert dann die Extraktion von Parametern wie Schwingungsfrequenz, Intensität und Linienbreite durch Spektrenanpassung. Die Gerätesoftware bietet dafür nur eingeschränkte Möglichkeiten.
Im Rahmen einer Graduierungsarbeit soll in Zusammenarbeit mit dem HZDR-Rechenzentrum ein Auswertealgorithmus für die automatisierte Auswertung von 1D- und 2D-Ramanspektroskopischen Meßreihen entwickelt, an Beispielen getestet und dokumentiert werden.

Department: Nanomaterials and Transport

Contact: Dr. Krause, Matthias

Requirements

1. Studium der Werkstoffwissenschaften, Physik oder Chemie
2. Interesse, Freude und Befähigung für wissenschaftliche Arbeit
3. Grundkenntnisse in Programmierung und sicherer Umgang mit Büro- und wissenschaftlicher Software
4. Sehr gute Englisch-Kenntnisse

Conditions

Die Arbeit ist in die umfangreichen Aktivitäten der Abteilung Nanoelektronik (FWIO) zu 2D-Werkstoffen eingebettet. Sie kann jederzeit aufgenommen werden.

Online application

Please apply online: english / german

Druckversion


Internship on experimental investigation of aerosol propagation (Id 381)

Student practical training / Compulsory internship / Volunteer internship

Background:

Currently, there is a broad discussion whether ventilation by frequent window opening is sufficient for providing a sufficient amount of fresh air or if technical air purification devices based on e.g. HEPA filters are better solutions for public spaces. Furthermore, there is another discussion ongoing, whether a well-guided laminar flow or a high degree of mixing within a room is more beneficial. The latter, on the one hand distributes the potentially virus-laden aerosols in the whole room, but on the other hand reduces the peak concentrations of these aerosols clouds by magnitudes.

Objectives:

The objective is to perform aerosol propagation experiments and to estimate the potential aerosol inhalation of people in dynamic situations. To achieve this, an aerosol generator will be used in a demonstrator room under different flow conditions. The data from different scenarios will be processed in order to obtain a transference function that can relate the aerosol source with the aerosol receivers.

Tasks:

  • Literature survey
  • Aerosol experiments in different scenarios.
  • Post-processing of the results.

Department: Experimental Thermal Fluid Dynamics

Requirements

  • Student of natural sciences or engineering
  • Willingness to conduct experimental work

Conditions

Duration:

4-6 months

Remuneration:

According to HDZR guidelines

Online application

Please apply online: english / german

Druckversion


Medizinische Chemie/ Organische Synthese neuer Radioliganden für die Krebsdiagnostik und -therapie (Id 295)

Student practical training / Bachelor theses / Master theses

Wir beschäftigen uns mit der Entwicklung von PET-Radiotracern, die Rezeptoren im Tumormikromilieu (TME = tumor microenvironment) für die Diagnostik und Therapie von Krebs sichtbar machen. Dazu werden geeignete tumoraffine Leitstrukturen identifiziert (niedermolekulare organische Moleküle, Peptide und Peptidomimetika), synthetisiert und mit einem geeigneten Radionuklid kovalent (z. B. Fluor-18, Iod-123) oder über einen Chelator (z. B. Gallium-68, Lutetium-177) markiert. Diese Radioliganden werden in vitro an Tumorzelllinien und in vivo im Tiermodell hinsichtlich einer Anwendung in der Nuklearmedizin getestet. Langfristiges Ziel ist die Translation der entwickelten Radiotracer in die Klinik als Diagnosewerkzeug (PET/CT) oder nach Markierung mit einem Beta- oder Alphastrahler für die Endoradiotherapie von Tumorerkrankungen.
Im Rahmen eines Studentenpraktikums oder einer Bachelor- oder Masterarbeit sollen organische Wirkstoffmoleküle synthetisiert und für eine anschließende radiochemische Markierung modifiziert werden. Die neuen Radioliganden werden dann biologisch in vitro und in vivo untersucht.

Department: Medical Radiochemistry

Contact: Dr. Stadlbauer, Sven, Sachse, Frederik

Requirements

  • Studium der Chemie
  • Gute Noten in organischer Synthesechemie
  • Fähigkeit sich in ein interdisziplinäres Wissenschaftler-Team einzugliedern
  • Bereitschaft zum Umgang mit Radioaktivität
  • Gute Kenntnisse der deutschen und englischen Sprache

Conditions

  • Beginn nach Absprache jederzeit möglich
  • Praktikumsdauer mind. 4 Wochen, mit möglichst täglicher Anwesenheit

Online application

Please apply online: english / german

Druckversion


Materials for new solar power plants (Id 241)

Bachelor theses / Master theses / Diploma theses

Foto: Solar thermal power plant ©Copyright: @AbengoaTurmkraftwerke stellen die neueste Generation von Anlagen zur solarthermischen Elektroenergieerzeugung dar (s. Abbildung). Großflächige Spiegelanordnungen konzentrieren Sonnenlicht auf einen zentralen Absorber, wo es in Wärmeenergie umwandelt wird, die dann auf ein Wärmeträgermedium übertragen wird. Gegenüber der Photovoltaik hat die Solarthermie den inhärenten Vorteil, Energie zu speichern und bei Bedarf bereit zu stellen. Die Herausforderung für die weitere Erhöhung des Wirkungsgrades von Solarkraftwerken besteht in der Entwicklung von Werkstoffen mit einer Temperaturstabilität bis zu 800 °C an Luft.
Im Rahmen von Graduierungsarbeiten und Hilfstätigkeiten sollen thermisch stabile Beschichtungen für die Kernkomponenten von Solarturmkraftwerken entwickelt und getestet werden. Dabei kommen modernste in situ und ex situ Methoden wie Magnetronsputtern, Ellipsometrie, UV-vis-NIR-FTIR-Reflektometrie und Ramanspektroskopie zur Anwendung.
Zu diesem Themenbereich werden u. a. die folgenden Aufgabenstellungen angeboten:
i) Schichtabscheidung und Optimierung der optischen und elektrischen Eigenschaften von transparenten leitfähigen Oxiden für Solarkraftwerke;
ii) Entwicklung von neuartigen Absorber- und Wärmespeicherwerkstoffen für Solarkraftwerke;
iii) Design und Simulation von solarselektiven Beschichtungen für Solarkraftwerke.

Zur Charakterisierung der untersuchten Materialien stehen modernste in situ und ex situ Analysemethoden zur Verfügung. Die Arbeiten können jederzeit aufgenommen werden.

Department: Nanomaterials and Transport

Contact: Dr. Krause, Matthias

Requirements

1. Studium der Werkstoffwissenschaften, Physik oder Chemie
2. Interesse, Freude und Befähigung für experimentelle wissenschaftliche Arbeit
3. Grundkenntnisse in Programmierung und sicherer Umgang mit Büro- und wissenschaftlicher Software
4. Sichere Englischsprachkenntnisse (fließend oder besser)

Conditions

Internationale Forschungsumgebung, ortsübliche Aufwandsentschädigung

Online application

Please apply online: english / german

Druckversion