Publications Repository - Helmholtz-Zentrum Dresden-Rossendorf

"Online First" included
Approved and published publications
Only approved publications

41396 Publications

lll-V integration in Si and Ge by ion beam synthesis and flash lamp annealing

Wutzler, R.; Rebohle, L.; Prucnal, S.; Hübner, R.; Skorupa, M.; Helm, W.

In order to follow Moore’s law on the path to smaller and smaller devices, more and more materials have to be integrated into Si technology. Current research activities focus on the integration of Ge and binary III-V compounds into Si, as these materials promise a further transistor performance increase due to their high hole and electron mobility, respectively. In addition, the direct band gap of most of the compound semiconductors is of great interest for optoelectronic applications. However, the integration into Si generates a lot of challenges regarding both the quality of the III-V material itself and the quality of its interfaces. At present, most integration technologies rely on molecular beam epitaxy or similar growth mechanisms. Recently, we showed that III-V nanocrystals (NC) in Si can also be fabricated by sequential ion implantation followed by flash lamp annealing (FLA) [1]. Moreover, the use of a patterned implantation mask allows the fabrication of III-V NCs in a Si nanowire at defined positions [2].

In this presentation we extend our previous investigations to the case of Ge. In order to get a better understanding of the NC formation process, InAs and GaAs NCs were fabricated in Si and Ge by ion implantation and FLA, and their structural and electric properties were compared to each other. It will be shown that the recrystallization of the near-surface layer of amorphous substrate material (Si or Ge), together with the NC formation, is rather governed by liquid phase than by solid phase epitaxy. This scenario is supported by the evaluation of the corresponding segregation and diffusion coefficients, the temperature profile during FLA and the final size distribution of the NCs.

[1] S. Prucnal, S. Facsko, C. Baumgart, H. Schmidt, M.O. Liedke, L. Rebohle, A. Shalimov, H. Reuther, A. Kanjilal, A. Mucklich, M. Helm, J. Zuk, and W. Skorupa, Nano Lett. 11, Issue 7, 2814-2818 (2011)
[2] S. Prucnal, M. Glaser, A. Lugstein, E. Bertagnolli, M. Stöger-Pollach, S. Zhou, M. Helm, D. Reichel, L. Rebohle, M. Turek, J. Zuk, and W. Skorupa, Nano Res. 7, 1769 (2014)

Keywords: III-V integration; ion implantation; flash lamp annealing; silicon; germanium

Related publications

  • Lecture (Conference)
    Gettering and Defect Engineering in Semiconductor Technology (GADEST) 2015, 20.-25.09.2015, Bad Staffelstein, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-22366
Publ.-Id: 22366


High-temperature photon-noise-limited performance terahertz quantum-well photodetectors

Jia, J. Y.; Wang, T. M.; Zhang, Y. H.; Shen, W. Z.; Schneider, H.

In this paper, we propose using a terahertz quantumwell photodetector (THz QWP) in combination with a terahertz source to realize a detection system with photon-noise limited performance (PLIP) at high temperatures. Systematical investigations on the high-temperature performances of THz QWPs, including required signal power density for PLIP, detectivity, and the signal-to-noise ratio, have been carried out by elaborating their dark current mechanism and photocurrent response both experimentally and theoretically. We also present the optimal doping concentration of THz QWPs designed for different peak wavelengths and the resulting optimum performance regarding the above three key parameters. Numerical results show that optimal designed QWP with peak response frequency of 5.5 THz is expected to achieve PLIP at 77 K at signal power density at 819 W/cm and above. This work gives a precise description of PLIP performance of THz QWPs and will open ways for new applications for high-temperature detection in the THz regime.

Keywords: High temperature; detectivity; photon-noise limited; quantum-well photodetector (QWP); Terahertz (THz)

Permalink: https://www.hzdr.de/publications/Publ-22365
Publ.-Id: 22365


Nanoscale femtosecond imaging of transient hot solid density plasmas with elemental and charge state sensitivity using resonant coherent diffraction

Kluge, T.; Bussmann, M.; Chung, H.-K.; Gutt, C.; Huang, L. G.; Zacharias, M.; Schramm, U.; Cowan, T. E.

Here we propose to exploit the low energy bandwidth, small wavelength and penetration power of ultrashort pulses from XFELs for resonant Small Angle Scattering (SAXS) on plasma structures in laser excited plasmas. Small angle scattering allows to detect nanoscale density fluctuations in forward scattering direction. Typically, the SAXS signal from laser excited plasmas is expected to be dominated by the free electron distribution. We propose that the ionic scattering signal becomes visible when the X-ray energy is in resonance with an electron transition between two bound states (Resonant coherent X-ray diffraction, RCXD). In this case the scattering cross-section dramatically increases so that the signal of X-ray scattering from ions silhouettes against the free electron scattering background which allows to measure the opacity and derived quantities with high spatial and temporal resolution, being fundamentally limited only by the X-ray wavelength and timing. Deriving quantities such as ion spatial distribution, charge state distribution and plasma temperature with such high spatial and temporal resolution will make a vast number of processes in shortpulse laser-solid interaction accessible for direct experimental observation e.g. hole-boring and shock propagation, filamentation and instability dynamics, electron transport, heating and ultrafast ionization dynamics.

Permalink: https://www.hzdr.de/publications/Publ-22364
Publ.-Id: 22364


Tunneling breakdown of a strongly correlated insulating state in VO2 induced by intense multiterahertz excitation

Mayer, B.; Schmidt, C.; Grupp, A.; Bühler, J.; Oelmann, J.; Marvel, R. E.; Haglund, R. F.; Oka, T.; Brida, D.; Leitenstorfer, A.; Pashkin, A.

We directly trace the near- and midinfrared transmission change of a VO2 thin film during an ultrafast insulator-to-metal transition triggered by high-field multiterahertz transients. Nonthermal switching into a metastable metallic state is governed solely by the amplitude of the applied terahertz field. In contrast to resonant excitation below the threshold fluence, no signatures of excitonic self-trapping are observed. Our findings are consistent with the generation of spatially separated charge pairs and a cooperative transition into a delocalized metallic state by THz field-induced tunneling. The tunneling process is a condensed-matter analog of the Schwinger effect in nonlinear quantum electrodynamics. We find good agreement with the pair production formula by replacing the Compton wavelength with an electronic correlation length of 2.1 A° .

Permalink: https://www.hzdr.de/publications/Publ-22363
Publ.-Id: 22363


Probing ultrafast, transient plasma dynamics at solid density with X-ray lasers

Bussmann, M.; Kluge, T.; Huang, L.; Cowan, T. E.; Chung, H.-K.

Combining high power lasers with x-ray lasers provides unique opportunities to study ultrafast, transient processes in solid-density plasmas. We present simulation studies of probing ionization dynamics, electron transport and heating of solid-density targets driven by high power lasers with state-of-the-art X-ray lasers. We show that a precise understanding of the underlying atomic physics processes is necessary and needs to be implemented in kinetic simulations of the laser plasma interaction. Our results show that albeit the complexity of atomic processes happening during the laser plasma interaction, the very same processes can be exploited to understand the temporal evolution of the plasma.

  • Lecture (Conference)
    Radiative Properties of Hot Dense Matter, 29.09.-03.10.2014, Wien, Österreich

Permalink: https://www.hzdr.de/publications/Publ-22362
Publ.-Id: 22362


Bispecific antibody releasing-mesenchymal stromal cell machinery for retargeting T cells towards acute myeloid leukemia blasts

Aliperta, R.; Cartellieri, M.; Feldmann, A.; Arndt, C.; Koristka, S.; Michalk, I.; von Bonin, M.; Ehninger, A.; Bachmann, J.; Ehninger, G.; Bornhäuser, M.; Bachmann, M. P.

Bispecific antibodies (bsAbs) engaging T cells are emerging as a promising immunotherapeutic tool for the treatment of hematologic malignancies. Because their low molecular mass, bsAbs have short half-lives. To achieve clinical responses, they have to be infused into patients continously, for a long period of time. As a valid alternative we examined the use of mesenchymal stromal cells (MSCs) as autonomous cellular machines for the constant production of a recently described, fully humanized anti-CD33-anti-CD3 bsAb, which is capable of redirecting human T cells against CD33-expressing leukemic cells. The immortalized human MSC line SCP-1 was genetically modified into expressing bsAb at sufficient amounts to redirect T cells efficiently against CD33 presenting target cells, both in vitro and in an immunodeficient mouse model. Moreover, T cells of patients suffering from acute myeloid leukemia (AML) in blast crisis eliminated autologous leukemic cells in the presence of the bsAb secreting MSCs over time. The immune response against AML cells could be enhanced further by providing T cells an additional co-stimulus via the
CD137-CD137 ligand axis through CD137L expression on MSCs. This study demonstrates that MSCs have the potential to be used as cellular production machines for bsAb-based tumor immunotherapy in the future.

Permalink: https://www.hzdr.de/publications/Publ-22361
Publ.-Id: 22361


Surface Modificationwith heavy Mon- and Polyatomic Ions

Bischoff, L.; Böttger, R.; Heinig, K.-H.

Self-organization of nanopatterns on solid surfaces by ion irradiation is a well-established technique to create regular and ordered structures like ripples or dots. Characteristics of patterns can be controlled selecting different ion species as well as by varying their energy, fluence, incidence angle or the sample temperature during irradiation. To date, mostly monatomic ions with masses between 40 (Ar) and 131 amu (Xe) were used for self-organized nanopatterning or contrary for surface smoothing. A comprehensive review is given.Here, self-organization of periodic patterns by bombardment with polyatomic/cluster ion species with masses of up to ~835 amu is studied – a regime not explored so far. Each impact of a very heavy polyatomic projectile deposits within femtoseconds an extremely high energy density into a local, near-surface volume. The achieved energy density exceeds that of irradiation with monatomic ions of medium mass considerably, it is of the order of femtosecond laser irradiation or swift heavy ion bombardment. Therefore, compared to former ion-induced pattern formation, different pattern based on different mechanisms can be expected.A new quality of pattern on Ge surfaces are obtained by Bi2, Bi3, Bi4 and Au2, Au3 ion irradiation. Polyatomic ions are provided by liquid metal (alloy) ion sources (LM(A)IS) in a mass-separating 30 kV focused ion beam (FIB) system. Results are compared to monatomic Bi and Au ion irradiation using otherwise equivalent irradiation parameters. For this, SEM and AFM were applied to investigate the pattern formation in dependence on ion species, energy per projectile atom, fluence, incidence angle and target temperature. Finally, a consistent, qualitative model for the surface evolution relating on energy density deposition sufficient for localized, transient nano melt pool formation is discussed.

Keywords: Self-organization; ripples; dots; mon- and polyatomic ions; FIB

Related publications

  • Invited lecture (Conferences)
    The 22nd International Conference on Ion-Surface Interactions, ISI - 2015, 20.-24.08.2015, Moscow, Russia

Permalink: https://www.hzdr.de/publications/Publ-22360
Publ.-Id: 22360


Denudation rates across the Pamir based on 10Be concentrations in fluvial sediments: dominance of topographic over climatic factors

Fuchs, M. C.; Gloaguen, R.; Merchel, S.; Pohl, E.; Sulaymonova, V. A.; Andermann, C.; Rugel, G.

A clear understanding of erosion processes is fundamental in order to comprehend the evolution of actively deforming mountain ranges. However, the relative contributions of tectonic and climatic factors and their feedbacks remain highly debated. In order to contribute to the debate, we quantify basin-wide denudation rates from cosmogenic 10Be concentrations in modern river sediments in the Pamir. This mountain range is a unique natural laboratory because the ongoing India–Eurasia collision sustains high deformation rates and, on account of its position at the transition between Westerlies and monsoon, a strong regional climatic variability arises. Sample acquisition and preparation for accelerator mass spectrometry measurements were challenging due to difficult field accessibility, low quartz and high feldspar concentrations and crystal coating. Six samples along the main draining river, the Panj, and five samples within the major, east–west elongated tributary basins allow us to quantify basin-wide denudation rates for the first time in this orogen. An average denudation rate of 0.64 mm yr-1 reveals a rapid evolution of the entire Pamir. Denudation rates of tributary sub-basins highlight the strong contrast between the Pamir Plateau (0.05 to 0.16 mm yr-1) and its margins (0.54 to 1.45 mm -1). The intensity of denudation is primarily correlated with geometric properties of the surface, such as slope steepness (0.75 quartiles; R2 of 0.81), and to a lesser extent to climatic factors such as precipitation. We thus argue that either tectonic uplift or base-level lowering are the main contributors to denudation processes. Multiple linear regression analysis (best R2of 0.93) suggests that precipitation may act as a limiting factor to denudation.
The highest denudation rates coincide with areas of the northwestern Pamir margin that receive precipitation predominantly from the Westerlies during winter. There, the concentrated discharge during spring and early summer may sustain the pronounced denudation and allow the rapid sediment transport out of the basins. Low slope angles and dry conditions hamper the sediment flux on the plateau and, consequently, denudation. The magnitude of denudation in the Pamir is similar to rates determined in the southern Himalaya despite very different climatic and tectonic conditions. The discrepancy between rates of basin-wide denudation and the fluvial incision that is up to 10 times higher evidences a transient landscape in the Pamir. This underpins the hypothesis that river captures may have caused the strong base-level lowering that drives the enhanced incision of the Panj and its main tributaries.

Keywords: erosion; geomorphology; accelerator mass spectrometry; AMS; cosmogenic nuclide

Related publications

Permalink: https://www.hzdr.de/publications/Publ-22359
Publ.-Id: 22359


Quantitative analysis of sulphides and sulphates by WD-XRF: Capability and constraints

Uhlig, S.; Möckel, R.; Pleßow, A.

Geochemical characterisations are implemented to get information about the composition of unknown samples but some elements occur in different oxidation states that can not be determined by established techniques without special efforts like sample dissolution or extra equipment. One example is sulphur with its most common species, sulphide and sulphate. Different approaches, based on WD-XRF routine measurements, provide simple alternatives for a quantitative speciation. A set of 100 synthetic samples has been prepared in different concentrations and were measured by a Panalytical Axios minerals spectrometer. The first approach is based on the shift of the Kα1,2 doublet. Sulphide peaks are located at 2309 eV, sulphates at 2310 eV and mixtures can be found on a linear regression of energy and sulphide amount. As opposed to sulphides, sulphates show sulphur Kβ’ satellite peaks. Another procedure is based on this difference because the intensity of S Kβ’ increases with increasing sulphate content. The amount of sulphide can be calculated by a linear regression based the quotient Kβ’/Kβ of the sulphur peak height or area. However, this method has two limitations: low sulphide concentrations (<10 g/kg sulphide in the sample) and interferences with lead (Pb Mβ peak). The WD-XRF based strategies provide simple and reliable methodologies for a quantitative speciation of sulphides and sulphates whereupon the matrix influence can be neglected. These approaches have been implemented in investigations of ore-containing samples from mining dumps in Saxony/Germany. These procedures can be applied to give previously not measurable data on solid samples containing different sulphur species.

Keywords: Sulphur speciation; Satellite lines; Fluorescence peak shift

Permalink: https://www.hzdr.de/publications/Publ-22358
Publ.-Id: 22358


Particle acceleration with the Dresden PW lasers

Schramm, U.

Invited review talk on particle acceleration and PW laser development in Dresden

Related publications

  • Invited lecture (Conferences)
    SPIE optics and optoelectronics, 13.-16.04.2015, Prague, Czech Republic

Permalink: https://www.hzdr.de/publications/Publ-22357
Publ.-Id: 22357


Single-pulse picking at kHz repetition rates using a Ge plasma switch at the free-electron laser FELBE

Schmidt, J.; Winnerl, S.; Seidel, W.; Bauer, C.; Gensch, M.; Schneider, H.; Helm, M.

We demonstrate a system for picking of mid-infrared and terahertz (THz) radiation pulses from the free-electron laser (FEL) FELBE operating at a repetition rate of 13 MHz. Single pulses are reflected by a dense electron-hole plasma in a Ge slab that is photoexcited by amplified near-infrared (NIR) laser systems operating at repetition rates of 1 kHz and 100 kHz, respectively. The peak intensity of picked pulses is up to 400 times larger than the peak intensity of residual pulses. The required NIR fluence for picking pulses at wavelengths in the range from 5 μm to 30μm is discussed. In addition, we show that the reflectivity of the plasma decays on a time scale from 100 ps to 1 ns dependent on the wavelengths of the FEL and the NIR laser. The plasma switch enables experiments with the FEL that require high peak power but lower average power. Furthermore, the system is well suited to investigate processes with decay times in the μs to ms regime, i.e., much longer than the 77 ns long pulse repetition period of FELBE.

Keywords: Pulse picking; plasma switch

Related publications

Permalink: https://www.hzdr.de/publications/Publ-22356
Publ.-Id: 22356


Erbium-ion implantation into various crystallographic cuts of Al2O3

Nekvindova, P.; Mackova, A.; Malinsky, P.; Cajzl, J.; Svecova, B.; Oswald, J.; Wilhelm, R. A.

This paper reports on the importance of crystallographic cuts with a different orientation on the luminescent properties and structural changes of Al2O3 implanted with Er+ ions at 190 keV and with a fluence of 1.0 × 1016 cm−2. Post-implantation annealing at 1000 °C in oxygen atmosphere was also done. The chemical compositions and erbium concentration-depth profiles of implanted layers were studied by Rutherford Backscattering Spectrometry (RBS) and compared to SRIM simulations. The same value of the maximum erbium concentration (up to 2 at.%) was observed at a depth of about 40 nm for all crystallographic cuts. The structural properties of the prepared layers were characterised by RBS/channelling. The relative amount of disordered atoms of 70–80% was observed in the prepared implanted layers and discussed for various cuts. It has been found that erbium is positioned randomly in the Al2O3 crystalline matrix, and no preferential positions appeared even after the annealing procedure. Erbium luminescence properties were measured in the wavelength range of 1440–1650 nm for all samples. As-implanted Al2O3 samples had a significant luminescence band at 1530 nm. The best luminescence was repeatedly observed in the 〈0 0 0 1〉 cut of Al2O3. The annealing procedure significantly improved the luminescent properties.

Keywords: Sapphire; Erbium; Ion implantation; Luminescence

Related publications

Permalink: https://www.hzdr.de/publications/Publ-22355
Publ.-Id: 22355


Magnetoelectricity of the spin-ice compound Ho2Ti2O7

Herrmannsdörfer, T.; Schönemann, R.; Green, E.; Opherden, L.; Skrotzki, R.; Wang, Z.; Kaneko, H.; Suzuki, H.; Wosnitza, J.

  • Lecture (Conference)
    ICM2015 - 20th International Conference on Magnetism, 05.-10.07.2015, Barcelona, Espana

Permalink: https://www.hzdr.de/publications/Publ-22354
Publ.-Id: 22354


Recent near-Earth supernovae probed by global deposition of interstellar radioactive 60Fe

Wallner, A.; Feige, J.; Kinoshita, N.; Paul, M.; Fifield, L. K.; Golser, R.; Honda, M.; Linnemann, U.; Matsuzaki, H.; Merchel, S.; Rugel, G.; Tims, S.; Steier, P.; Yamagata, T.; Winkler, S. R.

The rate of supernovae (SNe) in our local galactic neighborhood within a distance of ~100 parsec from Earth (1 parsec (pc)=3.26 light years) is estimated at 1 SN every 2-4 million years (Myr), based on the total SN-rate in the Milky Way (2.0±0.7 per century). Recent massive-star and SN activity in Earth’s vicinity may be evidenced by traces of radionuclides with half-lives t1/2 ≤ 100 Myr, if trapped in interstellar dust grains that penetrate the Solar System (SS). One such radionuclide is 60Fe (t1/2=2.6 Myr) which is ejected in supernova explosions and winds from massive stars. Here we report that the 60Fe signal observed previously in deep-sea crusts, is global, extended in time and of interstellar origin from multiple events. Deep-sea archives from all major oceans were analyzed for 60Fe deposition via accretion of interstellar dust particles. Our results, based on 60Fe atom-counting at state-of-the-art sensitivity, reveal 60Fe interstellar influxes onto Earth 1.7–3.2 Myr and 6.5–8.7 Myr ago. The measured signal implies that a few percent of fresh 60Fe was captured in dust and deposited on Earth. Our findings indicate multiple supernova and massive-star events during the last ~10 Myr at nearby distances ≤100 pc.

Keywords: accelerator mass spectrometry; AMS; supernova; cosmogenic radionuclide

Related publications

Permalink: https://www.hzdr.de/publications/Publ-22353
Publ.-Id: 22353


Separation of Diastereomeric Flubatine Metabolites using Sciex’ SelexION™ Technology

Fabritz, S.; Smits, R.; Ludwig, F.-A.

Es ist kein Abstract vorhanden.

Permalink: https://www.hzdr.de/publications/Publ-22352
Publ.-Id: 22352


Synthese, 18F-Markierung und radiopharmakologische Charakterisierung eines 30mer-Peptids als potentieller Radiotracer für die molekulare Bildgebung von Claudin-4 mittels PET

Bader, M.; Kuchar, M.; Wodtke, R.; Lenk, J.; Bergmann, R.; Pufe, J.; Haase-Kohn, C.; Steinbach, J.; Pietzsch, J.; Löser, R.

Der Zelloberflächenrezeptor Claudin-4 (Cld-4) wird in verschiedenen Tumoren überexprimiert und stellt daher ein potentielles Target sowohl für die Diagnose als auch die Therapie von Tumoren epithelialen Ursprungs dar. Dies lässt die Entwicklung von Sonden, die das in vivo-Imaging dieses Proteins ermöglichen, attraktiv erscheinen. Im Rahmen dieser Arbeit sollte untersucht werden, inwiefern sich das C-terminale Fragment der C-terminalen Domäne des Clostridium perfringens-Enterotoxins cCPE(290-319) für die PET-Bildgebung von Cld-4 eignet. Dieses Fragment besteht aus 30 Aminsäuren und weist die Sequenz SLDAGQYVLVMKANSSYSGNYPYSILFQKF auf, was den Positionen 290-319 im cCPE entspricht.
Die Synthese des cCPE(290-319) und davon abgeleiteter Analoga, insbesondere N-terminal fluorbenzoylierter und FITC-konjugierter Derivate sowie Varianten, in denen kritische Aminosäuren (Tyr 306 und Leu 315) ausgetauscht wurden, sollte durch Festphasenpeptidsynthese erfolgen. Unter verschiedenen erprobten Strategien erwies sich die sequentielle Festphasenpeptidsynthese unter Einsatz von drei Pseudoprolin-Dipeptiden am effizientesten, um cCPE(290-319) und dessen Derivate zugänglich zu machen. Die Affinität der erhaltenen Peptide zu einem artifiziellen Proteinkonstrukt bestehend aus beiden extrazellulären Domänen des Cld-4 wurde mit Hilfe der Oberflächen-Plasmonenresonanz (SPR) untersucht, wodurch ein Kd-Wert von 1.4 µM für das N-terminal 4-fluorbenzoylierte cCPE(290-319) ermittelt wurde. Die Markierung von CPE(290-319) mit Fluor-18 erfolgte an fester Phase mit Hilfe von N-Succinimidyl-4-[18F]fluorbenzoat ([18F]SFB) und 4-[18F]Fluorobenzoylchlorid. Dabei wurden die besten Resultate erzielt, wenn harzgebundenes cCPE(290-319) mit N-terminalem 6-Aminohexansäure-Spacer mit [18F]SFB zur Reaktion gebracht wurde. Die Inkubation des auf diese Weise erhaltenen Radiotracers mit Zellüberstand und Blutplasma ließ keine Anzeichen von Instabilität in diesen physiologischen Medien erkennen. Die Zellbindung von 18F-markiertem cCPE(290-319) wurde mit den Tumorzelllinien HT29, A375 und A431 untersucht. Dabei konnte die zeitabhängige Bindung des radiomarkierten Peptids an Cld-4-positive A375- und A431-Zellen beobachtet werden, die stärker war als im Fall der Cld-4-negativen HT29-Zellen. Dieses Ergebnis wird gestützt durch konfokale Fluoreszenzmikroskopie mit FITC-konjugiertem cCPE(290-319) an A431-Zellen. Das in vivo-Verhalten von 18F-markiertem cCPE(290-319) wurde durch dynamisches PET-Imaging und Radiometabolit-Analysen in NMRI nu/nu-Mäusen bzw. Wistar-Ratten evaluiert. Dabei hat sich gezeigt, dass 18F-markiertes cCPE(290-319) schnell metabolisiert wird und einer deutlichen Aufnahme in die Leber unterliegt.

  • Poster
    GDCh-Wissenschaftsforum 2015, 30.08.-02.09.2015, Dresden, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-22351
Publ.-Id: 22351


Targeting of tissue transglutaminase for functional tumour imaging: Studies on novel assay methods and inhibitors for this enzyme

Wodtke, R.; Hauser, C.; Jäckel, E.; Ruiz-Gómez, G.; Wong, A.; Steinbach, J.; Pietzsch, J.; Pietsch, M.; Löser, R.

An increased activity of tissue transglutaminase (TGase 2) in tumours correlates with enhanced invasive potential as well as resistance to chemo- and radiotherapy. Therefore, this enzyme represents an interesting target for the development of PET tracers for functional in vivo imaging of tumours.
One important prerequisite for the identification and characterisation of TGase 2-binding compounds are reliable assay methods to measure the enzymatic activity. For this, a continuous fluorimetric activity assay was established, which allows the detection of the TGase 2-activity through the measurement of an increase in fluorescence. In this context, six novel water-soluble fluorogenic acyl donors containing either 7-hydroxycoumarin or 7-hydroxy-4-methylcoumarin (HMC) as fluorogenic leaving groups were developed and extensively characterised concerning their enzymatic hydrolysis and aminolysis. Within these substrates, the dipeptide Z-Glu(HMC)-Gly-OH exhibits not only the most favourable substrate properties of all compounds in this study but also within the peptidic acyl donors described for TGase 2 so far. In addition to that, a fluorescence anisotropy-based assay method was established where the TGase 2-mediated incorporation of either fluorescein- or rhodamine-conjugated cadaverine into N,N-dimethylcasein is quantified.
For the development of PET tracers for molecular imaging of TGase 2, different approaches are pursued. One of those exploits the use of irreversible inhibitors for this enzyme. Among the TGase 2 inhibitors described in the literature, the recently reported Nα-acyl-Nε-acryloyl-lysine-4-pyridylpiperazides seem to be most suitable for radiotracer development as these compounds exhibit strong inhibitory potential and selectivity towards TGase 2 as well as favourable pharmacokinetic properties. Hence, derivatives based on this class of compounds that allow the labelling with radionuclides such as fluorine-18 and iodine-124 were prepared and their inhibitory potential towards TGase 2 was evaluated by the two independent assay methods outlined above. The kinetic characterisation of the compounds revealed interesting structure-activity relationships. Particularly, the introduction of iodine into the C-terminal pyridyl moiety resulted in a significantly increased inhibitory potential towards TGase 2 compared to the lead structure. This was further illustrated by investigations on covalent docking of the lysine-derived inhibitors within the catalytic centre of TGase 2 which simultaneously will open strategies for the design of even more potent inhibitors.

  • Lecture (Conference)
    14th International Congress on Amino Acids, Peptides and Proteins, 03.-07.08.2015, Wien, Österreich

Permalink: https://www.hzdr.de/publications/Publ-22350
Publ.-Id: 22350


III-V nanocrystals in Silicon via Liquid Phase Epitaxy: Microstructure and related properties

Wutzler, R.; Rebohle, L.; Prucnal, S.; Böttger, R.; Hübner, R.; Grenzer, J.; Helm, M.; Skorupa, W.

The integration of III-V compound semiconductors into existing semiconductor technology is a milestone in future development of micro- and opto-electronics. However, one of the main problems is the presence of defects both inside the III-V semiconductor and at its interfaces. In the present case, III-V compound semiconductor nanocrystals (NCs) were fabricated in Si based systems. For NC formation ion implantation and short-time flash lamp annealing (FLA) were used. After the implanted Si is molten by FLA, the NCs grow via liquid phase epitaxy (LPE) in a millisecond regime. Several binary and ternary III-V compounds have been produced using this approach. While binary compounds are fabricated stoichiometrically, ternary compounds can be achieved with varying compositions. Raman spectroscopy measurements confirmed the formation of III-V NCs within the particular, recrystallized matrices and Si doping. Microstructural properties were investigated by scanning electron microscopy (SEM), cross-sectional transmission electron microscopy (TEM) and X-ray diffraction analysis. SEM and TEM images show crystalline, strained III-V nanocrystals in recrystallized Si layers.

Keywords: ion implantation; flash lamp annealing; III-V integration; silicon; liquid phase epitaxy

Related publications

  • Poster
    28th International Conference on Defects in Semiconductors (ICDS), 27.-31.07.2015, Espoo, Finland

Permalink: https://www.hzdr.de/publications/Publ-22349
Publ.-Id: 22349


Experimental investigations on the influence of adhesive oxides on the metal-ceramic bond

Enghardt, S.; Richter, G.; Richter, E.; Reitemeier, B.; Walter, M. H.

The objective of this study was to test the influence of selected base metals, which act as oxide formers, on the metal-ceramic bond of dental veneer systems. Using ion implantation techniques, ions of Al, In and Cu were introduced into near-surface layers of a noble metal alloy containing no base metals. A noble metal alloy with base metals added for oxide formation was used as a reference. Both alloys were coated with a low-temperature fusing dental ceramic. Specimens without ion implantation or with Al2O3air abrasion were used as controls. The test procedures comprised the Schwickerath shear bond strength test (ISO 9693-1), profile height (surface roughness) measurements (ISO 4287; ISO 4288; ISO 25178), scanning electron microscopy (SEM) imaging, auger electron spectroscopy (AES) and energy dispersive X-ray analysis (EDX). Ion implantation resulted in no increase in bond strength. The highest shear bond strengths were achieved after oxidation in air and air abrasion with Al2O3 (41.5 MPa and 47.8 MPa respectively). There was a positive correlation between shear bond strength and profile height. After air abrasion, a pronounced structuring of the surface occurred compared to ion implantation. The established concentration shifts in alloy and ceramic could be reproduced. However, their positive effects on shear bond strength were not confirmed. The mechanical bond appears to be of greater importance for metal-ceramic bonding.

Keywords: Alloy; Chemical bond; Ion implantation; Mechanical bond; Metal-ceramic bond; Shear bond strength

Related publications

Permalink: https://www.hzdr.de/publications/Publ-22348
Publ.-Id: 22348


III-V nanocrystal formation in ion-implanted Ge and Si via liquid phase epitaxy during short-time flash lamp annealing

Wutzler, R.; Rebohle, L.; Prucnal, S.; Hübner, R.; Facsko, S.; Böttger, R.; Helm, M.; Skorupa, W.

A combination of n-type III-V compound semiconductors and p-type Ge for future CMOS device technology is a possible way to satisfy the demand for higher device performance. In this work, an alternative method to integrate III-V’s into Ge is achieved by using a combination of ion implantation and short-time flash lamp annealing. With this process InAs nanocrystals are formed within a Ge substrate for the first time. Raman spectroscopy, scanning electron microscopy, Auger electron spectroscopy element mapping as well as transmission electron microscopy are performed to investigate these nanocrystal regarding size, shape and crystalline quality. Experiments show epitaxial growth of the III-V compound within the Ge matrix and a liquid phase epitaxy mechanism is used to describe the nanocrystal formation. Finally, the microstructural properties are compared for InAs nanocrystals in a Ge and a Si matrix.

Keywords: ion implantation; flash lamp annealing; III-V integration; germanium; liquid phase epitaxy

Related publications

Permalink: https://www.hzdr.de/publications/Publ-22347
Publ.-Id: 22347


Linear magnetoresistance in mosaic-like bilayer graphene

Kisslinger, F.; Ott, C.; Heide, C.; Kampert, E.; Butz, B.; Spiecker, E.; Shallcross, S.; Weber, H. B.

The magnetoresistance of conductors usually has a quadratic dependence on magnetic field, however, examples exist of non-saturating linear behaviour in diverse materials. Assigning a specific microscopic mechanism to this unusual phenomenon is obscured by the co-occurrence and interplay of doping, mobility fluctuations and a polycrystalline structure. Bilayer graphene has virtually no doping fluctuations, yet provides a built-in mosaic tiling due to the dense network of partial dislocations. We present magnetotransport measurements of epitaxial bilayer graphene that exhibits a strong and reproducible linear magnetoresistance that persists to B = 62 T at and above room temperature, decorated by quantum interference effects at low temperatures. Partial dislocations thus have a profound impact on the transport properties in bilayer graphene, a system that is frequently assumed to be dislocation-free. It further provides a clear and tractable model system for studying the unusual properties of mosaic conductors.

Permalink: https://www.hzdr.de/publications/Publ-22346
Publ.-Id: 22346


Solid-phase synthesis of selectively monofluorobenzoylated polyamines for targeting of transglutaminases and polyamine transporters in tumours

Wodtke, R.; Steinbach, J.; Pietzsch, J.; Pietsch, M.; Löser, R.

Transglutaminases and polyamine transporters are promising targets for functional imaging of tumours. Therefore, our aim is to synthesise polyamine-based radiotracers that allow the in vivo imaging of the aforementioned targets by positron emission tomography (PET). Labelling with the radionuclide fluorine-18 can be accomplished via attaching a [18F]fluorobenzoyl group with the prosthetic labelling reagent N-succinimidyl-4-[18F]fluorobenzoate ([18F]SFB). To access the required non- radioactive analogues, a solid-phase synthesis was developed that enables selective fluorobenzoylation at distinct amino groups of various polyamines (e.g. cadaverine, spermidine, spermine) on the basis of a recently described synthetic concept for the selective functionalisation of polyamines. The established route can be directly applied to synthesise the 18F-labelled analogues.
The mono-fluorobenzoylated polyamines were obtained by solidphase synthesis of the corresponding oxopolyamines and subsequent reduction of the amide bond with BH3-THF. By applying Dde and Boc as orthogonal protecting groups and taking advantage of the selective reaction of 2-acetyldimedone with primary amino groups in the presence of secondary amines, the selective fluorobenzoylation (FBz) of different amino groups becomes possible.
Additionally, the selective mono-fluorobenzylation (FBn) of selected diamines by reaction with 4-fluorobenzaldehyde and subsequent reduction of the resulting imine using sodium triacetoxyborohydride was performed. Based on the established methodology, the following compounds among others were obtained in good yields: N-FBzcadaverine, N-FBn-cadaverine, N1-FBz- spermidine, N4-FBz-spermidine, N8-FBz-spermidine and N1-FBz-spermine. Furthermore, the naturally occurring diamine cadaverine was conjugated to different reporter groups such as biotin. The identity of the compounds was confirmed by NMR spectroscopy and mass spectrometry. The kinetic parameters towards transglutaminase 2-catalysed acyl transfer were determined for selected compounds with an in-house fluorimetric assay using the fluorogenic acyl donor Cbz–Glu(HMC)–Gly–OH.

  • Abstract in refereed journal
    Amino Acids 47(2015)8, 1630
    ISSN: 0939-4451
  • Poster
    14th International Congress on Amino Acids, Peptides and Proteins, 03.-07.08.2015, Wien, Österreich

Permalink: https://www.hzdr.de/publications/Publ-22345
Publ.-Id: 22345


Synthesis, 18F-labeling and radiopharmacological characterization of a 30mer peptide as potential radiotracer for PET imaging of claudin-4

Kuchar, M.; Bader, M.; Wodtke, R.; Lenk, J.; Pufe, J.; Bergmann, R.; Haase-Kohn, C.; Steinbach, J.; Pietzsch, J.; Löser, R.

The cell surface receptor claudin-4 (Cld-4) represents a single-chain protein containing four transmembrane domains and constitutes cell–cell contacts of the tight-junction type by engaging in homophilic interactions. Cld-4 is upregulated in various tumors and represents a promising target for both diagnosis and treatment of solid tumors of epithelial origin. Therefore, the development of agents that allow imaging of Cld-4 in vivo such as 18F-labeled compounds for positron emission tomography (PET) appears to be attractive. A suitable ligand to target Cld-4 in vivo seems to be the C-terminal peptidic fragment of the C-terminal domain of the Clostridium perfringens enterotoxin cCPE(290-319). This fragment is of 30 amino acids in length and has the sequence SLDAGQYVLVMKANSSYSGNYPYSILFQKF corresponding to positions 290-319 of cCPE.
The synthesis of cCPE(290–319) and analogues derived thereof, such as N-terminally modified derivatives (fluorobenzoylated and FITC-conjugated) and variants in which critical amino acids (Tyr 306 and Leu 315) have been replaced, was envisaged to be accomplished by solid-phase peptide synthesis (SPPS). Among several approaches, sequential SPPS using three pseudoproline-dipeptide building blocks revealed to be the most efficient one to afford cCPE(290–319) and its derivatives. The affinity of the furnished peptides to a soluble protein construct that contains both extracellular loops of Cld-4 was studied by surface plasmon resonance (SPR), which allowed determining a Kd value of 1.4 lM for the N-terminally fluorobenzoylated cCPE(290-319). Labeling of cCPE(290–319) with fluorine-18 was achieved on solid phase using N-succinimidyl-4-[18F]fluorobenzoate ([18F]SFB) and 4-[18F]fluorobenzoyl chloride as 18F-acylating agents. Most advantageous results were obtained when [18F]SFB was reacted with resin-bound cCPE(290–319) containing an N-terminal 6-aminohexanoic spacer. Stability assays in cell supernatants and plasma indicated no degradation of the resulting radiotracer in these physiological media. Cell binding of 18F-labeled cCPE(290–319) was investigated using the HT29, A375 and A431 tumor cell lines. Timedependent binding of the radiolabeled peptide to the Cld-4-positive A375 and A431 cells was observed, which was stronger than for the Cld-4-negative HT29 cell line. These findings are in accordance with results of confocal microscopy studies using FITC-conjugated cCPE(290–319) and A431 cells. The in vivo behavior of 18F-labeled cCPE(290–319) was studied in NMRI nu/nu mice and Wistar rats by dynamic PET imaging and radiometabolite analyses, respectively. These investigations have shown that 18F-labeled cCPE(290–319) is subject to substantial liver uptake and rapid metabolic degradation in vivo.
In conclusion, the synthesis and 18F-labeling of cCPE(290-319) were successfully established. Its binding to Cld-4 in vitro and in cellulo has been demonstrated. Initial radiopharmacological studies suggest the limited suitability of this peptide in its current non-stabilized form to target Cld-4 in vivo.

  • Abstract in refereed journal
    Amino Acids 47(2015)8, 1629-1630
    ISSN: 0939-4451
  • Poster
    14th International Congress on Amino Acids, Peptides and Proteins, 03.-07.08.2015, Wien, Österreich

Permalink: https://www.hzdr.de/publications/Publ-22344
Publ.-Id: 22344


A new fluorescence anisotropy-based assay for activity determination of tissue transglutaminase

Hauser, C.; Wodtke, R.; Löser, R.; Pietsch, M.

Considerable evidence for the implication of tissue transglutaminase (TGase 2) in a variety of pathological processes, such as neurodegenerative diseases, disorders related to autoimmunity and inflammation as well as tumor progression, has been revealed over the recent years. This renders TGase 2 attractive for developing agents which allow the enzyme’s targeting for both therapeutic and imaging purposes. The development of such molecules requires the establishment of reliable methods to assess the interaction with TGase 2, which can be done most conveniently in continuous kinetic assays.
Several assays have been published over the last decades to determine TGase 2 activity, with only very few using the method of fluorescence anisotropy. Measurement of fluorescence anisotropy offers a better signal to noise ratio than other techniques, such as those based solely on fluorescence emission and does not need washing or separation of unbound fluorescent substance.
Here, we report a fluorescence anisotropy-based approach for the determination of TGase 2’s transamidase activity, established and validated by using fluorescein- and rhodamine B-labeled cadaverines as acyl acceptor substrates. The synthesis of the cadaverine derivatives has been accomplished in a solid-phase approach. To allow efficient conjugation of the rhodamine B moiety, different linkers providing secondary amine functions have been introduced between the cadaverine and xanthenyl entities.
The increase in fluorescence anisotropy resulting from covalent binding of the relatively small cadaverine derivatives to the much larger acyl donor substrate N,N-dimethylated casein was followed over time and enzyme activities were derived thereof. The assay was found to be highly reproducible and shows no background signal in the absence of the enzyme for all synthesized cadaverine derivatives. After characterization of the enzyme–substrate interaction by determination of the Michaelis constants, Km, and the maximum velocities of substrate conversion, Vmax, the assay was validated for screening of non-covalent and covalent inhibitors by using the literature-known substances GTP and iodoacetamide, respectively, as well as a recently reported L-lysine acrylamide derivative.

  • Abstract in refereed journal
    Amino Acids 47(2015)8, 1629
    ISSN: 0939-4451
  • Poster
    14th International Congress on Amino Acids, Peptides and Proteins, 03.-07.08.2015, Wien, Österreich

Permalink: https://www.hzdr.de/publications/Publ-22343
Publ.-Id: 22343


18F-Labeled 1,4-Dioxa-8-azaspiro[4.5]decane Derivative: Synthesis and Biological Evaluation of a σ1 Receptor Radioligand with Low Lipophilicity as Potent Tumor Imaging Agent

Xie, F.; Bergmann, R.; Kniess, T.; Deuther-Conrad, W.; Mamat, C.; Neuber, C.; Liu, B.; Steinbach, J.; Brust, P.; Pietzsch, J.; Jia, H.

We report the syntheses and evaluation of series of novel piperidine compounds with low lipophilicity as σ1 receptor ligands. 8-(4-(2-Fluoroethoxy)benzyl)-1,4-dioxa-8-azaspiro[4.5]decane (5a) possessed high affinity (Ki = 5.4 ± 0.4 nM) for σ1 receptors and selectivity for σ2 receptors (30-fold) and the vesicular acetylcholine transporter (1404-fold). [18F]5a was prepared using a one-pot, two-step labeling procedure in an automated synthesis module, with a radiochemical purity of >95%, and a specific activity of 25−45 GBq/μmol. Cellular association, biodistribution, and autoradiography with blocking experiments indicated specific binding of [18F]5a to σ1 receptors in vitro and in vivo. Small animal positron emission tomography (PET) imaging using mouse tumor xenograft models demonstrated a high accumulation in human carcinoma and melanoma. Treatment with haloperidol significantly reduced the accumulation of the radiotracer in tumors. These findings suggest that radiotracer with suitable lipophilicity and appropriate affinity for σ1 receptors could be used for tumor imaging.

Keywords: 8 [4 (2 fluoroethoxy)benzyl) 1,4 dioxa 8 azaspiro[4.5]decane f 18; fluorine 18; haloperidol; piperidine derivative; radioligand; radiopharmaceutical agent; sigma 1 opiate receptor; sigma 2 opiate receptor; unclassified drug; vesicular acetylcholine transporter

Permalink: https://www.hzdr.de/publications/Publ-22342
Publ.-Id: 22342


Complex antiferromagnetic structure in the intermediate-valence intermetallic Ce2RuZn4

Hartwig, S.; Prokes, K.; Hansen, T.; Ritter, C.; Gerke, B.; Pöttgen, R.; Mydosh, J. A.; Förster, T.

Neutron powder diffraction experiments were performed on the intermediate-valence Ce2RuZn4 intermetallic compound and combined with magnetic bulk measurements including high magnetic field experiments up to 58 T. Previous theoretical studies suggest that only one (here Ce1) out of two inequivalent Ce sites ismagnetically active. Ce2RuZn4 orders antiferromagnetically at TN = 2.3 K. The magnetic structure is characterized by an incommensurate propagation vector qm = (0.384, 0.384, 1/2). Assuming that the Ce2 site does not carry any substantial moment, Ce1 magnetic moments are confined to the (110)-type planes and transversely modulated with an amplitude of 1.77(3) μB.

Permalink: https://www.hzdr.de/publications/Publ-22341
Publ.-Id: 22341


Atomic scale interface design and characterisation

Bittencourt, C.; Ewels, C.; Krasheninnikov, A. V.

There is no abstract

Keywords: nanotechnology

Related publications

Permalink: https://www.hzdr.de/publications/Publ-22339
Publ.-Id: 22339


Development and Validation of Advanced Theoretical Modeling for Churn-Turbulent Flows and Subsequent Transitions

Montoya Zabala, G. A.

The applicability of CFD codes for two-phase flows has always been limited to special cases due to the very complex nature of its interface. Due to its tremendous computational cost, methods based on direct resolution of the interface are not applicable to most problems of practical relevance. Instead, averaging procedures are commonly used for these applications, such as the Eulerian-Eulerian approach, which necessarily means losing detailed information on the interfacial structure. In order to allow widespread application of the two-fluid approach, closure models are required to reintroduce in the simulations the correct interfacial mass, momentum, and heat transfer.
It is evident that such closure models will strongly depend on the specific flow pattern. When considering vertical pipe flow with low gas volume flow rates, bubbly flow occurs. With increasing gas volume flow rates larger bubbles are generated by bubble coalescence, which further leads to transition to slug, churn-turbulent, and annular flow. Considering, as an example, a heated tube producing steam by evaporation, as in the case of a vertical steam generator, all these flow patterns including transitions are expected to occur in the system. Despite extensive attempts, robust and accurate simulations approaches for such conditions are still lacking.
The purpose of this dissertation is the development, testing, and validation of a multifield model for adiabatic gas-liquid flows at high gas volume fractions, for which a multiple-size bubble approach has been implemented by separating the gas structures into a specified number of groups, each of which represents a prescribed range of sizes. A fully-resolved continuous gas phase is also computed, and represents all the gas structures which are large enough to be resolved within the computational mesh. The concept, known as GENeralized TwO Phase flow or GENTOP, is formulated as an extension to the bubble population balance approach known as the inhomogeneous MUltiple SIze Group (iMUSIG). Within the polydispersed gas, bubble coalescence and breakup allow the transfer between different size structures, while the modeling of mass transfer between the polydispersed and continuous gas allows including transitions between different gas morphologies depending on the flow situations. The calculations were performed using the computational fluid dynamic code from ANSYS, CFX 14.5, with the support of STAR-CCM+ v8.06 and v9.02. A complete three-field and four-field model, including a continuous liquid field and two to three gas fields representing bubbles of different sizes, were first tested for numerical convergence and then validated against experimental data from the TOPFLOW and MT-Loop facilities.

Keywords: CFD; GENTOP; Surface Tension; MT-Loop; TOPFLOW

  • Open Access Logo Wissenschaftlich-Technische Berichte / Helmholtz-Zentrum Dresden-Rossendorf; HZDR-063 2015
    ISSN: 2191-8708, eISSN: 2191-8716

Downloads

Permalink: https://www.hzdr.de/publications/Publ-22338
Publ.-Id: 22338


Solubility of boron, carbon, and nitrogen in transition metals: getting insight into trends from first-principles calculations

Hu, X.; Björkman, T.; Lipsanen, H.; Sun, L.; Krasheninnikov, A. V.

Efficient chemical vapor deposition synthesis of two-dimensional (2D) materials such as graphene, boron nitride, and mixed BCN systems with tunable band gaps requires precise knowledge of the solubility and mobility of B/C/N atoms in the transition metals (TMs) used as substrates for the growth. Yet, surprisingly little is known about these quantities either from experiments or simulations. Using first-principles calculations, we systematically study the behavior of B/C/N impurity atoms in a wide range of TMs. We compute formation energies of B/C/N interstitials and demonstrate that they exhibit a peculiar but common behavior for TMs in different rows of the periodic table, as experimentally observed for C. Our simulations indicate that this behavior originates from an interplay between the unit cell volume and filling of the d- shell electronic states of the metals. We further assess the vibrational and electronic entropic contributions to the solubility, as well as the role of anharmonic effects. Finally, we calculate the migration barriers, an important parameter in the growth kinetics. Our results not only unravel the fundamental behavior of interstitials in TMs but also provide a large body of reference data, which can be used for optimizing the growth of 2D BCN materials.

Keywords: graphene; solubility; interstitials

Related publications

Permalink: https://www.hzdr.de/publications/Publ-22337
Publ.-Id: 22337


Implementation and Validation of a Surface Tension Model for the Multi-scale approach GENTOP

Montoya Zabala, G. A.; Baglietto, E.; Lucas, D.

Multiphase flows encountered in the nuclear industry are largely of a complex nature, and knowledge of the accurate distribution of the void fraction is of utmost importance for operation of the reactor under steady, transient, and accident conditions. At high void fractions, strong coalescence leads to the formation of large deformable bubbles. An appropriate multiphase CFD modeling of these flow regimes should be able to account for both, large and small interfacial structures, also including the effect on closure modeling of the large structures. A concept known as GEneralized TwO Phase flow or GENTOP, has been developed at the Helmholtz-Zentrum Dresden-Rossendorf in order to address such flow configurations, by dealing with a resolved potentially-continuous gas field, one or more polydispersed gas fields, and a continuous liquid phase. Application of the model to churn-turbulent and slug flow in vertical pipes [1], have evidenced an important limitation related to the lack of a surface tension modeling within the free surface, which leads to an unphysical accumulation of void near the pipe wall. This work discusses the implementation of surface tension and contact angle within the GENTOP approach, as well as the validation of these models against analytical and experimental results. The validation of the surface tension has been performed against analytically calculated oscillating periods of different shapes of ethanol droplets suspended in air. Furthermore, different contact angles are analyzed for a drop of water residing on a smooth surface. Rising velocities and deformation of a single large bubble rising in a vertical pipe were finally validated against analytical solutions. The implementation of the surface tension model in the GENTOP approach demonstrated improvements on the resolution of the bubble and stability of the interface, with considerable reduction of the numerical diffusion.

Keywords: CFD; GENTOP; Surface Tension; Contact Angle; MT-Loop

  • Contribution to proceedings
    16th International Topical Meeting on Nuclear Reactor Thermalhydraulics, 30.08.-04.09.2015, Chicago, USA
    Proceedings of the 16th International Topical Meeting on Nuclear Reactor Thermalhydraulics, Chicago, USA
  • Lecture (Conference)
    16th International Topical Meeting on Nuclear Reactor Thermalhydraulics, 30.08.-04.09.2015, Chicago, USA

Permalink: https://www.hzdr.de/publications/Publ-22336
Publ.-Id: 22336


A review on mechanisms and models for the churn-turbulent flow regime

Montoya Zabala, G. A.; Lucas, D.; Baglietto, E.; Liao, Y.

The modeling of two-phase flows has always been limited to special cases due to the very complex nature of its interface. When considering vertical pipe flows with low gas volume flow rates, bubbly flow occurs. With increasing gas volume flow rates larger bubbles are generated by bubble coalescence, which further leads to transition to slug, churn-turbulent, and annular flow. Considering, as an example, a heated tube producing steam by evaporation, as in the case of a vertical steam generator, all these flow patterns including transitions are expected to occur in the system. Despite extensive attempts, robust and accurate simulations approaches for such conditions are still lacking. This paper summarizes the state-of-the-art on the understanding of the physics behind churnturbulent flow, and transitions to and from this flow pattern. Both, benefits and limitations of the existent experimental approaches and their usefulness for model development and validation at these high void fraction conditions are discussed. Limitation of both, low-dimensional approaches (0D, 1D, and 2D), and high resolution approaches such as Direct Numerical Simulations (DNS) are analyzed. Averaging procedures, such as the Eulerian-Eulerian approach including the interfacial momentum closures which has been used in the past for simulating churn flow, are review thoroughly. Finally, possible improvements are proposed.

Keywords: churn-turbulent; CFD; multiphase; review

Permalink: https://www.hzdr.de/publications/Publ-22335
Publ.-Id: 22335


Broadband THz detection from 0.1 to 22 THz with large area field-effect transistors

Regensburger, S.; Mittendorff, M.; Winnerl, S.; Lu, H.; Gossard, A. C.; Preu, S.

We report on ultrafast detection of radiation between 100 GHz and 22 THz by field-effect transistors in a large area configuration. With the exception of the Reststrahlenband of GaAs, the spectral coverage of the GaAs-based detectors is more than two orders of magnitude, covering the entire THz range (100 GHz - 10 THz). The temporal resolution of the robust devices is yet limited by the 30GHz oscilloscope used for read out. The responsivity roll-off towards higher frequencies is weaker than expected from an RC-roll-off model. Terahertz pulses with peak powers of up to 65 kW have been recorded without damaging the devices.

Keywords: terahertz detetector; field-effect transistor; braodband and fast THz detection

Related publications

Permalink: https://www.hzdr.de/publications/Publ-22334
Publ.-Id: 22334


From a non-magnet to a ferromagnet: Mn implantation into different TiO2 structures

Yildirim, O.; Cornelius, S.; Butterling, M.; Anwand, W.; Wagner, A.; Smekhova, A.; Fiedler, J.; Böttger, R.; Bähtz, C.; Potzger, K.

We study effect of the initial structural order on the resulting magnetic properties of the manganese implanted TiO2 films. Different microstructures of as-grown TiO2 films, namely amorphous, polycrystalline anatase and epitaxial anatase, have been implant-doped with Mn+ up to a concentration of 5 at.%. We found that the different initial structures lead to different defect and charge carrier concentrations, and as a result, strongly influence the magnetic properties upon implantation. Depending on the initial microstructure, paramagnetism, secondary phases related magnetic properties as well as ferromagnetism could be observed in the films.

Related publications

Downloads

Permalink: https://www.hzdr.de/publications/Publ-22333
Publ.-Id: 22333


X-ray Absorption Spectroscopy for Actinide Chemistry - Basics, Experiments and Applications

Ikeda-Ohno, A.

Synchrotron-based X-ray spectroscopy is an emerging and powerful tool for actinide chemistry. This lecture focuses particularly on X-ray absorption spectroscopy, and will provide a comprehensive overview of the basics and experiments of this technique, as well as their applications to actinide chemistry.

Keywords: X-ray absorption spectroscopy; XAS; XANES; EXAFS; synchrotron; actinide; chemistry; overview; introduction

Related publications

  • Invited lecture (Conferences)
    The ThUL School in Actinide Chemistry, 28.09.-02.10.2015, Karlsruhe, Germany

Permalink: https://www.hzdr.de/publications/Publ-22332
Publ.-Id: 22332


Targeting lysyl oxidase for molecular imaging in breast cancer

Wuest, M.; Kuchar, M.; Sharma, S. K.; Richter, S.; Hamann, I.; Wang, M.; Vos, L.; Mackey, J. R.; Wuest, F.; Löser, R.

Introduction: Lysyl oxidase (LOX; ExPASy ENZYME entry: EC 1.4.3.13) and members of the LOX-like family, LOXL1–LOXL4, are copper-dependent enzymes that can modify proteins of the extracellular matrix. Expression of LOX is elevated in many human cancers, including breast cancer. LOX expression correlates with the level of tissue hypoxia, and it is known to play a critical role in breast cancer metastasis. The goal of the present study was to target LOX with (1) molecular probe fluorescent labeling to visualize LOX in vitro and (2) a radiolabeled peptide to target LOX in vivo in three different preclinical models of breast cancer.
Methods: Gene expression of all five members of the LOX family was analyzed at the transcript level via microarray analysis using tissue biopsy samples from 176 patients with breast cancer. An oligopeptide sequence (GGGDPKGGGGG) was selected as a substrate-based, LOX-targeting structure. The peptide was labeled with fluorescein isothiocyanate (FITC) for confocal microscopy experiments with the murine breast cancer cell line EMT-6. In vivo molecular imaging experiments were performed using a C-terminal amidated peptide, GGGDPKGGGGG, labeled with a short-lived positron emitter, fluorine-18 (18F), for positron emission tomography (PET) in three different breast cancer models: EMT6, MCF-7 and MDA-MB-231. The PET experiments were carried out in the presence or absence of β-aminopropionitrile (BAPN), an irreversible inhibitor of LOX.
Results: Immunostaining experiments using a LOX-specific antibody on EMT-6 cells cultured under hypoxic conditions confirmed the elevation of LOX expression in these cells. An FITC-labeled oligopeptide, FITC-Ava- GGGDPKGGGGG-NH2, was found to be localized in different cellular compartments under these conditions. After injection of [18F]fluorobenzoate-GGGDPKGGGGG-NH2, radioactivity uptake was visible in all three breast cancer models in vivo. Tumor uptake was reduced by predosing the animals with 2 mg of BAPN 4 h or 24 h before injection of the radiotracer.
Conclusions: The present data support further investigation into the development of LOX-binding radiolabeled peptides as molecular probes for molecular imaging of LOX expression in cancer.

Permalink: https://www.hzdr.de/publications/Publ-22331
Publ.-Id: 22331


Ultrasound Doppler flow measurements in a liquid metal column under the influence of a strong axial electric current

Starace, M.; Weber, N.; Seilmayer, M.; Kasprzyk, C.; Weier, T.; Stefani, F.; Eckert, S.

Magnetohydrodynamic instabilities can constitute a serious hazard to the functionality of liquid metal batteries. Here we consider the Tayler instability, which appears when the electric current, passing through a conducting fluid, reaches a critical value. The experiment discussed in this article involves a column of a eutectic GaInSn alloy, along whose axis an electric current passes. Ultrasound transducers encased in a copper electrode bounding the top of the column were used to obtain the vertical component of fluid flow, once a noise suppression system had been devised. The data thus retrieved will be discussed here.

  • Magnetohydrodynamics 51(2015)2, 249-256
    ISSN: 0024-998X

Permalink: https://www.hzdr.de/publications/Publ-22330
Publ.-Id: 22330


Ion acceleration enhanced by target ablation

Zhao, S.; Lin, C.; Wang, H. Y.; Lu, H.; Tu He, X.; Chen, J.; Cowan, T. E.; Q. Yan, X.

Laser proton acceleration can be enhanced by using target ablation, due to the energetic electrons generated in the ablation preplasma. When the ablation pulse matches main pulse, the enhancement gets optimized because the electrons' energy density is highest. A scaling law between the ablation pulse and main pulse is confirmed by the simulation, showing that for given CPA pulse and target, proton energy improvement can be achieved several times by adjusting the target ablation.

Related publications

Permalink: https://www.hzdr.de/publications/Publ-22329
Publ.-Id: 22329


Caustic structures in the spectrum of x-ray Compton scattering off electrons driven by a short intense laser pulse

Seipt, D.; Surzhykov, A.; Fritzsche, S.; Kämpfer, B.

We study the Compton scattering of x-rays off electrons that are driven by a relativistically intense short optical laser pulse. The frequency spectrum of the laser-assisted Compton radiation shows a broad plateau in the vicinity of the laser-free Compton line due to a nonlinear mixing between x-ray and laser photons. Special emphasis is placed on how the shape of the short assisting laser pulse affects the spectrum of the scattered x-rays. In particular, we observe sharp peak structures in the plateau region, whose number and locations are highly sensitive to the laser pulse shape. These structures are interpreted as spectral caustics by using a semiclassical analysis of the laser-assisted QED matrix element.

Downloads

Permalink: https://www.hzdr.de/publications/Publ-22328
Publ.-Id: 22328


Directional Spin Wave Emission From Topological Spin Textures

Sluka, V.; Weigand, M.; Kakay, A.; Schultheiss, K.; Erbe, A.; Tyberkevych, V.; Slavin, A.; Deac, A.; Lindner, J.; Fassbender, J.; Raabe, J.; Wintz, S.

In the present contribution we will show that in a stacked vortex pair system with uniaxial magnetic anisotropy, directional spin waves of different symmetries and dimensionalities can be excited.

Keywords: spin waves; multilayers; dipole-exchange; non-reciprocity

  • Lecture (Conference)
    13th Joint MMM/Intermag Conference, 11.-15.01.2016, San Diego, USA

Permalink: https://www.hzdr.de/publications/Publ-22327
Publ.-Id: 22327


Parameter-free determination of the exchange constant in thin films using magnonic patterning

Langer, M.; Wagner, K.; Sebastian, T.; Hübner, R.; Grenzer, J.; Wang, Y.; Kubota, T.; Schneider, T.; Stienen, S.; Linder, J.; Lenz, K.; Linder, J.; Takanashi, K.; Arias, R.; Fassbender, J.

An all-electrical method is presented to determine the exchange constant of magnetic thin films using ferromagnetic resonance. For films of 20 nm thickness and below, the determination of the exchange constant A, a fundamental magnetic quantity, is anything but straightforward. Among others, the most common methods are based on the characterization of perpendicular standing spin-waves. These approaches are however challenging, due to (i) very high energies and (ii) rather small intensities in this thickness regime. In the presented approach, surface patterning is applied to a permalloy (Ni80Fe20) film and a CFMS (Co2Fe0.4Mn0.6Si) Heusler compound. Acting as a magnonic crystal, such structures enable the coupling of backward volume spin-waves to the uniform mode. Subsequent ferromagnetic resonance measurements give access to the spin-wave spectra free of unquantifiable parameters, and thus, to the exchange constant A with high accuracy.

Related publications

Permalink: https://www.hzdr.de/publications/Publ-22326
Publ.-Id: 22326


Breaking of axial symmetry in excited heavy nuclei as identified in GDR data

Grosse, E.; Junghans, A. R.; Massarczyk, R.

A recent theoretical prediction of a breaking of axial symmetry in quasi all heavy nuclei is confronted to a new critical analysis of photon strength functions of nuclei in the valley of stability. For the photon strength in the isovector giant dipole resonance (IVGDR) regime a parameterization of GDR shapes by the sum of three Lorentzians (TLO) is extrapolated to energies below and above the IVGDR. The impact of non-GDR modes adding to the low energy slope of photon strength is discussed including recent data on photon scattering and other radiative processes. These are shown to be concentrated in energy regions where various model calculations predict intermediate collective strength; thus they are obviously separate from the IVGDR tail. The triple Lorentzian (TLO) ansatz for giant dipole resonances is normalized in accordance to the dipole sum rule. The nuclear droplet model with surface dissipation accounts well for positions and widths without local, nuclide specific, parameters. Very few and only global parameters are needed when a breaking of axial symmetry already in the valley of stability is admitted; a reliable prediction for electric dipole strength functions also outside of it is expected.

Related publications

Downloads

Permalink: https://www.hzdr.de/publications/Publ-22325
Publ.-Id: 22325


Post-test calculations of UPTF experiments with ANSYS CFX

Höhne, T.

The last decade has seen an increasing use of three-dimensional CFD codes to predict steady state and transient flows in nuclear reactors because a number of important phenomena such as pressurized thermal shocks, coolant mixing, and thermal striping cannot be predicted by traditional one-dimensional system codes with the required accuracy and spatial resolution.
The nuclear industry now also recognizes that CFD codes have reached the desired level of maturity (at least for single-phase applications) for them to be used as part of the Nuclear Power Plant (NPP) design process, and it is the objective the research and development teams to assess the current capabilities of such codes in this regard, and contribute to the technology advance in respect to their verification and validation. CFD is already well-established in addressing certain safety issues in NPPs, as reported and discussed at various international workshops. The development, verification and validation of CFD codes in respect to NPP design necessitates further work on the complex physical modelling processes involved, and on the development of efficient numerical schemes needed to solve the basic equations. In parallel, it remains an overriding necessity to benchmark the performance of the CFD codes, and for this experimental databases need to be established, first for separate-effect tests but especially for full-size integral tests.
In order to validate the CFD Code ANSYS CFX for reactor safety relevant flow phenomena it is essential to use the UPTF experiments, since they are full scale tests. All other separate effect test rigs and test facilities like ROCOM (Höhne, 2000) are scaled. Scaling parameters of flow conditions are one of the still open topics for the use of CFD codes in nuclear reactor safety. Three UPTF tests were selected and post-test calculation were performed. The major focus was analyzing the qualitative flow behavior.

Keywords: UPTF; CFX; LOCA; PTS

  • Other report
    Dresden: HZDR, 2015
    25 Seiten

Permalink: https://www.hzdr.de/publications/Publ-22324
Publ.-Id: 22324


H trapping and mobility in nanostructured tungsten grain boundaries: A combined experimental and theoretical approach

González, C.; Panizo-Laiz, M.; Gordillo, N.; Tejado, E.; Munnik, F.; Guerrero, C.; Piaggi, P.; Iglesias, R.; Perlado, J. M.; González-Arrabal, R.

The H trapping and mobility in nanostructured W grain boundaries has been studied by combining experimental and density functional theory (DFT) data. Experimental results show that nanostructured W coatings with a columnar structure and a large number of (110)/(211) interfaces retain more H than the coarsed grained W tungsten samples do. To investigate the possible influence of grain boundaries on the H retention, a complete energetic analysis has been done in a semi-coherent W(110)/W(112) interface built by DFT. Our results show that this kind of non-coherent interface largely attract points defects (both H atom and metallic monovacancy separately) and that the presence of these interfaces contribute to decrease the migration energy of the H atoms with respect to the bulk. When both W monovacancy and H atom are introduced together into the system, the HV complex results the most stable configuration suggesting an explanation to the H retention in the GB observed experimentally.

Keywords: Fusion; H trapping

Related publications

Permalink: https://www.hzdr.de/publications/Publ-22323
Publ.-Id: 22323


The first four years of the AMS-facility DREAMS: Status and developments for more accurate radionuclide data

Rugel, G.; Pavetich, S.; Akhmadaliev, S.; Enamorado Baez, S. M.; Scharf, A.; Ziegenrücker, R.; Merchel, S.

DREAMS, the DREsden AMS-facility, is performing routine accelerator mass spectrometry of 10Be, 26Al, 36Cl, 41Ca, and 129I for diverse kinds of applications. All DREAMS data is normalised directly to primary standards or traceable via cross-calibration of secondary standards to those.
Recent technical developments such as a low-memory ion source for 36Cl and 129I and sophisticated tuning strategies for 129I led to improved accuracy data.Tests of ion source output have been performed with different metal binders, sample-to-binder mixing ratios, and compaction pressures in order to find optimal parameters. The highest and most stable outputs have been obtained for 10Be, 26Al, and 41Ca for the following binders and mixing ratios (by weight): BeO:Nb, 1:4; Al2O3:Ag, 1:1; CaF2:Ag, 1:4. Higher beam currents generally result in reduced statistical uncertainty. Cross-contamination and long-term memory seem to be underestimated problems asking for further tests and improvements such as the development of low-level in-house-standards.

Keywords: accelerator mass spectrometry; cosmogenic nuclides

Related publications

Permalink: https://www.hzdr.de/publications/Publ-22322
Publ.-Id: 22322


Terahertz spectroscopy of 0D and 2D semiconductors with a free-electron laser

Schneider, H.

This talk reviews recent experimental studies carried out using the free-electron laser (FEL) facility FELBE in Dresden, Germany. Intense, nearly transform-limited ps pulses in the mid-infrared and terahertz (THz) regimes provide unique research opportunities to study novel materials and devices.

Keywords: free-electron laser; terahertz spectroscopy

Related publications

  • Lecture (others)
    Seminar, Xi'an University of Technology, 04.05.2015, Xi'an, China
  • Lecture (others)
    Seminar, CAEP, 07.05.2015, Mianyang, China

Permalink: https://www.hzdr.de/publications/Publ-22321
Publ.-Id: 22321


Spin-based nanoelectronic devices for mobile Information-Communication Technology

Deac, A. M.

Abstract
Perhaps the best known (or most successfully implemented) spin-based device is the hard-disk read-head. Indeed, the discovery of giant magnetoresistance enabled a paradigm shift in the miniaturization of magnetic storage technology, which was disruptive enough to earn its discoverers a Nobel price [1]. More recently, it has been demonstrated that non-volatile, ultra-fast spin-based memory bit devices can be designed so that they can scale down to more than one fifth of all other available technologies, including SRAM [2]. Other spin-based nanoelectronics devices currently under consideration - which will be discussed here - range from tuneable radio-frequency oscillators to magnetic field sensors, negative resistors, amplifiers, write heads and random number generators. [1] http://www.nobelprize.org/nobel_prizes/physics/laureates/2007/index.html [2] http://www.avalanche-technology.com/technology/ram

Biography
Alina Deac is currently the leader of the Spintronics Group at the Helmholtz-Zentrum Dresden - Rossendorf in Dresden, Germany. During the last 15 years, her research has been focused on spin-torque induced phenomena and their potential applications for mobile ICT devices. After obtaining her PhD in Physics at the Universite Joseph Fourier Grenoble, France in 2005, she pursued her career by working with top-notch institutions in Japan, US and Switzerland. She is a Senior Member of the IEEE Magnetics Society and an expert in the field of spintronics for the EU.

Keywords: spintronics; magnetic storage; information-communication technology

Related publications

  • Invited lecture (Conferences)
    SEMICON Europa 2015, 06.-08.10.2015, Dresden, Germany

Permalink: https://www.hzdr.de/publications/Publ-22317
Publ.-Id: 22317


In Situ Tuning the Conductance of Single Molecular Diarylethene Switches

Sendler, T.; Luka-Guth, K.; Wieser, M.; Lokamani, M.; Wolf, J.; Huhn, T.; Scheer, E.; Kerbusch, J.; Gemming, S.; Erbe, A.

A major goal of molecular electronics is the development and implementation of molecular electronic devices such as single molecular switches. In this work we present a detailed study of single diarylethene molecules that were in situ switched from their non-conductive to conductive state in the presence of gold nanoelectrodes via controlled light irradiation. The molecules were dissolved in two different solvents and measured with two different side-groups. Histograms of conductance traces were taken and complemented by extracting the relative position of the current carrying molecular level and its level broadening from current-voltage characteristics by means of the single level transport model. The obtained results show a clear light-induced ring forming isomerization, which is almost independent of the side-groups, while electron withdrawing side groups lead to a reduction of conductance, a decrease of the level broadening and an increased difference between the molecular level and the Fermi energy of the metals. Quantum chemical calculations of the light-induced switching processes correlate these observations with the fundamentally different low-lying electronic states of the opened and closed forms and their comparably small modification by the electron-withdrawing substituents.

  • Poster
    Annual Workshop IHRS NanoNet 2014, 29.-30.09.2014, Lohmen/Bastei, Deutschland
  • Poster
    DCCMS Annual Workshop and General Assembly 2014, 20.10.2014, Dresden, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-22316
Publ.-Id: 22316


Spin-based nanoelectronic devices for mobile Information-Communication Technology

Deac, A. M.

Perhaps the best known (or most successfully implemented) spin-based device is the hard-disk read-head. Indeed, the discovery of giant magnetoresistance enabled a paradigm shift in the miniaturization of magnetic storage technology, which was disruptive enough to earn a Nobel for the two researchers who carried out the initial studies [1]. In a nutshell, giant magnetoresistance refers to the fact that the electrical properties of a multilayer containing at least two magnetic layers depend on the orientation of their magnetic moment. For instance, if the magnetic layers are cobalt, iron or nickel (or their alloys), the resistance of the structure is maximum when the magnetic moments are antiparallel to each other, and minimum when they are parallel.

More recently, it has been demonstrated the inverse phenomenon can also be observed: the relative orientation of the magnetic moments of two ferromagnetic layers can be manipulated by applying an electrical bias (i.e. a current or a voltage) across the structure. This is a consequence of spin-momentum transfer between the conduction electrons and the magnetization of the layer they are travelling across, which effectively induces a torque on the magnetization, the so-called ‘spin-transfer torque’ or ‘spin-torque’ [2-6]. Two main effects can be induced exploiting this torque: the magnetic moment of a given layer can be switched to a chosen direction – for instance, from parallel to antiparallel to the magnetization of the second layer – or it can be induced to gyrate around a given direction for as long as the electrical bias is applied.

Spin-transfer switching as the first spin-transfer induced phenomenon to be demonstrated experimentally, with the first report published at the end of 2000 [5]. Today, spin-transfer switching is the write scheme for non-volatile, ultra-fast Spin-Transfer Torque Random Access Memory (STT-RAM) bit devices. STT-RAM can be designed so that they can scale down to more than one fifth of all other available technologies, including SRAM [7,8]. Spin-transfer driven precession, first demonstrated in 2003 [6], has been suggested as working principle for other spin-based nanoelectronics devices currently under consideration, which range from tuneable, low input power radio-frequency oscillators wireless communication, to magnetic field sensors, negative resistors, amplifiers, write heads and random number generators. Indeed, the frequency of such devices can be adjusted simply by changing the applied bias, and they provide sufficient power [9] while at the same time being about 50 times smaller than present devices used in mobile telecommunication [10]. Moreover, novel materials hold the promise of pushing the frequency limit beyond what present-day technology can achieve [11]. Possible applications include anti-collision systems for cars, remote hospitals and immersive audio-video entertainment systems.

[1] http://www.nobelprize.org/nobel_prizes/physics/laureates/2007/index.html
[2] J. C. Slonczewski, J. Magn. Magn. Mater. 159, L1 (1996).
[3] L. Berger, Phys. Rev. B 54, 9353 (1996).
[4] M. D. Stiles, A. Zangwill, Phys. Rev. B 66, 014407 (2002).
[5] J. A. Katine, F. J. Albert, R. A. Buhrman et al., Phys. Rev. Lett. 84, 3149 (2000).
[6] S. I. Kiselev, J. C. Sankey, I. N. Krivorotov et al., Nature (London) 425, 380 (2003).
[7] http://www.avalanche-technology.com/technology/ram
[8] http://www.everspin.com/
[9] A. Deac, A. Fukushima, H. Kubota, et al., Nature Phys. 4, 803 (2008).
[10] P. Villard, U. Ebels, D. Houssameddine, et al., IEEE J. Solid-State Circuits 45, 214
(2010).
[11] S. Mizukami, F. Wu, A. Sakuma, et al., Phys. Rev. Lett. 106, 117201 (2011).

Keywords: spintronics; wireless communication; magnetic data storage

Related publications

  • Invited lecture (Conferences)
    The 12th Japanese-German Frontiers of Science (JGFoS) Symposium, 01.-04.10.2015, Kyoto, Japan

Permalink: https://www.hzdr.de/publications/Publ-22315
Publ.-Id: 22315


Spin-Torque Devices Based on MgO-Based Magnetic Tunnel Junctions

Deac, A. M.

Spin-torque nano-oscillators (STNOs) are novel devices which may be exploited for wireless communication applications [1-3]. In particular, it has recently been demonstrated that STNOs utilizing an in-plane magnetized polarizer (also acting as read-out layer) and out-of-plane magnetized free layer allow for the full parallel-to-antiparallel resistance variation to be exploited in the limit of 90° precession angle, thereby maximizing the output power [1]. However, for this specific geometry, steady-state precession can only be sustained if the spin-transfer torque exhibits an asymmetric dependence on the angle between the free and the polarizing layer, such as in the case of fully metallic devices [1]. Nevertheless, it has recently been reported that dynamics have been experimentally observed in similarly designed MgO-based magnetic tunnel junctions (MTJs) under constant applied electrical current, in spite of the fact that such devices do not exhibit any asymmetry in the spin-torque angular dependence [4,5]. These results have so far been interpreted based on the formalism for metallic devices.

Here, we explore potential mechanisms for sustaining steady-state precession in MgO-based STNOs with this specific geometry. To this end, we analytically and numerically solve the Landau-Lifshitz-Gilbert-Slonczewski equation under a constant perpendicular applied current and field. We take into account both the angular and the bias dependence of the resistance of the nanopillar in order to convert the current into voltage, which is the relevant parameter in an MgO-MTJ. The field-like torque is neglected. We demonstrate that the angular dependence of the resistance introduces sufficient asymmetry of the in-plane spin-torque term to sustain precession in this system, but the bias dependence of the resistance gradually quenches this asymmetry as the current is increased and consequently suppresses precession above a given threshold. We furthermore prove that in an STNO with circular cross-section an external field is required to observe steady-state dynamics, but this constraint is lifted when introducing an in-plane easy axis, which opens new avenues to be explored for designing devices for mobile communication.

[1] W. H. Rippard, A. M. Deac, M. R. Pufall, et al., Physical Review B 81, 014426 (2010).
[2] A. M. Deac, A. Fukushima, H. Kubota, et al., Nature Physics 4, 308 (2008).
[3] S. I. Kiselev, J. C. Sankey, I. N. Krivorotov, et al., Nature 425, 380 (2003).
[4] H. Kubota, K. Yakushiji, A. Fukushima, et al., Applied Physics Express 6, 103003 (2013).
[5] T. Taniguchi, H. Arai, S. Tsunegi, et al., Applied Physics Express 6, 123003 (2013).

Keywords: magnetism; magnetic tunnel junctions; spin-transfer torque

Related publications

  • Invited lecture (Conferences)
    Spin Dynamics in Nanostructures Gordon Research Conference Nanoscale Spintronics with Magnons, Phonons, and Photons, 26.-31.07.2015, The Hong Kong University of Science and Technology, China

Permalink: https://www.hzdr.de/publications/Publ-22314
Publ.-Id: 22314


International research environment and career development

Deac, A. M.

This talk provides mentoring for students seeking an international career.

Keywords: carrer development

  • Invited lecture (Conferences)
    Spin Dynamics in Nanostructures (GRS) Gordon Research Seminar Interplay of Spin, Charge and Lattice Dynamics, 25.-26.07.2015, The Hong Kong University of Science and Technology, China

Permalink: https://www.hzdr.de/publications/Publ-22313
Publ.-Id: 22313


Zero-field precession and suppression of the output power due to the biasdependence of the TMR in MgO-based spin-torque oscillators Alina Maria Deac

Kowalska, E.; Sluka, V.; Fowley, C.; Kakay, A.; Aleksandrov, Y.; Lindner, J.; Deac, A. M.; Fassbender, J.

Spin-torque nano-oscillators (STNOs) are novel devices which may be exploited for wireless
communication applications [1-3]. In particular, it has recently been demonstrated that STNOs utilizing an in-plane magnetized polarizer (also acting as read-out layer) and out-of-plane magnetized free layer allow for the full parallel-to-antiparallel resistance variation to be exploited in the limit of 90° precession angle, thereby maximizing the output power [1]. However, for this specific geometry, steady-state precession can only be sustained if the spin-transfer torque exhibits an asymmetric dependence on the angle between the free and the polarizing layer, such as in the case of fully metallic devices [1]. Nevertheless, it has recently been reported that dynamics have been experimentally observed in similarly designed MgO-based magnetic tunnel junctions (MTJs) under constant applied electrical current, in spite of the fact that such devices do not exhibit any asymmetry in the spin-torque angular dependence [4,5]. These results have so far been interpreted based on the formalism for metallic devices.

Here, we explore potential mechanisms for sustaining steady-state precession in MgO-based STNOs with this specific geometry. To this end, we analytically and numerically solve the Landau-Lifshitz-Gilbert-Slonczewski equation under a constant perpendicular applied current and field. We take into account both the angular and the bias dependence of the resistance of the nanopillar in order to convert the current into voltage, which is the relevant parameter in an MgO-MTJ. The field-like torque is neglected. We demonstrate that the angular dependence of the resistance introduces sufficient asymmetry of the in-plane spin-torque term to sustain precession in this system, but the bias dependence of the resistance gradually quenches this asymmetry as the current is increased and consequently suppresses precession above a given threshold. We furthermore prove that in an STNO with circular cross-section an external field is required to observe steady-state dynamics, but this constraint is lifted when introducing an in-plane easy axis, which opens new avenues to be explored for designing devices for mobile communication.

[1] W. H. Rippard, A. M. Deac, M. R. Pufall, et al., Physical Review B 81, 014426 (2010).
[2] A. M. Deac, A. Fukushima, H. Kubota, et al., Nature Physics 4, 308 (2008).
[3] S. I. Kiselev, J. C. Sankey, I. N. Krivorotov, et al., Nature 425, 380 (2003).
[4] H. Kubota, K. Yakushiji, A. Fukushima, et al., Applied Physics Express 6, 103003 (2013).
[5] T. Taniguchi, H. Arai, S. Tsunegi, et al., Applied Physics Express 6, 123003 (2013).

Keywords: magnetism; spin-transfer torque; magnetic tunnel junction

Related publications

  • Invited lecture (Conferences)
    20th International Conference on Magnetism, 06.-10.07.2015, Barcelona, Spain
  • Poster
    12th Japanese-German Frontiers of Science Symposium 2015, 01.-04.10.2015, Kyoto, Japan

Permalink: https://www.hzdr.de/publications/Publ-22312
Publ.-Id: 22312


Atomic transport during solid-phase epitaxial recrystallization of amorphous germanium

Radek, M.; Bracht, H.; Mccallum, J. C.; Johnson, B. C.; Posselt, M.; Liedke, B.

The atomic mixing of matrix atoms during solid-phase-epitaxy (SPE) is studied by means of isotopically enriched germanium (Ge) multilayer structures grown by molecular beam epitaxy on natural Ge wafers. The entire isotope structure and parts of the natural Ge wafer were preamorphized by Ge implantation. Recrystallization of the amorphous Ge layer is performed at temperatures between 350 ˚C and 450 ˚C. The position of the amorphous/crystalline (a/c) interface was monitored during SPE regrowth using a time-resolved-reflectivity (TRR) system. The SPE process was stopped before the a/c interface reached the surface, i.e, before the recrystallization of the amorphous layer was completed. Secondary-ion-mass-spectrometry (SIMS) was applied to determine the self-atom distribution within the amorphous and recrystallized part of each sample. An upper limit of 0.5 nm is determined for the displacement length of the matrix atoms. This small displacement length is consistent with theoretical models and atomistic simulations of SPE predicting that bond-switching with nearest-neighbours across the a/c interface controls the SPE regrowth.

Keywords: Germanium; Solid-phase epitaxial recrystallization; atomic transport; isotope multilayers

Related publications

  • Poster
    28th International Conference on Defects in Semiconductors (ICDS 2015), 27.-31.07.2015, Espoo, Finland

Permalink: https://www.hzdr.de/publications/Publ-22311
Publ.-Id: 22311


Characterisation and properties of f-element complexes with amide and amidine ligands

März, J.; Schmid, M.; Ikeda-Ohno, A.

The lanthanide (Ln) complexes with N-chelating ligands have attracted considerable attentions because of their unique tuneable steric and electronic properties.[1] Amongst such Ln complexes with N-chelating ligands, amide-based complexes are known to offer a wide range of applications, e.g., as efficient luminescent agents employed in bio-analytical fields.[2] Furthermore, amidine-based complexes enable the Ln metals to stabilise in exotic oxidation states (i.e., di- and tetravalent) with remarkable catalytic activity.[3]
These unique properties of amide- and amidine-based complexes of f-elements motivate us to perform the present study focusing on the synthesis and characterisation of the f-element complexes with newly synthesised amide- and amidine ligands shown in Figure 1. The aim of this study is to investigate the physical/chemical properties (e.g., optical properties) of f-elements (i.e., Ln and actinides (An)) complexed with the amide- and amidine ligands and compare their properties between Ln and An, and between solid and solution states, by means of single-crystal X-ray diffraction, X-ray absorption spectroscopy, etc. A comprehensive overview of the amide- and amidine complexes of f-elements will be presented particularly in terms of structural point of view.

References
1 A. A. Trifonov, Coord. Chem. Rev. 2010, 254, 1327 –1347.
2 e.g., Y. Tang et al., Inorg. Chem. Commun. 2005, 8, 1018-1021; J. Xu et al., J. Am. Chem. Soc. 2011, 133, 19900–19910.
3 F. T. Edelmann, Chem. Soc. Rev. 2009, 38, 2253-2268.

Keywords: lanthanide; actinide; complex; amide; amidine; single-crystal XRD

  • Poster
    International conference on f-elements, 06.-09.09.2015, Oxford, United Kingdom

Permalink: https://www.hzdr.de/publications/Publ-22310
Publ.-Id: 22310


Dilute ferromagnetic InMnP

Khalid, M.; Weschke, E.; Skorupa, W.; Helm, M.; Zhou, S.

We have synthesized a new magnetic semiconductor,InMnP, by Mn ion implantation and pulsed laser annealing [1, 2]. Clear ferromagnetic hysteresis loops and a perpendicular magnetic anisotropy are observed up to a Curie temperature of 42 K. Large values of negative magnetoresistance and magnetic circular dichroism as well as anomalous Hall effect are further evidences of a ferromagnetic order in InMnP. An effort is made to understand the transport mechanism in InMnP using the theoretical models. We find that the valence band of InP does not merge with the impurity band of the heavily doped InMnP (8 %). Our results suggest that impurity band conduction is a characteristic of Mn‐doped InP and GaP which have deep Mn‐ cceptor levels. [1] M. Khalid, et al., Phys. Rev. B 89, 121301(R) (2014) [2] M. Khalid, et al., J. Appl. Phys. 117, 043906 (2015).

Related publications

  • Poster
    20th International Conference on Mangetism, 05.-10.07.2015, Barcelona, Spain

Permalink: https://www.hzdr.de/publications/Publ-22309
Publ.-Id: 22309


Mid-infrared ridge waveguide in MgO:LiNbO3 crystal produced by combination of swift O5+ ion irradiation and precise diamond blade dicing

Cheng, Y.; Lv, J.; Akhmadaliev, S.; Zhou, S.; Kong, Y.; Chen, F.

We report on the fabrication of ridge waveguide operating at mid-infrared wavelength in MgO:LiNbO3 crystal by using O5+ ion irradiation and precise diamond blade dicing. The waveguide shows good guiding properties at the wavelength of 4 μm along the TM polarization. Thermal annealing has been implemented to improve the waveguiding performances. The propagation loss of the ridge waveguide has been reduced to be 1.0 dB/cm at 4 μm after annealing at 310 °C. The micro-Raman spectra indicate that the microstructure of the MgO:LiNbO3 crystal has no significant change along the ion track after swift O5+ ion irradiation.

Keywords: Optical waveguide; MgO:LiNbO3 crystal; Ion irradiation; Diamond blade dicing; Mid-infrared waveguides

Related publications

Permalink: https://www.hzdr.de/publications/Publ-22308
Publ.-Id: 22308


Enhancing Robustness and Applicability of Contactless Inductive Flow Tomography

Ratajczak, M.; Wondrak, T.; Zürner, T.; Stefani, F.

Measuring the flow velocity in hot, chemically aggressive and opaque melts is a challenging task even for today’s measurement techniques. The contactless inductive flow tomography (CIFT) could provide a solution by applying magnetic fields to an electrically conducting melt and measuring the small flow-induced magnetic perturbances outside of the container. In this paper we will demonstrate how the robustness of CIFT can be enhanced by means of excitation with time-harmonic magnetic fields, making it more insensitive to the ubiquitous changes of the environmental magnetic field. Further we will show how the problem of an electrically conducting container can be treated, which is necessary, e.g., for industrial application in continuous casting.

  • Contribution to proceedings
    IEEE Sensors 2015, 01.-04.11.2015, Busan, Südkorea
    Proceedings of IEEE Sensors 2015, 662-665
  • Lecture (Conference)
    IEEE Sensors 2015, 01.-04.11.2015, Busan, Südkorea

Permalink: https://www.hzdr.de/publications/Publ-22307
Publ.-Id: 22307


Ferromagnetism induced by vacancy clusters in Silicon

Liu, Y.; Zhang, X. H.; Yuan, Q.; Han, J. C.; Zhou, S. Q.; Song, B.

Defect-induced ferromagnetism provides an alternative for organic and semiconductor spintronics. Though it is weak, it can be stable above room temperature. Till now it has been confirmed at least in oxides [1, 2] and carbon based materials [3, 4]. Interestingly, the relation between magnetism and defects in Silicon was demonstrated decades ago [5]. Since then, some progresses were made [6-9] and push forward the research of magnetic Mn doped Si a lot but it is drawn little attention itself. Here, with the latest growth purifying technique and sensitive measurements, we investigated the magnetism in Silicon after neutron irradiation and try to correlate the observed magnetism to particular defects in Si.

Keywords: defect-induced ferromagnetism; silicon; neutron irradiation; semiconductors

  • Poster
    28th International Conference on Defects in Semiconductors, 27.-31.07.2015, Espoo, Finland

Permalink: https://www.hzdr.de/publications/Publ-22306
Publ.-Id: 22306


Strong Auger scattering in Landau-quantized graphene evidenced by circularly polarized pump-probe spectroscopy

Winnerl, S.; Mittendorff, M.; Wendler, F.; Malic, E.; Knorr, A.; Schneider, H.; Helm, M.

While the carrier dynamics in graphene in absence of magnetic fields is well researched in a large spectral range ranging from UV to THz, the dynamics in Landau quantized graphene is almost unexplored. We investigate the carrier dynamics within the system of Landau levels (LLs) of index n = -1, n = 0 and n = 1 by pump-probe experiments complemented by microscopic modelling. Using circularly polarized terahertz radiation (at 18 THz) allows one to selectively excite the two energetically degenerate transitions LL-1 → LL0 and LL0 → LL1, respectively (at B  4 T). While three of the four possible configurations give intuitive results (bleaching, when pumping and probing with the same polarization, induced absorption with opposite polarizations), surprisingly, one configuration counterintuitively leads to bleaching while pumping and probing with opposite polarizations (Fig. 1 lower panel). This implies that even though LL0 is being optically pumped, its population decreases [1] ! Calculations show that LL0 is actually depleted by strong Auger scattering. Note that the two configurations shown in the Figure are distinguishable only because of the slight (n-type) doping of the graphene sample.
We discuss the role of carrier-carrier and carrier-phonon scattering in Landau quantized graphene and provide an outlook on the application potential of this system for tunable THz lasers.

Keywords: Graphene; Landau levels; carrier relaxation; pump-probe; free electron laser

Related publications

  • Lecture (Conference)
    Electronic Properties Of Two-Dimensional Electron Systems (EP2DS-21), 26.-31.07.2015, Sendai, Japan

Permalink: https://www.hzdr.de/publications/Publ-22305
Publ.-Id: 22305


Effect of an upward magnetic field on nanosized sulfide precipitation in ultra-low carbon steel

Duan, K. J.; Zhang, L.; Yuan, X. Z.; Han, S. S.; Liu, Y.; Huang, Q. S.

An induction levitation melting (ILM) refining process is performed to remove most microsized inclusions in ultra-low carbon steel (UCS). Nanosized, spheroid shaped sulfide precipitates remain dispersed in the UCS. During the ILM process, the UCS is molten and is rotated under an upward magnetic field. With the addition of Ti additives, the spinning molten steel under the upward magnetic field ejects particles because of resultant centrifugal, floating, and magnetic forces. Magnetic force plays a key role in removing sub-micrometer-sized particles, composed of porous aluminum titanate enwrapping alumina nuclei. Consequently, sulfide precipitates with sizes less than 50 nm remain dispersed in the steel matrix. These findings open a path to the fabrication of clean steel or steel bearing only a nanosized strengthening phase.

Keywords: ultra-low carbon steel; magnetic field; sulfide precipitation; induction levitation; titanium

Permalink: https://www.hzdr.de/publications/Publ-22304
Publ.-Id: 22304


Comparative study of ultrafast X-ray tomography and wire-mesh sensors for vertical gas-liquid pipe flows

Banowski, M.; Beyer, M.; Szalinski, L.; Lucas, D.; Hampel, U.

At the Institute of Fluid Dynamics of the Helmholtz-Zentrum Dresden-Rossendorf the wire-mesh sensor and the ultrafast X-ray tomography were developed to investigate two-phase flows with high spatial and temporal resolution. In the TOPFLOW facility, a test section was constructed for a comparative study of wire-mesh sensors and ultrafast X-ray tomography. Due to a minimum vertical distance between X-ray and wire-mesh positions, the results can be compared directly neglecting flow developing effects. Varying water and air superficial velocities in a wide range, flow regimes from bubble flow via slug flow to annular flow were investigated. Four typical experimental results are presented and discussed in this paper. Finally, the application ranges for both measurement techniques are briefly discussed.

Keywords: X-ray tomography; Wire-mesh sensor; vertical pipe; two-phase flow

  • Contribution to proceedings
    7th International Symposium on Process Tomography, 01.-03.09.2015, Dresden, Deutschland
  • Lecture (Conference)
    7th International Symposium on Process Tomography, 01.-03.09.2015, Dresden, Deutschland
  • Flow Measurement and Instrumentation 53(2017), 95-106
    Online First (2016) DOI: 10.1016/j.flowmeasinst.2016.02.001
    Cited 58 times in Scopus

Permalink: https://www.hzdr.de/publications/Publ-22303
Publ.-Id: 22303


In-situ observation of 3D particle assembly

Josten, E.; Wetterskog, E.; Glavic, A.; Boesecke, P.; Rücker, U.; Bergström, L.; Brückel, T.

The self-assembly of magnetic nanoparticles has a high potential for future applications [1], as it allows mass production processes of very small structures without the use of expensive equipment. The process itself is complex, including several interactions between nanoparticles, solvent, and substrate. A deeper understanding is the key for a better control of the self-organization process.

The present work adds a novel quantitative contribution to the study of the kinetics in 3D long range ordered nanoparticle superstructures. These superstructures have been investigated in-situ during the self-assembly using an optimized GISAXS setup to explore the dynamic growthmodes during deposition. The nanoparticles investigated are well-characterized γ-Fe2O3 nanospheres [2,3], which have been deposited on a substrate to form an ensemble of highly ordered superstructures (mesocrystals) [4].

The time-dependent GISAXS study of the self-assembly process, carried out at the ID01 beamline at ESRF, resulted in an understanding of how the structures evolve with time and how the evaporation can be controlled by external parameters. The in-situ cell (fig.1), which was developed to monitor the structure as well as the height and shape of the droplet, was employed for additional control of the process parameters and the possibility of an accurate identification of key physical parameters governing the process. The time evolution of the ordering process was analyzed by fitting position and width of multiple peaks for all recorded GISAXS patterns (for example fig.2). New insights into the drying and self-assembly process of an ensemble of 3D highly ordered superstructures were obtained and evaporation time-dependent stages of the mesocrystal growth and their spatial positions were identified [5].

Keywords: magnetic nanoparticles; in-situ GISAXS; self-assembly; X-ray scattering; mesocrystals

  • Lecture (Conference)
    GISAS2015, 08.-11.09.2015, Nice, Frankreich
  • Poster
    GISAXS2016 workshop, 16.-18.11.2016, Hamburg, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-22302
Publ.-Id: 22302


Reduction of phase noise in nanowire spin orbit torque oscillators

Yang, L.; Verba, R.; Tiberkevich, V.; Schneider, T.; Smith, A.; Duan, Z.; Youngblood, B.; Lenz, K.; Lindner, J.; Slavin, A. N.; Krivorotov, I. N.

Spin torque oscillators (STOs) are compact, tunable sources of microwave radiation that serve as a test bed for studies of nonlinear magnetization dynamics at the nanometer length scale. In particular, the spin torque in an STO can be created by spin-orbit interaction, but low spectral purity of the microwave signals generated in spin orbit torque oscillators hinders practical applications of these magnetic nanodevices. Here we demonstrate a method for decreasing the phase noise of spin orbit torque oscillators based on Pt/Ni80Fe20 nanowires. We experimentally demonstrate that tapering of the nanowire, which serves as the STO active region, significantly decreases the spectral linewidth of the generated signal. We explain the observed linewidth narrowing in the framework of Ginzburg-Landau auto-oscillator model. The model reveals that spatial non-uniformity of the spin current density in the tapered nanowire geometry hinders the excitation of higher order spin-wave modes, thus stabilizing the single-mode generation regime. This non-uniformity also generates a restoring force acting on the excited self-oscillatory mode, which reduces thermal fluctuations of the mode spatial position along the wire. Both these effects improve the STO spectral purity.

Keywords: n.n

Related publications

Permalink: https://www.hzdr.de/publications/Publ-22301
Publ.-Id: 22301


Stability of MR brain-perfusion measurement using arterial spin labeling

Petr, J.; Hofheinz, F.; Platzek, I.; Schramm, G.; van den Hoff, J.

Arterial spin labeling (ASL) is an MR technique for assessment of cerebral blood flow (CBF) that does not require use of contrast agents which makes it a less invasive alternative to the 15O-H2O-PET measurement. The repeatability of ASL has been studied extensively but mainly in young healthy volunteers. We have tested repeatability of ASL under realistic clinical conditions in elderly brain tumor patients acquired with a Philips Ingenuity TF PET/MR in the context of an ongoing 11C-Methionine PET/MR study. Twenty three patients (age 54.8±13.0 y) were scanned on two or more session. The patients underwent 6 weeks of concurrent radiochemotherapy with Temozolomide between the first session and second measurement. The mean relative difference of gray matter CBF was 18.6% between the first two session and 13.0% for the second session and further on. The mean gray matter CBF was 46.6±7.2 mL/min/100 g on the first sessions and there was a significant decrease of 9.8% between first and second session (p=0.027). In summary, the ASL presents measurement of CBF with reasonable repeatability also in elderly patients under clinical conditions when it is not possible to control for all sources of variation. Significant decrease of CBF in healthy tissue was observed after the radiochemotherapy. Prospectively, the ASL data together with the also acquired 11C-Methionine PET will be evaluated regarding their separate and combined ability to predict patient outcome and effectiveness of the performed radiochemotherapy.

  • Lecture (Conference)
    PSMR 2015: 4th Conference on PET/MR and SPECT/MR, 17.-21.05.2015, La Biodola, Isola d’Elba, Italy
  • Open Access Logo Abstract in refereed journal
    EJNMMI Physics 2(2015)Suppl. 1, A67
    DOI: 10.1186/2197-7364-2-S1-A67

Permalink: https://www.hzdr.de/publications/Publ-22300
Publ.-Id: 22300


Measuring the Influence of Vessel Geomery on PCASL Labeling Efficiency

Petr, J.; Schramm, G.; van den Hoff, J.

TARGET AUDIENCE: Clinicians and researcher interested in efficient planning of the pseudo-continuous arterial spin labeling (ASL).
PURPOSE: The labeling efficiency of pseudo-continuous ASL1 (pCASL) and its inter- and intra-subject reproducibility is a crucial point for reliable cerebral-blood-flow (CBF) measurements with ASL. Potential causes of varying labelling efficiency are, for example, B0 field inhomogeneity2, blood velocity3, or labeling-plane positioning3. The common recommendation is to position the labeling plane on a straight part of the vessel and perpendicular to them6. However, it is not always possible to avoid tortuous parts of the vessels if angiography is not available. Here, we study the effect of vessel geometry on the labeling efficiency both trough simulations and experiments.
METHODS: Simulations: Labeling efficiency was calculated for three cases of vessels geometry using numerical simulations as described by Wu4. Blood velocities between 1 and 40 cm/s were investigated and laminar flow was assumed. First, efficiency was calculated for a plane perpendicular to a straight vessel and angulated at 12.5°, 22.5°, or 45°. Second, a simple bend of the vessel was assumed with a length of the horizontal section of 0, 5, or 10 mm and the labeling plane positioned on the center of it and 2, 6, or 12 mm below (see Fig. 1a). Third, the bend was rotated 0°, 12.5°, 22.5°, or 45° so that the labeling plane intersected the vessel three times (Fig. 1b). Acquisitions: Five healthy young volunteers (age 31.8±3.9 y) were scanned at 3T using an eight-channel head-coil. A 3D TFE T1-weighted sequence and five pCASL sequences (pCASL1-pCASL5) with different position of the labeling plane were acquired. The T1-weighted sequence had voxel size 1×1×1 mm3. The common parameters of the pCASL sequence were: TR/TE = 3765/11 ms, FOV = 220×220 mm2,
pixel size = 2.75×2.75×6 mm3, 17 slices (0.6 mm gap), flip angle = 90°, 20 averages, background suppression with 2 pulses, 2D multi-slice EPI readout, labeling with a Hanning RF-pulse with duration 0.5 ms, tip angle 18°, and inter-pulse pause 0.5 ms, labeling time/post-labeling delay 1525/1650 ms. A reference image was acquired 5000 ms after saturation. For pCASL1, the labeling plane was set parallel with the imaged slices and the gap
was set in a way that the labeling plane intersected vertebral arteries (VA) at the level of siphon. The labeling plane was placed as parallel to the horizontal section of the VAs as possible (Fig. 1c). For pCASL2,3, the labeling plane was positioned 6 and 12 mm lower, respectively, than in pCASL1 (Fig. 1c). In pCASL4, 5 the labeling plane was positioned as in pCASL3 and rotated in the sagittal plane -30° and 30° with the center of rotation in the internal
carotid arteries (ICA), see Fig. 1c.
Preprocessing: The dynamics of all sequences were aligned with the first dynamics of pCASL1, thus coregistering the sequences and compensating for motion within each sequence. The T1-weighted image was aligned to the mean control image and segmented to obtain partial volume fractions for gray matter (GM). CBF was quantified according to the ASL white-paper6. Mean CBF (GM > 70%) in the vascular territories corresponding to the anterior cerebral artery (ACA), posterior cerebral artery (PCA), middle cerebral artery (MCA), and vertebral artery (VA) were computed for each sequence and subject. For pCASL1,2,4,5, the relative difference of the
mean CBF for each region was calculated relative to pCASL3 which was considered optimal as it contained no twists or angulations.
RESULTS: According to the numerical simulations, the decrease in labeling efficiency due to plane angulation is under 5% for most blood velocities and angle up to 30°, but it can go up to 10% for 45° angulation (Fig. 2c). For a bend in the vessel (Fig. 1a) of length 10 mm, the labeling efficiency can be decreased 20-25% (Fig. 2b). With increasing distance of the labeling plane, the decrease is only about 10% at 2mm (Fig. 2a), under 3% at 6mm and under 1% at 12 mm distance. For multiple intersections (Fig. 1b), the labeling efficiency decreased 25-30% regardless of the examined angle. The mean relative difference from sequence pCASL3 for different vascular territories is displayed in Tab. 2.
DISCUSSION: The experiments confirmed that labeling plane shift (pCASL1,2 in Tab. 1) or angulation up to 30° on ICA (pCASL4,5) produced less than 4% change of CBF in the ACA and MCA regions. Positioning the labeling plane on a section of VA parallel with it (pCASL1) caused 5.0% and 14.7% CBF decrease in PCA and VA regions respectively, although only in VA the change was significant. By increasing the distance from the bend (pCASL2), the CBF decrease became lower and not significant. Significant decrease of CBF of 8.4% and 16.9% in both PCA and VA regions, respectively, was achieved by positioning the labeling plane in a way to intersect VA at siphon multiple times. More significant decrease was expected from the simulations. The reason can be, that the actual vessel geometry was different from the worst modeled case. More measurements need to be done to find out why the decrease was lower in PCA than in VA. There are several limitations in this study. The magnetization transfer effects on the label were not taken into account5. Laminar flow profile was assumed, however the vessel thickness with regards to gradient fields was neglected for simplicity. By angulating the labeling plane, it is possible that it can intersect the imaged volume and thus directly or by magnetization transfer effects lower the measured perfusion signal. To minimize influence of this, the pixels where minimal-maximal intensity difference for all sequences was more than 10% were excluded from the analysis.
CONCLUSION: Reasonable angulation of the labeling plane causes only insignificant changes in labeling efficiency and measured CBF. On the other hand, twist and loops of the vessels as well as multiple crossing of the vessels by a labeling plane can cause significant changes of up to 25% and possibly even more, although this has been experimentally demonstrated only in VA region and not in PCA region.
REFERENCES:
1. W Dai, et al. Magn Reson Med, 2008;60(6):1488–97.
2. H Jahanian, et al. NMR in Biomedicine, 2011;24(10):1202–9.
3. S Aslan, et al. Magn Reson Med, 2010;63(3):765–71.
4. WC Wu, et al. Magn Reson Med, 2007;58(5):1020–7.
5. L Hernandez-Garcia, et al. NMR in Biomedicine, 2007;20(8):733–42.
6. Alsop, et al. Magn Reson Med, 2014; DOI: 10.1002/mrm.25197.

  • Poster
    23rd Annual Meeting of the International Society for Magnetic Resoonance in Medicine (ISMRM), 30.05.-05.06.2015, Toronto, Canada
  • Contribution to proceedings
    23rd Annual Meeting of the International Society for Magnetic Resonance in Medicine (ISMRM), 30.05.-05.06.2015, Toronto, Canada
    ISMRM '15: Proceedings of the 23rd Scientific Meeting and Exhibition of International Society for Magnetic Resonance in Medicine, 2952

Permalink: https://www.hzdr.de/publications/Publ-22299
Publ.-Id: 22299


An implementation of dead-time corrections in microbeam measurements on a pixel by pixel basis

Munnik, F.

In microbeam measurements on inhomogeneous samples large variations in count-rate can occur. These variations result in variations in dead-time that have to be used to correct elemental distribution maps. However, the dead-time is usually not available on a pixel by pixel basis. In this work, a simple model is proposed to calculate the dead-time for each pixel. Measurements to determine the dead-time per event, needed in the model, are presented and the dead-time corrections are presented for real samples.

Related publications

  • Poster
    Workshops für Ionenstrahlen und Nanostrukturen, 22.-24.07.2015, Heidelberg, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-22298
Publ.-Id: 22298


Ionenstrahlanalyseverfahren in der Materialforschung

Schmidt, B.; Wetzig, K.

Der Schwerpunkt der Materialanalyse mittels Ionenstrahlen ist die Bestimmung der Zusammensetzung und Struktur von oberflächennahen Festkörperschichten im Tiefenbereich von wenigen nm bis zu einigen µm. Charakteristisch für die verschiedenen Ionenstrahlanalysetechniken sind die Verwendung geeigneter Ionenstrahlen (z. B. Ionenart, Ionenenergie und -strom, Strahlfokus usw.), die Art der Ionen-Festkörper-Wechselwirkung (und deren Wirkungsquerschnitt), die entstehende Strahlungsart (z. B. gesputterte Sekundärionen, gestreute Ionen sowie Ionen-induzierte Photonen- und Elektronenemission). Die Vielzahl der Ionenstrahl-analyseverfahren kann bezüglich der verwendeten Ionenenergien in drei Gruppen eingeteilt werden [1]: 1) niedrige Ionenenergien von einigen keV, 2) mittlere Ionenenergien im Bereich 30-300 keV, und 3) hohe Ionenenergien im Bereich ~0,5-100 MeV. Schwere Ionen (Mi > Moxygen) für eine hinreichende Sputterausbeute an Targetatomen sind notwendig im weit verbreiteten Verfahren der Sekundärionen-Massen-Spektrometrie (SIMS). Leichte Ionen (M < 10, meistens H+, He+) werden in einem breiten Energiebereich für verschiedene Ionenstreuverfahren (LEIS, MEIS, RBS) sowie verschiedene Verfahren der Ionen-induzierten Photonenemission (PIXE, PIGE) eingesetzt. Dagegen werden schwerere, hochenergetische Ionen (z. B. N, O, Cl usw.) hauptsächlich für NRA und ERDA verwendet.
Im Vortrag werden die verschiedenen Ionenstrahlanalyseverfahren mit ihren charakteristischen Analyseparametern und Einsatzgebieten kurz vorgestellt und miteinander verglichen. Dabei wird besonders auf die hochauflösende Tiefen-profilierung für Dotierungsprofile in Halbleitern und die Elementanalyse von Dünnschichtsystemen eingegangen. Hierfür sind besonders die modernen Mikroelektronik- und Dünnschichttechnologien mit Forderungen nach immer dünneren Schichtsystemen und somit nach steigender Tiefenauflösung sowie kleineren Nachweisgrenzen die treibende Kraft. Weiterhin werden ausgewählte Beispiele für den Einsatz von Ionenstrahlanalyseverfahren in anderen Gebieten der Materialwissenschaften, z. B. in der Kunst und Archäometrie sowie in der Medizin diskutiert.

Related publications

  • Invited lecture (Conferences)
    18. Tagung Festkörperanalytik, 06.07.2015, Wien, Österreich

Permalink: https://www.hzdr.de/publications/Publ-22297
Publ.-Id: 22297


Probing defect driven tunable spontaneous magnetization in paramagnetic Zn0.95Co0.05O epitaxial films by X-ray absorption investigations

Satyarthi, P.; Ghosh, S.; Wang, Y.; Zhou, S.; Kumar, P.; Kanjilal, D.; Olivi, L.; Bürger, D.; Skorupa, I.; Schmidt, H.; Srivastava, P.

In order to address existing unresolved issues related to intrinsic and extrinsic origins of ferromagnetism in Zn1−xCoxO based diluted magnetic semiconductors for varying x, the present work aims to investigate the tunable ferromagnetism triggered in paramagnetic Zn0.95Co0.05O films using 500 KeV inert xenon ion irradiation of different fluences. The origin of ferromagnetism in post irradiated Zn0.95Co0.05O films is understood from different densities of bound magnetic polarons (BMPs) formation through correlated spins of tetrahedrally substituted Co2+ ions and anionic vacancies. The alteration in crystallographic positions of Zn, Co cations, and O anions in the tetrahedral environment as analyzed from Zn and Co K-edgeX-ray absorption and O 1s photoemission is a crucial factor for the stabilization of different density of BMPs. Magnetic field and temperature dependence of X-ray magnetic circular dichroism at the Co L2,3 edge provide experimental evidence of purely paramagnetic contribution from well localized Co2+ ions of Co sublattice for paramagnetic Zn0.95Co0.05O film. The paramagnetic Co2+ ions of Co sublattice persist in irradiated films, which reveal BMPs formation as the origin of ferromagnetism.

Keywords: Diluted magnetic semiconductors; X-ray absorption; Spintronics

Related publications

Permalink: https://www.hzdr.de/publications/Publ-22296
Publ.-Id: 22296


Identification and quantification of PGMs by combining MLA and EPMA with a new approach to the offline overlap correction of major and trace PGE concentrations

Osbahr, I.; Krause, J.; Bachmann, K.; Gutzmer, J.

The identification and accurate characterisation of platinum-group minerals (PGMs) is usually a very cumbersome procedure due to their small grain size (typically below 10 µm) and inconspicuous appearance under reflected light. A novel strategy for finding and quantifying PGMs by combining mineral liberation analysis (MLA), a point logging system and electron probe microanalysis (EPMA) was thus developed.
As a first step, the PGMs are identified using the MLA. Grains identified as PGMs are then marked and coordinates recorded with the point logger are then transferred to the EPMA. Case studies e.g. from the platiniferous reefs (Merensky Reef and UG2) of the Bushveld Complex (South Africa) illustrate that the combination of MLA, point logger and EPMA results in the identification of a significantly (up to 20 times) higher number of PGM grains than by careful reflected light microscopy.
The analysis of PGEs as major elements in PGMs or as trace elements in e.g. base metal sulfides by EPMA requires considerable effort. Due to the often significant overlaps between the X-ray spectra of almost all platinum-group and associated elements, X-ray lines suitable for quantitative analysis need to be carefully selected. As peak overlaps cannot be avoided completely, an offline overlap correction based on weight proportions has been developed. A reliable overlap correction is of particular importance e.g. in Ru-sulfides as laurite if the overlapped element is a trace element (Rh) and the overlapping element is a major constituent (Ru). Results obtained with the procedure attain acceptable totals and atomic proportions, indicating that the applied corrections are appropriate.

Keywords: Mineral Liberation Analyser; Electron Probe Microanalyser; Offline Overlap Correction; Platinum-Group Minerals

  • Poster
    Goldschmidt2015, 16.-21.08.2015, Prag, Tschechien

Permalink: https://www.hzdr.de/publications/Publ-22295
Publ.-Id: 22295


A novel approach for efficient identification and accurate chemical characterisation of platinum-group minerals by combining Electron Probe Microanalysis and Mineral Liberation Analysis

Osbahr, I.; Krause, J.; Bachmann, K.; Gutzmer, J.

The identification and accurate characterisation of platinum-group minerals (PGMs) is usually a very cumbersome procedure due to their small grain size (typically below 10 µm) and inconspicuous appearance under reflected light. A novel strategy for finding PGMs and quantifying their composition was developed. It combines SEM-based automated mineralogy, in this study mineral liberation analyser (MLA) Quanta 650F by FEI, a point logging system (JEOL) and a FE-EPMA (JEOL JXA-8530F). Thin sections from a layered intrusion (UG2) in the Bushveld Complex and from two Uralian-Alaskan-type complexes in the Ural Mountains, Russia, were investigated as case studies.
As a first step, the PGMs are identified using the MLA. Grains identified as PGMs are then marked and coordinates recorded and transferred to the EPMA. Case studies illustrate that by introducing MLA for the efficient and largely automated identification of PGM grains in polished thin sections, up to 20 times more PGM grains were identified, whilst shortening time needed and avoiding the effects of human error invariably associated with reflected light microscopy. This is mainly due to the facts that (a) PGM with grain sizes < 5µm are reliably identified and (b) PGM and closely associated base metal sulfides and sulfosalts are well differentiated with the MLA. The analysis of PGMs by EPMA requires considerable effort due to the often significant overlaps between the X-ray spectra of almost all platinum-group and associated elements (e.g. OsMβ on IrMα and AuMβ on HgMα). X-ray lines suitable for quantitative analysis need to be carefully selected. As peak overlaps cannot be avoided completely, an offline overlap correction based on weight proportions has been developed. Considerable variations in the repeatedly determined overlap factors illustrate the need for a re-determination of the overlap factors with each calibration. Results obtained with the procedure proposed in this study attain acceptable totals and atomic proportions, indicating that the applied corrections are appropriate.

Keywords: Mineral Liberation Analyser; Electron Probe Microanalyser; Platinum-Group Minerals; Platinum-group Elements; offline overlap correction

  • Poster
    Geoanalysis 2015 - The 9th International Conference on the Analysis of Geological and Environmental Materials, 09.-14.08.2015, Leoben, Österreich

Permalink: https://www.hzdr.de/publications/Publ-22294
Publ.-Id: 22294


Working with uncertainty in adaptive process optimisation

van den Boogaart, K. G.; Tolosana Delgado, R.; Matos Camacho, S.

This contribution is concerned with adaptive processing decisions, where the process parameters are optimally adapted to the varying properties of the material input stream. Our starting point is the geometallurgical paradigm that the varying properties of the input stream are considered known e.g. from a geometallurgical model of the mined ore body, and optimal processing parameters are computed from them, by finding the parameter seaming optimal in a computer simulation.
This approach however has to work with a lot of uncertainties: The prediction of the geometallurgical ore parameters can only be done with some geostatistical uncertainty. The parameters themselves are only proxies for true ore properties. Model prediction can differ relevantly from actual process results, due to model simplifications. Due to these uncertainties the computed processing choices can turn out to be inferior to simple non-adaptive processing.
We systematically analysed this effect, by modelling this uncertainty effect mathematically and in computer simulations.
The most important findings are:
(a) Processing choices not taking into account the uncertainty sometimes even perform worse than simple non-adaptive processing, for the sole reason of ignoring the uncertainty effect.
(b) Ore properties, not adequately reflected in the ore description, might require different approaches, in which the observed processing behaviour feeds back into process control.
(c) Bayesian decision theory allows computing optimal processing choices combining the information from the mine (geostatistical predictions) and from the process feedback. These choices give much more robust choices and do not suffer from the drawbacks described for the simple approach we started from.
This new approaches can substantially improve the performance of adaptive processing in existing plants.

Keywords: Geometallurgy; Adpative Processing; Bayesian Optimisation

  • Lecture (Conference)
    IMPC 2016, XXVIII International Mineral Processing Congress, 11.-15.09.2016, Québec, Canada
  • Contribution to proceedings
    IMPC 2016, XXVIII International Mineral Processing Congress, 11.-15.09.2016, Quebec, Canada
    IMPC 2016: XXVIII International Mineral Processing Congress Proceedings: Canadian Institute of Mining, Metallurgy and Petro, 978-1-926872-29-2

Permalink: https://www.hzdr.de/publications/Publ-22293
Publ.-Id: 22293


Programme IAMG 2015 Freiberg, Germany, September 5-13, 2015, The 17th Annual Conference of the International Association for Mathematical Geosciences

Schaeben, H.; Tolosana Delgado, R.; van den Boogaart, K. G.; van den Boogaart, R.; (Editors)

Das ist das Programmheft der IAMG2015 Konferenz

  • Book (Editorship)
    Freiberg: IAMG Office, 2015
    40 Seiten

Permalink: https://www.hzdr.de/publications/Publ-22292
Publ.-Id: 22292


Proceedings IAMG 2015 Freiberg, Germany, September 5-13, 2015, The 17th Annual Conference of the International Association for Mathematical Geosciences

Schaeben, H.; Tolosana Delgado, R.; van den Boogaart, K. G.; van den Boogaart, R.; (Editors)

These are the proceedings with the long Abstracts of the IAMG 2015 conference

Keywords: Mathematical Geosciences; Mathematical Geology; Geoinformatics

  • Book (Editorship)
    Freiberg: IAMG Office, 2015
    1372 Seiten
    ISBN: 978-3-00-050337-5

Permalink: https://www.hzdr.de/publications/Publ-22291
Publ.-Id: 22291


Short Abstracts IAMG 2015 Freiberg, Germany, September 5-13, 2015, The 17th Annual Conference of the International Association for Mathematical Geosciences

Schaeben, H.; Tolosana Delgado, R.; van den Boogaart, K. G.; van den Boogaart, R.; (Editors)

This is the shorts abstracts volume of the IAMG2015 Conference

Keywords: Mathematical Geosciences; Mathematical Geology; Geoinformatics

  • Book (Editorship)
    Freiberg: IAMG Office, 2015
    249 Seiten

Permalink: https://www.hzdr.de/publications/Publ-22290
Publ.-Id: 22290


Two-photon quantum well infrared photodetectors below 6 THz

Franke, C.; Walther, M.; Helm, M.; Schneider, H.

Two-photon quantum well infrared photodetectors (QWIPs) are nonlinear detectors for the mid-infrared and terahertz regimes optimized for resonant two-photon absorption. Here we present first results on two-photon QWIP samples based on the GaAs/AlGaAs material system with intersubband energies between 25 and 12 meV (6 to 3 THz) confirmed by photocurrent spectra. The dark current showed large discontinuities, presumably caused by impact ionization. We performed interferometric autocorrelation experiments at the free-electron laser FELBE and observed nonlinear interferograms for all samples.

Keywords: quantum well infrared photodetector; QWIP; interferometric autocorrelation; nonlinear optics; two-photon absorption

Related publications

Permalink: https://www.hzdr.de/publications/Publ-22289
Publ.-Id: 22289


Innovative once-through thorium fuel cycle for the PTVM LWR concept

Rachamin, R.; Fridman, E.; Galperin, A.

An advanced once-through thorium fuel cycle for the novel reactor concept, termed the pressure tube light water reactor with variable moderator control (PTVM LWR), is proposed. The main innovation of the concept is described. The PTVM LWR makes use of a seed-blanket geometry, whereby the core is divided into separated regions of thorium fuel channel assemblies (blanket) and low-enriched uranium fuel channel assemblies (seed). A scheme based on two separate fuel flow routes (i.e., seed route and blanket route) is proposed. Neutronic analysis indicates that the novel scheme has the potential to utilize both seed and blanket in an efficient manner.

Keywords: pressure tube reactor; “breed & burn”; moderator variation; seed-blanket geometry; once-through thorium fuel cycle

  • Open Access Logo Contribution to proceedings
    Thorium Energy Conference 2015 (ThEC15), 12.-15.10.2015, Mumbai, India
  • Poster
    Thorium Energy Conference 2015 (ThEC15), 12.-15.10.2015, Mumbai, India

Permalink: https://www.hzdr.de/publications/Publ-22288
Publ.-Id: 22288


Liquid metal modelling of continuous steel casting

Gerbeth, G.; Wondrak, T.; Stefani, F.; Shevchenko, N.; Eckert, S.; Timmel, K.

Model experiments with low melting point liquid metals are an important tool to investigate the flow structure and related transport processes in melt flows relevant for metallurgical applications. We present recent results from the three LIMMCAST facilities working either with room-temperature alloy GaInSn or with the alloy SnBi at temperatures of 200-350°C. The main value of cold metal laboratory experiments consists in the capabilities to obtain quantitative flow measurements with a reasonable spatial and temporal resolution, which is essential for code validation. Experimental results are presented covering the following phenomena: contactless electromagnetic tomography of the flow in the mold, flow monitoring by ultrasonic sensors, mold flow under the influence of an electromagnetic brake, injection of argon bubbles through the stopper rod, X-ray visualization of gas bubble two-phase flow in the nozzle and in the mold.

Keywords: Continuous casting; physical modeling; flow measurements; magnetic field; flow control; electromagnetic brake

  • Invited lecture (Conferences)
    6th Baosteel Biannual Academic Conference and the 10th CSM Steel Congress, 21.-23.10.2015, Shanghai, China
  • Contribution to proceedings
    The 10th CSM Steel Congress and the 6th Baosteel Biennial Academic Conference, 21.-23.10.2015, Shanghai, China
    Proceedings of the 10th CMS Steel Congress & the 6th Baosteel Biennial Academic Conference: Metallurgical Industry Press, Book of Abstracts: 978-7-5024-7006-7, 8-13

Permalink: https://www.hzdr.de/publications/Publ-22287
Publ.-Id: 22287


Experimentelle Modellierung von Stranggussprozessen mit niedrig schmelzenden Legierungen

Timmel, K.; Wondrak, T.; Röder, M.; Shevchenko, N.; Miao, X.; Stefani, F.; Eckert, S.

Die Strömung der Metallschmalze beim kontinuierlichen Stranggießen hat wesentlichen Einfluss auf das erreichte Gussergebnis. Probleme entstehen beispielsweise durch Einschlüsse von Oxiden, intermetallischen Verbindungen oder Gasblasen, die durch eine unkontrollierte Strömung in die Erstarrungszone gelangen. Die Untersuchung und Optimierung der Strömungsvorgänge erfolgte bisher vorwiegend anhand von numerischen Simulationen sowie Wassermodellen und lieferte bereits viele Erkenntnisse. Aufgrund der Materialeigenschaften sind jedoch Wassermodelle in ihrer Anwendung begrenzt und können nicht alle im Prozess auftretende physikalische Phänomene abdecken, wie z. B. Temperaturgradienten in der Schmelze, Interaktion mit elektromagnetischen Feldern oder Mehrphasenströmungen. In diesen Fällen unterscheiden sich die Kennzahlen z.T. um mehrere Größenordnungen.
Am Helmholtz-Zentrum Dresden-Rossendorf stehen drei Anlagen zur Verfügung, welche sich mit der Modellierung des Stranggussprozesses unter der Verwendung niedrigschmelzender Legierungen befassen. Die Anlagen unterscheiden sich z.T. in der Ausrichtung ihrer Untersuchungsschwerpunkte und ergänzen sich so gegenseitig ideal. Das Mini-LIMMCAST Experiment arbeitet mit einer bei Raumtemperatur flüssigen Legierung und ist sehr flexibel aufgebaut. Viele unterschiedliche Untersuchungen können und sind hier bereits durchgeführt worden. Die große LIMMCAST-Anlage ist insbesondere für einen längeren kontinuierlichen Betrieb ausgelegt und operiert im Temperaturbereich von 200 – 350 °C. Die dritte Anlage X-LIMMCAST ist speziell für die Röntgenbildgebung und die Visualisierung der Zweiphasenströmung mit Gasblasen konzipiert. Die Flexibilität der Anlagen erlaubt eine Anpassung an konkrete Gegebenheiten.
Neben den experimentellen Anlagen müssen für einen sinnvollen Betrieb auch entsprechende Messtechniken zu Erfassung der Strömungsvorgänge in flüssigen Metallen zur Verfügung stehen. Für die Geschwindigkeitsmessung sind dazu in den Versuchen die Ultraschall-Doppler-Velocimetry, die kontaktlose, induktive Strömungstomographie und die Potentialsondenmethode zum Einsatz gekommen. Für die Auflösung der Zweiphasenströmung sind wiederum eine tomographische Methode als auch die Röntgenbildgebung verwendet worden. Ziel ist neben einem tieferen Verständnis des Prozesses, die Bereitstellung eine breiteren Datenbasis für die Validierung numerischer Modelle.
Es sollen in diesem Beitrag die drei Versuchsanlagen und ausgewählte Messtechniken beispielhaft anhand von Messergebnissen vorgestellt werden.

Keywords: Stranggießen; Flüssigmetallmodell; Strömungsmessung; elektromagnetische Strömungsbeeinflussung; Zweiphasenströmung

  • Lecture (Conference)
    WERKSTOFFWOCHE, 14.-17.09.2015, Dresden, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-22286
Publ.-Id: 22286


Dipole strength distribution of 74Ge

Massarczyk, R.; Schwengner, R.; Bernstein, L. A.; Anders, M.; Bemmerer, D.; Beyer, R.; Elekes, Z.; Hannaske, R.; Junghans, A. R.; Kögler, T.; Röder, M.; Schmidt, K.; Wagner, A.; Wagner, L.

The dipole strength distribution of 74Ge was studied in photon-scattering experiments using bremsstrahlung produced with electron beams of energies of 7.0 and 12.1 MeV at the linear accelerator ELBE. We identified 94 levels with spin J = 1 up to an excitation energy of 8.9 MeV and analyzed the strength in the quasi-continuum of states. Simulations of statistical gamma-ray cascades were performed to estimate intensities of inelastic transitions and to correct the intensities of the ground-state transitions for their branching ratios. The photoabsorption cross section below the neutron-separation energy derived in this way is combined with the photoabsorption cross section obtained from an earlier (gamma, n) experiment and compared with phenomenological approximations.

Keywords: Nuclear resonance fluorescence; photon scattering; bremsstrahlung; photoabsorption cross section

Related publications

Permalink: https://www.hzdr.de/publications/Publ-22285
Publ.-Id: 22285


Nanofabrication of self-organized periodic ripples by ion beam sputtering

Iacob, E.; Dell’Anna, R.; Giubertoni, D.; Demenev, E.; Secchi, M.; Böttger, R.; Pepponi, G.

Ion beam sputtering of solid surfaces with ions of low keV energies can produce self-organized periodic ripple patterns of nanometer size on the surface of semiconductors, metals and insulators, therefore looking to be a single-step, cost-effective method to fabricate surface topographies over large areas for various electronic and bio-devices.
To date, a comprehensive theoretical understanding of the ripple development is still missing, and the achievement of the application-specific surface topography still relay on properly tuning different ion-beam parameters, since the experiments have highlighted the dependence of ripple characteristics on them.
The success of technological applications often requires an a-priori defined ratio of ripple height to wavelength. Here we discuss how to obtain regular ripples of height h~10 nm and wavelength λ<=50 nm on silicon surfaces. Xe+ and O+ ions were used to also investigate the role of the surface chemical reactivity.
The results show the development of regular ripples with wavelengths of ~40 nm and heights of ~2 nm superimposed on a less regular periodic topography for O+ bombardment on Si; the Xe+ on Si bombardment produced structures of regularity below the expected values. We discuss the gained insights and the best recipe for the required nano-patterns.

Keywords: ion bombardment; self-organization; silicon; ripples

Related publications

Permalink: https://www.hzdr.de/publications/Publ-22284
Publ.-Id: 22284


Nanoporous Ge surface decomposition under ion bombardment: towards settling the dispute about driving forces

Böttger, R.; Liedke, B.; Liedke, M. O.; Heinig, K.-H.; Bischoff, L.

First detailed studies of the nanoporous decomposition of Ge under ion irradiation date back more than 30 years. Irradiated Ge alters its (near-)surface morphology into a nanostructure, which remains stable after irradiation even under thermal treatment up to several hundred degrees Celsius. In recent years, this peculiar transformation of Ge has been studied extensively. However, a conclusive assessment of the driving force for the nanoporous Ge decomposition has not been reached yet.

We show that hole patterns and sponge-like layers of irradiated Ge surfaces originate from the same driving force, namely the kinetics of irradiation-induced defects in amorphous Ge layers. Ge hole patterns reported earlier for irradiation with low ion energies around 5 keV were reproduced for low energy Bi+ but also for Ge+ self-irradiation, which proves that the dominating driving force for morphology evolution cannot originate from the implanted impurities. At higher ion energies up to 100 keV the well-known formation of sponge-like Ge surface layers after heavy ion irradiation was found for Bi+ irradiation and Ge+ self-irradiation, too. The transition from smooth surfaces via hole patterns to sponge-like morphologies with increasing ion energy has been studied in detail. A model based on the kinetics of ion beam-induced defects was developed and implemented in 3D kinetic Monte Carlo simulations, which reproduce the transition from hole patterns to sponge-like layers with increasing ion energy. Finally, the proposed defect kinetics driven mechanism is undergird by a systematic positron annihilation spectroscopy investigation.
The authors acknowledge financial funding by the German Research Foundation via the Research Unit 845 “Selforganized nanostructures induced by low-energy ion beam erosion.”

Keywords: porous germanium; ion irradiation; defect kinetic; kinetic Monte-Carlo

Related publications

  • Lecture (Conference)
    Workshop Ionenstrahlen und Nanostrukturen, 22.-24.07.2015, Heidelberg, Deutschland
  • Lecture (Conference)
    8th International Workshop on Nanoscale Pattern Formation at Surfaces, 12.-16.07.2015, Krakow, Poland
  • Lecture (Conference)
    The 19th International Conference on Surface Modification of Materials by Ion Beams, 22.-27.11.2015, Chiang Mai, Thailand

Permalink: https://www.hzdr.de/publications/Publ-22283
Publ.-Id: 22283


Interactions of natural occurring eukaryotic microorganisms isolated from the uranium mine Königstein (Saxony, Germany) with U(VI)

Gerber, U.; Krawczyk-Bärsch, E.; Arnold, T.; Merroun, M. L.

Despite high uranium concentrations (up to 14 mg L-1) and low pH (2.5 - 3.0) a high microbial diversity was detected by culture independent methods in the flooding water of the former uranium mine Königstein (Saxony, Germany). In this study we used culture dependent techniques for the isolation of eukaryotic microorganisms from the flooding water. It was possible to isolate different eukaryotic fungi with a glucose riche medium. The microbial isolates identified by 16S rDNA and 18S rDNA analysis were tested for their uranium tolerance abilities by the determination of the minimal inhibitory concentration (MIC) on solid media. The results showed high tolerances of uranium (up to 6 mM) on solid agar plates. Based on these results isolate KS5 (Rhodosporidium toruloides) and one reference organism DSM 10134 (Rhodosporidium toruloides) were selected for further uranium interaction experiments. Uranium biosorption tests indicated that the cells of the strain KS5 remove high amounts of uranium (120 mg uranium/ 1 g dry biomass). Temperature dependent biosorption tests with a U(VI) concentration of 100 µM showed significant differences: KS5 revealed twice as much uranium removal at 30°C compared to at 4°C (s. Fig. 1). Since active processes, e.g., bioaccumulation do not occur at low temperature, only minor amounts of U(VI) are taking up in the cytoplasm of the cells. Hence, U(VI) is preferentially sorbed on the cell membrane by the passive process of biosorption.
In order to test the uranium tolerance quantitatively in liquid media flow cytometry experiments with the strains KS5 and DSM 10134 were performed. For this purpose live-dead staining were done to test the cell viability. The cells were stained with Propidium Iodid (PI - non viable cells) and Fluorescein Diacetate (FDA - viable cells). Furthermore the oxidative stress response was measured with the fluorescent dye 3,3'-Dihexyloxacarbocyanine Iodide (DiOC6 - cell membrane of living cells). The results showed that the isolate KS5 are able to tolerate higher U(VI) concentrations compared to the reference culture DSM 10134. More than 50 % of the KS5 cells are viable at an initial U(VI) concentration of 100 µM. In contrast less than 10 % of the reference cells are viable at the same uranium concentration. The results of the oxidative stress response showed a slight difference to the cell viability test. The isolate KS5 showed that nearly 50 % of the cells are active, like the cell viability test. Whereas the results for the reference DSM 10134 revealed that more than 30 % of the cells are active and exhibit an active membrane potential, in contrast to the results of the cell viability test. This can be explained by the stress response in the presence of heavy metals. Some cells produce mechanic-sensitive receptors which are permeable for Propidium Iodide, resulting in a wrong fluorescent staining signal. Thus, it would be an asset to combine both methods, like cell viability test and oxidative stress response tests.
Summarizing the results of this study, we were able to prove that eukaryotic microorganisms within a uranium-contaminated environment exhibit adaption mechanisms against high U(VI) concentrations. The expensive chemical treatment of the flooding water in Königstein could take a long time probably for the next 100 years. For that reason, these isolated eukaryotic microorganisms might play an important role in the bioremediation of radionuclides within the waste water treatment in Königstein.

Keywords: Uranium; Bioremediation; Biosorption; Tolerance

  • Lecture (others)
    Remediation Symposium 2015, 30.09.-01.10.2015, Jena, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-22282
Publ.-Id: 22282


Stratified and Segregated Flow Modelling - AIAD

Höhne, T.

Today: Limits in simulating stratified & segregated two phase flow
Algebraic Interfacial Area Density Model (AIAD)
Free Surface Drag
Turbulence Damping
Sub-grid wave turbulence (SWT)
Verification and Validation is going on – more experimental data are required for the validation

Keywords: AIAD; Free Surface Drag; Sub-grid wave turbulence (SWT)

  • Contribution to proceedings
    13th Short Course “Multiphase Flow: Simulation,Experiment and Application”, 24.-26.11.2015, Dresden, Deutschland
  • Lecture (Conference)
    13th Short Course “Multiphase Flow: Simulation,Experiment and Application”, 24.-26.11.2015, Dresden, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-22281
Publ.-Id: 22281


IAEA CRP Benchmark of ROCOM Boron Dilution and PTS test cases

Höhne, T.

The last decade has seen an increasing use of three-dimensional CFD codes to predict steady state and transient flows in nuclear reactors because a number of important phenomena such as pressurized thermal shocks, coolant mixing, and thermal striping cannot be predicted by traditional one-dimensional system codes with the required accuracy and spatial resolution.

The nuclear industry now also recognizes that CFD codes have reached the desired level of maturity (at least for single-phase applications) for them to be used as part of the NPP design process, and it is the objective of a IAEA CRP to assess the current capabilities of such codes in this regard, and contribute to the technology advance in respect to their verification and validation. CFD is already well-established in addressing certain safety issues in NPPs, as reported and discussed at various international workshops. The development, verification and validation of CFD codes in respect to NPP design necessitates further work on the complex physical modelling processes involved, and on the development of efficient numerical schemes needed to solve the basic equations. In parallel, it remains an overriding necessity to benchmark the performance of the CFD codes, and for this experimental databases need to be established, both for separate-effect tests and for full-size integral tests.

At the IAEA it was decided to set up a benchmark of ROCOM boron dilution and PTS test cases. All the test data had previously been opened, so only an ‘open’ benchmark exercise could be contemplated. Two sets of test data could be made available, relating to Pressurized Thermal Shock (PTS) and boron dilution (pump start-up). The ROCOM facility is at 1:5 scale, based on the 4-loop Konvoi reactor concept. There are 4000 measuring points by means of the Wire-Mesh Sensor (WMS) measurement technique, for which data collection is available up to a frequency of 10 kHz. It was noted that each experiment had been repeated five times to ensure authenticity of the data. In both cases, initial and boundary conditions are specified. Data have been recorded at P1 and P2 confidence levels. A CAD file of the test geometry is also available – it has recently been updated. All test data are available in tabular form, for ease of interpretation.

The Benchmark will help to analyze the CFD code capabilities for CFD in nuclear reactor design applications.

Keywords: IAEA; ROCOM; Benchmark; PTS; Boron Dilution

  • Contribution to proceedings
    25th SYMPOSIUM of AER on VVER Reactor Physics and Reactor Safety, 13.-16.10.2015, Balatongyörök, Ungarn
  • Lecture (Conference)
    25th SYMPOSIUM of AER on VVER Reactor Physics and Reactor Safety, 13.-16.10.2015, Balatongyörök, Ungarn

Permalink: https://www.hzdr.de/publications/Publ-22280
Publ.-Id: 22280


Distribution of Sb minerals in the Cu and Zn flotation of Rockliden massive sulphide ore in north-central Sweden

Minz, F. E.; Bolin, N.-J.; Lamberg, P.; Bachmann, K.; Gutzmer, J.; Wanhainen, C.

The Rockliden massive sulphide Zn-Cu deposit contains minor amounts of Sb minerals. The Sb mineralogy is complex in terms of composition, micro textures and mineral associations. The main Sb minerals comprise tetrahedrite, bournonite, gudmundite and Sb-Pb sulphides such as meneghinite. The presence of these minerals is especially critical to the quality of the Cu-Pb concentrate. To study how they are distributed in a simplified flotation circuit and what controls their process behaviour Sb-rich drill core samples were selected from the Rockliden deposit and a standard laboratory flotation test was run on the composite samples. Scanning electron microscope-based automated mineralogy was used to measure the Sb mineralogy of the test products, and the particle tracking technique was applied to mass balance the different liberation classes to finally trace the distribution of liberated and locked Sb minerals. The mineralogical factors controlling the distribution of Sb minerals are mineral grain size, the degree of liberation, and associated minerals. Similarities in the distribution of specific particle types from the tested composites point towards systematics in the behaviour of particles and predictability of their distribution which is suggested to be used in a geometallurgical model of the deposit.

Keywords: Sulphide ores; Antimony; Liberation analysis; Particle tracking; Froth flotation

Downloads

Permalink: https://www.hzdr.de/publications/Publ-22279
Publ.-Id: 22279


Turbulence treatment at the interface of horizontal gas-liquid flows

Höhne, T.

Stratified two-phase flows are relevant in many industrial applications, e.g. pipelines, horizontal heat exchangers and storage tanks. The numerical simulation of free surface flows can be performed using phase-averaged multi-fluid models, like the homogeneous and the two-fluid approaches, or non-phase-averaged variants. The approach shown in this paper within the two-fluid framework is the Algebraic Interfacial Area Density (AIAD) model. It allows the macroscopic blending between different models for the calculation of the interfacial area density and improved models for momentum transfer in dependence on local morphology. A further step of improvement of modelling the turbulence was the consideration of sub-grid wave turbulence (SWT) that means waves created by Kelvin-Helmholtz instabilities that are smaller than the grid size. A first CFD validation of the approach was done for an adiabatic case of the HAWAC channel. More verification and validation of the approach is necessary – more CFD grade experimental data are required for the validation.

Keywords: CFD; horizontal annular flow; AIAD; droplet entrainment; two-phase flow

  • Contribution to proceedings
    Turbulence, Heat and Mass Transfer 8, 15.-18.09.2015, Sarajevo, Bosnien Herzogowina
  • Lecture (Conference)
    Turbulence, Heat and Mass Transfer 8, 15.-18.09.2015, Sarajevo, Bosnien Herzogowina
  • Book chapter
    K. Hanjalic, T. Miyauchi, D. Borello, M. Hadzabdic and P. Venturini: Turbulencem Heat and Mass Transfer 8, New York: Begell Haus Inc., 2015, 978-1-56700-427-4, 141-145

Permalink: https://www.hzdr.de/publications/Publ-22278
Publ.-Id: 22278


Numerical modeling of horizontal annular flows using a droplet entrainment model

Höhne, T.

One limitation in current simulating horizontal annular flows is the lack of treatment of droplet formation mechanisms. For self-generating annular flows in horizontal pipes, the interfacial momentum exchange and the turbulence parameters have to be modelled correctly. Furthermore the understanding of the mechanism of droplet entrainment in annular flow regimes for heat and mass transfer processes is of great importance in the chemical and nuclear industry.

A new entrainment model within the AIAD framework is proposed. It assumes that due to liquid turbulence the interface gets rough and wavy and forms droplets. The new approach is validated with HZDR annular flow experiments. Important phenomena like the pressure drop, the wave pumping effect, the droplet entrainment, the liquid film formation and the transient flow behavior could be calculated, analyzed and some of the phenomena compared with the measurement.

Keywords: CFD; horizontal annular flow; AIAD; droplet entrainment; two-phase flow

  • Contribution to proceedings
    The 16th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-16), 30.08.-04.09.2015, Chicago, USA
  • Lecture (Conference)
    The 16th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-16), 30.08.-04.09.2015, Chicago, USA

Permalink: https://www.hzdr.de/publications/Publ-22277
Publ.-Id: 22277


Sediment Generation in humid Mediterranean setting: Grain-size and Source-rock Control on Sediment Geochemistry and Mineralogy (Sila Massif, Calabria)

von Eynatten, H.; Tolosana-Delgado, R.; Karius, V.; Bachmann, K.; Caracciolo, L.

Grain-size control on sediment composition is investigated in modern proximal sediment from the Sila Massif, where basic to felsic intrusive rocks are exposed in a Mediterranean humidtemperate upland climate. Samples were taken from small creeks and weathering profiles from three areas reflecting different bed rock composition. Samples were separated into eleven grain size fractions from very coarse sand to clay and analyzed by (i) X-ray fluorescence for chemical composition, and (ii) X-ray diffraction and Mineral Liberation Analysis for mineralogical composition. The chemical composition vs. grain size relations were modelled by compositional linear regression. Mineralogical composition from selected samples is used to substantiate the interpretations based on geochemistry. Results reveal a high degree of chemical weathering with chemical index of alteration (CIA) up to 92. High CIA values are restricted to the fine-grained fractions, while sand-sized sediment average at low to moderate CIA values (~ 60). Although strongly weathered, the three sample suites reflecting basic to felsic plutonic bed rock can be effectively discriminated across all grain-size classes using trace elements such as V, Rb, and Sr. Linear trend modelling and mineralogical data reflect similar patterns for all sample suites implying similar processes independent of source rock composition. This includes overall decrease of quartz and K-feldspar over the entire grain-size range from coarse to fine, which is contrasted by overall increase of sheet silicates from coarse to fine. Among the latter, increase of clay minerals strongly outpaces the increase of micas in silt to clay fractions. A more complex behaviour is shown by plagioclase, which is most abundant in intermediate grain-size fractions for all sample suites. This is caused by initial hydrolysis along cleavage planes and subsequent breakage of plagioclase crystals into smaller fragments. Towards finer grain size, intense hydrolysis has destroyed almost all feldspars. In contrast to a similar study in glacial setting Si/Al ratios constantly decrease with decreasing grain size, reflecting the cumulative effects of minor mechanical forces, quartz leaching, and intense hydrolysis.

Keywords: geochemistry; mineralogy; chemical weathering; comminution; provenance; compositional linear regression

  • Sedimentary Geology (2015)

Permalink: https://www.hzdr.de/publications/Publ-22276
Publ.-Id: 22276


Entwicklung und Anwendung analytischer Methoden in der Kupferschiefer Aufbereitung

Rahfeld, A.; Möckel, R.; Gutzmer, J.

Kupferschiefer ist eine Ressource mit großer Bedeutung in Europa. Im Zuge neuer Entwicklungen in der Aufbereitungstechnik, einer gesteigerten Ressourcen- und Energieeffizienz und einem Interesse an alternativen Verfahren, besteht die Nachfrage nach detaillierten geochemischen und mineralogischen Informationen. Dementsprechend werden analytische Methoden benötigt die in der Lage sind Kupferschiefer nicht nur zu charakterisieren sondern auch durch Zerkleinerung, Flotation und Biolaugung hervorgerufene Änderungen nachzuweisen.
Klassische analytische Verfahren sind gänzlich ungeeignet für die Analyse von Kupferschiefer, aufgrund seiner komplexen Zusammensetzung bestehend aus einem hohen Anteil an Sulfiden und organischem Kohlenstoffverbindungen, sowie seines außergewöhnlich feinkörnigen Aufbaus der Matrix aus Tonen und Karbonaten. Nur der Einsatz moderner quantitativer Analysemethoden aus der Erz - und Gesteinsmineralogie und die Entwicklung neuer Vorgehensweisen ermöglicht eine verlässliche Untersuchung des Materials. Zum Einsatz kommen hierbei quantitative Röntgendiffraktometrie (QXRD), automatisierte Mineralidentifikation (MLA), Röntgenfluoreszenz (XRF), Atomemissionsspektrometrie (ICP-OES) und Neutronenaktivierung (INAA).

Keywords: Analytik Kupferschiefer Aufbereitung

  • Poster
    Jahrestagung Aufbereitung und Recycling 2015, 11.-12.11.2015, Freiberg, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-22275
Publ.-Id: 22275


Pulsed high-field magnets – An efficient way of shaping laser accelerated proton beams for application

Kroll, F.; Bagnoud, V.; Blažević, A.; Brabetz, C.; Busold, S.; Deppert, O.; Jahn, D.; Karsch, L.; Kraft, S.; Masood, U.; Roth, M.; Schumacher, D.; Schramm, U.

Compact laser-driven proton accelerators are a potential alternative to complex, expensive conventional accelerators, enabeling unique beam properties, like ultra-high pulse dose. Nevertheless, they still require substantial development in reliable beam generation and transport.

We present experimental studies on capture, shape and transport of laser and conventionally accelerated protons via pulsed high-field magnets. These magnets, common research tools in the fields of solid state physics, have been adapted to meet the demands of laser acceleration experiments.Our work distinctively shows that pulsed magnet technology makes laser acceleration more suitable for application and can facilitate compact and efficient accelerators, e.g. for material research as well as medical and biological purposes.

  • Lecture (Conference)
    DPG-Frühjahrstagung, Wuppertal, 2015, 09.-13.03.2015, Wuppertal, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-22274
Publ.-Id: 22274


A laser-driven ion beamline for generating well-defined ultra-short ion bunches at highest intensities

Kroll, F.; Busold, S.; Schumacher, D.; Brabetz, C.; Jahn, D.; Deppert, O.; Kraft, S.; Schramm, U.; Cowan, T. E.; Blažević, A.; Bagnoud, V.; Roth, M.

The LIGHT collaboration [1] has installed a laser-driven ion beamline at GSI Helmholtz Center for Heavy Ion Research. For the first time it is now possible to study the feasibility and potential of shaping laser-driven ion beams for future applications. We report on the temporal recompression of a laser-accelerated ion bunch.
In the presented experiment (c.f. Fig. 1), a dedicated arm of the high-power laser PHELIX was used to drive a TNSA proton source using gold and titanium foils. The 650 fs short, 20 J laser pulse produces the typical exponentially decaying energy spectrum with about 10^10 particles at an energy of 10±0.5 MeV and energy cut-off at 28.4 MeV. The protons are captured by a pulsed high-field solenoid, energy selected and modulated in a conventional radiofrequency cavity and transported along a drift line to the end station by means of permanent magnetic quadrupoles. However, the long drift between the laser target and the cavity introduces a temporal spread-out of the polychromatic beam.
Most recently, we accomplished a recompression of the ion bunch by a well-chosen acceleration voltage of the rf cavity achieving phase-focusing in the following 3.5 meter long drift behind the cavity. At the end station we measured a central energy of 7.8 MeV; up to 5×10^8 protons could be temporally compressed to a bunch with duration of 462±40 ps (FWHM). The bunches show a moderate energy spread between 10 % and 15 % and are available at 6 m distance to the source, thus well separated from the harsh laser-acceleration environment. Such well-defined sub-nanosecond intense ion bunches are ideal for the generation and study of warm dense matter and can probe transient phenomena with unprecedented time resolution.
Fig. 1. LIGHT beamline experiment setup: a) TNSA proton source driven by the PHELIX laser and captured by the high-field solenoid b). The transported particles are rotated in longitudinal phase space by the cavity c). The permanent magnetic quadrupole doublets d), e) and optionally f) transport the beam towards the end station g) where the beam was diagnosed.
References
[1] S. Busold et al., Nucl. Instr. Meth. Phys. Res. A 740, 94 (2014).

  • Lecture (Conference)
    Laser Plasma Acceleration Workshop 2015, 10.-15.05.2015, Deshaies, Guadeloupe, Frankreich

Permalink: https://www.hzdr.de/publications/Publ-22273
Publ.-Id: 22273


Towards highest peak intensities for ultra-short MeV-range ion bunches

Busold, S.; Schumacher, D.; Brabetz, C.; Jahn, D.; Kroll, F.; Deppert, O.; Schramm, U.; Cowan, T. E.; Blažević, A.; Bagnoud, V.; Roth, M.

A laser-driven, multi-MeV-range ion beamline has been installed at the GSI Helmholtz center for heavy ion research. The high-power laser PHELIX drives the very short (picosecond) ion acceleration on μm scale, with energies ranging up to 28.4MeV for protons in a continuous spectrum. The necessary beam shaping behind the source is accomplished by applying magnetic ion lenses like solenoids and quadrupoles and a radiofrequency cavity. Based on the unique beam properties from the laser-driven source, high-current single bunches could be produced and characterized in a recent experiment: At a central energy of 7.8MeV, up to 5×10^8 protons could be re-focused in time to a FWHM bunch length of τ=(462±40) ps via phase focusing. The bunches show a moderate energy spread between 10% and 15% (ΔE/E0 at FWHM) and are available at 6m distance to the source und thus separated from the harsh laser-matter interaction environment. These successful experiments represent the basis for developing novel laser-driven ion beamlines and accessing highest peak intensities for ultra-short MeV-range ion bunches.

Permalink: https://www.hzdr.de/publications/Publ-22272
Publ.-Id: 22272


Radiolabelling - A versatile tool for tracking nanoparticle release, uptake and transport

Schymura, S.; Hildebrand, H.; Fricke, T.; Holzwarth, U.; Bellido, E.; Ojea-Jiménez, I.; Cydzik, I.; Kulenkampff, J.; Kozempel, J.; Dalmiglio, M.; Bulgheroni, A.; Cotogno, G.; Simonelli, F.; Gibson, N.; Franke, K.; Lippmann-Pipke, J.

A major challenge in nanosafety research is the sensitve detection of nanoparticles at environmentally relevant concentration in the complex systems involved. It is said that many studies in the field of nanosafety research „do not offer any kind of clear statement on the safety of nanomaterials“, in part because of the unrealistically high concentrations used. The radiolabelling of nanoparticles can help overcoming this obstacle as it provides an easy way of reliably detecting nanoparticles in minute concentrations despite the complexity of the matrix.

We have developed various methods of introducing radiotracers into some of the most common nanoparticles, such as Ag, carbon, CeO2, Silica and TiO2 nanoparticles. The labelling techniques are the synthesis of the nanoparticles using radioactive starting materials, the binding of the radiotracer to the nanoparticles, the activation of the nanoparticles using proton irradiation, the recoil labelling utilizing the recoil of a nuclear reaction to introduce a radiotracer into the nanoparticles, and the in-diffusion of radiotracers into the nanoparticles at elevated temperatures. Using these methods we have produced [105/110mAg]Ag0, [124/125/131I]CNTs, [139Ce]CeO2, [48V]TiO2, [7Be]MWCNT, [7Be]SiO2, [44/45Ti]TiO2, etc.. All the particles were evaluated for radiolabel stability and alteration of the particle properties.

Using the so-labelled nanoparticles we achieved to measure the release of nanoparticles from surface coatings, the transport of nanoparticles in porous media, the interaction of nanoparticles with complex media such as sewage sludge and the uptake of nanoparticles in plants. The easy quantification of nanoparticle fractions inside the various systems allows the extraction of crucial information in order to understand and evaluate the different processes involved.

Keywords: Nanopartikel/Nanoparticle; Radiomarkierung/Radiolabelling

  • Lecture (Conference)
    10th International Conference on the Environmental Effects of Nanoparticles and Nanomaterials, 06.-10.09.2015, Wien, Österreich

Permalink: https://www.hzdr.de/publications/Publ-22271
Publ.-Id: 22271


Flash-Lamp-Enhanced Atomic Layer Deposition of Thin Films

Henke, T.; Knaut, M.; Hossbach, C.; Geidel, M.; Rebohle, L.; Albert, M.; Skorupa, W.; Bartha, J.

Within this work flash lamp annealing (FLA) is utilized to thermally enhance the film growth in atomic layer deposition (ALD). First, the basic principles of flash-lamp-enhanced ALD (FEALD) are presented in detail, the technology is reviewed and classified. Thereafter, results of our studies on the FEALD of aluminum-and ruthenium-based thin films are presented. These depositions were realized by periodically flashing on a substrate during the precursor exposure. It is shown that the film growth is induced by the flash heating and that the processes exhibit typical ALD characteristics. The obtained relations between flash parameters and film growth parameters are discussed with the main focus on the impact of the FLA-caused temperature profile on the film growth.
Besides, this work addresses technical challenges for the practical realization of this method and demonstrates the potential of this technology to extend the capabilities of thermal ALD.

Keywords: flash lamp annealing; atomic layer deposition; thin film

Permalink: https://www.hzdr.de/publications/Publ-22270
Publ.-Id: 22270


European activities on crosscutting thermal-hydraulic phenomena for innovative nuclear systems

Cheng, X.; Batta, A.; Bandini, G.; Roelofs, F.; van Tichelen, K.; Gerschenfeld, A.; Prasser, M.; Papukchiev, A.; Hampel, U.; Ma, W. M.

Thermal-hydraulics is recognized as a key scientific subject in the development of innovative reactor systems. In Europe, a consortium is established consisting of 24 institutions of universities, research centers and nuclear industries with the main objectives to identify and to perform research activities on important crosscutting thermal-hydraulic issues encountered in various innovative nuclear systems. For this purpose the large-scale integrated research project THINS (Thermal-Hydraulics of Innovative Nuclear Systems) is launched in the 7th Framework Programme FP7 of European Union. The main topics considered in the THINS project are (a) advanced reactor core thermal-hydraulics, (b) single phase mixed convection, (c) single phase turbulence, (d) multiphase flow, and (e) numerical code coupling and qualification. The main objectives of the project are:

Generation of a data base for the development and validation of new models and codes describing the selected crosscutting thermal-hydraulic phenomena.
Development of new physical models and modeling approaches for more accurate description of the crosscutting thermal-hydraulic phenomena.
Improvement of the numerical engineering tools for the design analysis of the innovative nuclear systems.
This paper describes the technical tasks and methodologies applied to achieve the objectives. Main results achieved so far are summarized.

Permalink: https://www.hzdr.de/publications/Publ-22269
Publ.-Id: 22269


Hyperspectral remote sensing for mineral mapping of structural related mineralizations around Mount Isa, Queensland, Australia

Jakob, S.; Salati, S.; Gloaguen, R.

Alone or combined with other remote sensing data, hyperspectral mineral mapping can be used to investigate mineralizations and deposits via alteration minerals. Their kind, abundance and spatial distribution can deliver important statements about the occurrence and formation of mineralizations and their relation to structural features. The high spectral and spatial resolution of HyMap data exceeds multispectral data distinctly and makes the recognition of even smaller geological structures possible. The spectral unmixing of single endmembers can be used for the accurate mapping of specific materials or minerals.The support of hyperspectral imaging by spectral data gathered in the field and the analysis of the composition of rock samples can help to determine endmembers and to identify absorption features.
This study demonstrates the possibilities and limitations of remote sensing, especially hyperspectral data, for mineral mapping purposes, using the example of the Mount Isa Inlier. This geological area is situated in Northern Queensland, Australia, and is known for its considerable ore deposits and consequent mining of predominantly copper, zinc, lead, silver and gold. Beside hyperspectral HyMap data, multispectral Landsat 8 and SRTM digital elevation data were analyzed. A three-week field study in 2014 supported the investigations.
After preprocessing and vegetation masking the data were analyzed using Spectral Feature Fitting (SFF) and Mixture Tuned Matched Filtering (MTMF) for alteration mineral mapping. The outcomes were combined with results from decorrelation stretch, band ratioing, topographic indices and automated lineament analysis. Additional information was provided by field spectrometer measurements and the XRF and XRD analysis of rock samples.
Throughout the study, mineral mapping using remote sensing data, especially hyperspectral data, turned out to deliver high qualitative results when it is supported by additional information. In situ investigation of the observed mineralizations for validation is important and can deliver such data, for instance by the investigation of rock samples or spectral measurements. Since mineralizations and alterations are often related to structures, their analysis and consideration can provide crucial hints.
The most significant result throughout the study was the determination of a new site of gossanous, silicified ridges south of the Mount Isa mining complex. Their occurrence was validated through fieldwork observations including rock sampling and spectral measurements. The gathered information additionally supported the accurate mapping of those ridges using HyMap data, which confirmed the connection between the north-south trending ridges and the Mount Isa mine deposits. The observed ridges coincide compositionally and spectrally with the outcrops of mineralized parts of the Urquhart Shale, which form the mined Pb-Zn-Ag deposits and are probably related to structures. In samples of the new site, amounts of Pb, Zn, Ag and other metals could be detected. Contrary to the mineralized outcrops of the Urquhart Shale deposits, those ridges occur outside of the common host rock and are not mentioned as mineralizations in any available map or publication.

  • Poster
    EGU General Assembly 2015, 14.04.2015, Wien, Österreich

Permalink: https://www.hzdr.de/publications/Publ-22268
Publ.-Id: 22268


Formation of Ge-0 and GeOx nanoclusters in Ge+-implanted SiO2/Sithin-film heterostructures under rapid thermal annealing

Zatsepin, A. F.; Zatsepin, D. A.; Zhidkov, I. S.; Kurmaev, E. Z.; Fitting, H. J.; Schmidt, B.; Mikhailovich, A. P.; Lawniczak-Jablonska, K.

The results of X-ray photoelectron spectra (XPS valence band and core levels) measurements for Ge+ implanted SiO2/Si heterostructures are presented. These heterostructures have a 30 nm thick Ge+ ion implanted amorphous SiO2 layer on p-type Si. The chemical-state transformation of the host-matrix composition after Ge+ ion implantation and rapid thermal annealing (RTA) are discussed. The XPS-analysis performed allows to conclude the formation of Ge-o and GeOx clusters within the samples under study. It was established, that the annealing time strongly affects the degree of oxidation states of Ge-atoms

Keywords: RAY PHOTOELECTRON-SPECTROSCOPY; OXYGEN; LAYERS; FILMS; SI+; CATHODOLUMINESCENCE; TRANSFORMATIONS; SIO2; XPS

Related publications

Permalink: https://www.hzdr.de/publications/Publ-22267
Publ.-Id: 22267


Modelling of the electromagnetic braking effect in the continuous casting process of steel

Timmel, K.; Willers, B.; Kratzsch, C.; Schwarze, R.; Eckert, S.; Gerbeth, G.

It is known from industry and from scientific studies that the steel quality is significantly governed by the melt flow in the mold. Therefore, big efforts are made to adjust and to control the flow in the mold in a proper way by plant design or by the contactless, adjustable and flexible use of electromagnetic fields. These electromagnetic fields are already in industrial use for decades, but direct flow measurements about the actual effect are still rather scarce.
Three experimental facilities operating with low melting liquid metals were built at HZDR to investigate the continuous casting process of steel and to provide data for the validation of numerical simulations. The effect of the electromagnetic brake was one of the topics investigated in these low melting liquid metal experiments [1]. This paper will present new results from the LIMMCAST liquid metal experiments. Compared to previous results, the new experiments are operated in a continuous mode, providing a possibility to study the flow behavior in the stationary regime. Additional measurements focus on the behavior of the free liquid metal surface in the mold and the effect of the bulk flow on it. The paper also presents numerical results using Scale Adaptive Simulations (SAS).

Keywords: Continuous casting of steel; electro-magnetic flow control; liquid metal models; numerical simulation; scale adaptive simulations

  • Lecture (Conference)
    8th International Conference on Electromagnetic Processing of Materials (EPM2015), 12.-16.10.2015, Cannes, Frankreich
  • Contribution to proceedings
    8th International Conference on Electromagnetic Processing of Materials (EPM2015), 12.-16.10.2015, Cannes, Frankreich, 978-2-9553861-0-1, 373-376

Permalink: https://www.hzdr.de/publications/Publ-22266
Publ.-Id: 22266


Simulating Multi-Scale Physics in Solid Target Laser-Ion Acceleration

Huebl, A.; Kluge, T.; Hilz, P.; Bussmann, M.

Laser-ion acceleration from solid targets with ultra-intense laser pulses on the fs time scale is a central research topic for next generation particle accelerators. Accompanying processes are highly non-linear and require precise knowledge about the influence of both ab-initio electro-magnetic and atomic evolution of the plasma.

Consequently, modeling the acceleration process with simulations does not only require kinetic models with very high resolution (from the order of the inverse plasma frequency to the ns acceleration process) but also self-consistent models for non-equilibrium plasma and ionization processes.

We present large scale, 3D3V simulations with the fully-relativistic particle-in-cell code PIConGPU on the ORNL Titan cluster of mass-limited droplet targets related to recent experiments levitating these in Paul-traps.
In comparison with large 2D surveys the dependence of plasma instabilities and resulting ion energies under the variation of target material and laser properties is shown.

Keywords: laser particle acceleration; ion acceleration; mass limited targets; HPC; GPU; simulation; PIConGPU

Related publications

  • Lecture (Conference)
    42nd EPS Conference on Plasma Physics 2015, 22.-26.06.2015, Lisbon, Portugal

Permalink: https://www.hzdr.de/publications/Publ-22265
Publ.-Id: 22265


Photocapacitive light sensor based on metal-YMnO3-insulator-semiconductor structures

Bogusz, A.; Choudhary, O. S.; Skorupa, I.; Bürger, D.; Lawerenz, A.; Lei, Y.; Zeng, H.; Abendroth, B.; Stäcker, H.; Schmidt, O. G.; Schmidt, H.

Technology of light sensors, due to the wide range of applications, is a dynamically developing branch of both, science and industry. This work presents a novel concept of photodetectors based on a metal-ferroelectric-insulator-semiconductor, a structure which has not been explored yet in the field of photodetectors. Functionality of the presented light sensor exploits the effect of ferroelectric polarization, charge trapping and photocapacitive phenomena. This is accomplished by an interplay between polarization alignment, subsequent charge distribution and charge trapping processes under given illumination condition and gate voltage. Change of capacitance serves as a read out parameter indicating the wavelength and intensity of illuminating light. The operational principle of the proposed photocapacitive light sensor is demonstrated in terms of capacitance-voltage and capacitance-time characteristics of an Al/YMnO3/SiNx/p-Si structure exposed to green, red, and near infrared light. Obtained results are discussed in the terms of optical properties of YMnO3 and SiNx layers contributing to the performance of photodetectors. Presented novel concept of light sensing might serve as the basis for the development of more advanced photodetectors.

Keywords: light; sensor; photodetector; YMnO₃; photocapacitance

Permalink: https://www.hzdr.de/publications/Publ-22264
Publ.-Id: 22264


Annual Report 2014 - Institute of Ion Beam Physics and Materials Research

Fassbender, J.; Heera, V.; Helm, M.; Zahn, P.

This past year 2014 was the year when we finally completely arrived as a “full member” in the Helmholtz Association. This is related to the successfully passed research evaluation in the framework of the Program Oriented Funding (POF), which will give us a stable and predictable funding for the next five years (2015 – 2019). This is particularly true for our large-scale user facilities, like the Ion Beam Center (IBC) and the electron accelerator ELBE with the free-electron laser. Most of our activities are assigned to the program “From Matter to Materials and Life” within the research area “Matter”, in cooperation with several other German Helmholtz Centers. Our in-house research is performed in three so-called research themes, as depicted in the schematic below. What is missing there for simplicity is a small part of our activities in the program “Nuclear Waste Management and Safety” within the research area “Energy”.

Our research and facilities were well appreciated by the evaluation committee, who made the following judgement about the Ion Beam Center:

“The Ion Beam Centre (IBC) of HZDR is an internationally leading ion-beam facility (with ion energies ranging from several eV to several tens of MeV). At both the national and international level it is one of the key players and is unique in its kind. The synergy between forefront research and user service has been leading to a very good publication output for both in-house research and user research. …
The very broad range of beam energies, the versatility of techniques and applications – both for ion beam modification of materials and for ion-beam analysis – makes the IBC unique in its kind. …
The strength of IBC is that its activities are based on a combination of forefront research and user service, which mutually interact in synergy and strengthen one another. In turn, this synergy has been leading to a very good publication output for both in-house research and user research.”
In order to make our Annual Report a bit more compact, we have decided to include only four full journal papers this year. This was also triggered by the fact that our publication activities have turned out be become more diverse, in more diverse journals than in the past, and often through longer papers, which would be too long to reprint them here. However, apart from the constantly quantitatively high publication output, we succeeded to publish in excellent journals such as Nature Physics, Nano Letters and Physical Review Letters, in fields as diverse as ion beam physics, magnetism and terahertz spectroscopy.
Two of our scientists, Dr. Artur Erbe and Dr. Alexej Pashkin obtained their Habilitation in 2014, both at University of Konstanz. For the first time, we are hosting an Emmy Noether Young Investigator Group funded by the Deutsche Forschungsgemeinschaft (DFG); the group works on the hot topic of magnonics and is headed by Dr. Helmut Schultheiß.
Finally we would like to cordially thank all partners, friends, and organizations who supported our progress in 2014. Special thanks are due to the Executive Board of the Helmholtz-Zentrum Dresden-Rossendorf, the Minister of Science and Arts of the Free State of Saxony, and the Minister of Education and Research of the Federal Government of Germany. Numerous partners from universities, industry and research institutes all around the world contributed essentially, and play a crucial role for the further development of the institute. Last but not least, the directors would like to thank again all IIM staff for their efforts and excellent contributions in 2014.

Related publications

  • Open Access Logo Wissenschaftlich-Technische Berichte / Helmholtz-Zentrum Dresden-Rossendorf; HZDR-060 2015
    ISSN: 2191-8708, eISSN: 2191-8716

Downloads

Permalink: https://www.hzdr.de/publications/Publ-22263
Publ.-Id: 22263


Pages: [1.] [2.] [3.] [4.] [5.] [6.] [7.] [8.] [9.] [10.] [11.] [12.] [13.] [14.] [15.] [16.] [17.] [18.] [19.] [20.] [21.] [22.] [23.] [24.] [25.] [26.] [27.] [28.] [29.] [30.] [31.] [32.] [33.] [34.] [35.] [36.] [37.] [38.] [39.] [40.] [41.] [42.] [43.] [44.] [45.] [46.] [47.] [48.] [49.] [50.] [51.] [52.] [53.] [54.] [55.] [56.] [57.] [58.] [59.] [60.] [61.] [62.] [63.] [64.] [65.] [66.] [67.] [68.] [69.] [70.] [71.] [72.] [73.] [74.] [75.] [76.] [77.] [78.] [79.] [80.] [81.] [82.] [83.] [84.] [85.] [86.] [87.] [88.] [89.] [90.] [91.] [92.] [93.] [94.] [95.] [96.] [97.] [98.] [99.] [100.] [101.] [102.] [103.] [104.] [105.] [106.] [107.] [108.] [109.] [110.] [111.] [112.] [113.] [114.] [115.] [116.] [117.] [118.] [119.] [120.] [121.] [122.] [123.] [124.] [125.] [126.] [127.] [128.] [129.] [130.] [131.] [132.] [133.] [134.] [135.] [136.] [137.] [138.] [139.] [140.] [141.] [142.] [143.] [144.] [145.] [146.] [147.] [148.] [149.] [150.] [151.] [152.] [153.] [154.] [155.] [156.] [157.] [158.] [159.] [160.] [161.] [162.] [163.] [164.] [165.] [166.] [167.] [168.] [169.] [170.] [171.] [172.] [173.] [174.] [175.] [176.] [177.] [178.] [179.] [180.] [181.] [182.] [183.] [184.] [185.] [186.] [187.] [188.] [189.] [190.] [191.] [192.] [193.] [194.] [195.] [196.] [197.] [198.] [199.] [200.] [201.] [202.] [203.] [204.] [205.] [206.] [207.] [208.] [209.] [210.] [211.] [212.] [213.] [214.] [215.] [216.] [217.] [218.] [219.] [220.] [221.] [222.] [223.] [224.] [225.] [226.] [227.] [228.] [229.] [230.] [231.] [232.] [233.] [234.] [235.] [236.] [237.] [238.] [239.] [240.] [241.] [242.] [243.] [244.] [245.] [246.] [247.] [248.] [249.] [250.] [251.] [252.] [253.] [254.] [255.] [256.] [257.] [258.] [259.] [260.] [261.] [262.] [263.] [264.] [265.] [266.] [267.] [268.] [269.] [270.] [271.] [272.] [273.] [274.] [275.] [276.] [277.] [278.] [279.] [280.] [281.] [282.] [283.] [284.] [285.] [286.] [287.] [288.] [289.] [290.] [291.] [292.] [293.] [294.] [295.] [296.] [297.] [298.] [299.] [300.] [301.] [302.] [303.] [304.] [305.] [306.] [307.] [308.] [309.] [310.] [311.] [312.] [313.] [314.] [315.] [316.] [317.] [318.] [319.] [320.] [321.] [322.] [323.] [324.] [325.] [326.] [327.] [328.] [329.] [330.] [331.] [332.] [333.] [334.] [335.] [336.] [337.] [338.] [339.] [340.] [341.] [342.] [343.] [344.] [345.] [346.] [347.] [348.] [349.]