Publications Repository - Helmholtz-Zentrum Dresden-Rossendorf

"Online First" included
Without submitted and only approved publications
Only approved publications

33407 Publications

Viable and active microorganisms in the deep terrestrial biosphere

Lopez-Fernandez, M.; Simone, D.; Broman, E.; Turner, E.; Wu, X.; Bertilsson, S.; Dopson, M.
Although the continental deep biosphere is estimated to contain 2 to 19% of the earth’s total biomass, it is still one of the least understood ecosystems on the planet. A key question for the terrestrial deep biosphere is the viability and activity of the large diversity of microorganisms present. This work shows that the microbial populations in aquifers with different chemistry and depth below the surface are viable and active and their diversity decreased with depth below the surface. Quantitative PCR and high throughput 16S rRNA gene sequencing revealed no significant differences in 16S rRNA gene abundances and microbial diversity between total and viable communities. This suggested that the populations were adapted to the prevailing oligotrophic conditions and that non-viable cells are rapidly degraded and recycled into new biomass. In addition, in situ fixed RNA transcripts aligned to the three domains of life, supporting activity within these communities. Many of the SSU rRNA transcripts grouped within recently described candidate phyla or could not be mapped to known branches on the tree of life, suggesting that a large portion of the active biota in the deep biosphere remains unexplored. Despite the extremely oligotrophic conditions, mRNA transcripts revealed a diverse range of metabolic strategies carried out by different taxa. These results emphasize the need to further investigate microbial activities in the deep biosphere and the importance of unclassified and candidate phyla in this environment.
  • Lecture (Conference)
    12th International Congress of Extremophiles, 16.-20.09.2018, Ischia, Italy

Permalink: https://www.hzdr.de/publications/Publ-28916
Publ.-Id: 28916


Depth and Dissolved Organic Carbon Shape Microbial Communities in Surface Influenced but Not Ancient Saline Terrestrial Aquifers

Lopez-Fernandez, M.; Åström, M.; Bertilsson, S.; Dopson, M.
The continental deep biosphere is suggested to contain a substantial fraction of the earth’s total biomass and microorganisms inhabiting this environment likely have a substantial impact on biogeochemical cycles. However, the deep microbial community is still largely unknown and can be influenced by parameters such as temperature, pressure, water residence times, and chemistry of the waters. In this study, 21 boreholes representing a range of deep continental groundwaters from the Äspö Hard Rock Laboratory were subjected to high-throughput 16S rRNA gene sequencing to characterize how the different water types influence the microbial communities. Geochemical parameters showed the stability of the waters and allowed their classification into three groups. These were (i) waters influenced by infiltration from the Baltic Sea with a “modern marine (MM)” signature, (ii) a “thoroughly mixed (TM)” water containing groundwaters of several origins, and (iii) deep “old saline (OS)” waters. Decreasing microbial cell numbers positively correlated with depth. In addition, there was a stronger positive correlation between increased cell numbers and dissolved organic carbon for the MM compared to the OS waters. This supported that the MM waters depend on organic carbon infiltration from the Baltic Sea while the ancient saline waters were fed by “geogases” such as carbon dioxide and hydrogen. The 16S rRNA gene relative abundance of the studied groundwaters revealed different microbial community compositions. Interestingly, the TM water showed the highest dissimilarity compared to the other two water types, potentially due to the several contrasting water types contributing to this groundwater. The main identified microbial phyla in the groundwaters were Gammaproteobacteria, unclassified sequences, Campylobacterota (formerly Epsilonproteobacteria), Patescibacteria, Deltaproteobacteria, and Alphaproteobacteria. Many of these taxa are suggested to mediate ferric iron and nitrate reduction, especially in the MM waters. This indicated that nitrate reduction may be a neglected but important process in the deep continental biosphere. In addition to the high number of unclassified sequences, almost 50% of the identified phyla were archaeal or bacterial candidate phyla. The percentage of unknown and candidate phyla increased with depth, pointing to the importance and necessity of further studies to characterize deep biosphere microbial populations.
Keywords: 16S rRNA gene, amplicon sequencing, deep subsurface, groundwaters, chemistry, microbial diversity

Downloads:

  • available with HZDR-Login

Permalink: https://www.hzdr.de/publications/Publ-28915
Publ.-Id: 28915


Microbial Community and Metabolic Activity in Thiocyanate Degrading Low Temperature Microbial Fuel Cells

Ni, G.; Canizales, S.; Broman, E.; Simone, D.; Palwai, V. R.; Lundin, D.; Lopez-Fernandez, M.; Sleutels, T.; Dopson, M.
Thiocyanate is a toxic compound produced by the mining and metallurgy industries that needs to be remediated prior to its release into the environment. If the industry is situated at high altitudes or near the poles, economic factors require a low temperature treatment process. Microbial fuel cells are a developing technology that have the benefits of both removing such toxic compounds while recovering electrical energy. In this study, simultaneous thiocyanate degradation and electrical current generation was demonstrated and it was suggested that extracellular electron transfer to the anode occurred. Investigation of the microbial community by 16S rRNA metatranscriptome reads supported that the anode attached and planktonic anolyte consortia were dominated by a Thiobacillus-like population. Metatranscriptomic sequencing also suggested thiocyanate degradation primarily occurred via the ‘cyanate’ degradation pathway. The generated sulfide was metabolized via sulfite and ultimately to sulfate mediated by reverse dissimilatory sulfite reductase, APS reductase, and sulfate adenylyltransferase and the released electrons were potentially transferred to the anode via soluble electron shuttles. Finally, the ammonium from thiocyanate degradation was assimilated to glutamate as nitrogen source and carbon dioxide was fixed as carbon source. This study is one of the first to demonstrate a low temperature inorganic sulfur utilizing microbial fuel cell and the first to provide evidence for pathways of thiocyanate degradation coupled to electron transfer.
Keywords: MFC, thiocyanate degradation, extracellular electron transfer, low temperature, metatranscriptomics

Downloads:

  • available with HZDR-Login

Permalink: https://www.hzdr.de/publications/Publ-28914
Publ.-Id: 28914


Metatranscriptomes Reveal That All Three Domains of Life Are Active but Are Dominated by Bacteria in the Fennoscandian Crystalline Granitic Continental Deep Biosphere

Lopez-Fernandez, M.; Simone, D.; Wu, X.; Soler, L.; Nilsson, E.; Holmfeldt, K.; Lantz, H.; Bertilsson, S.; Dopson, M.
ABSTRACT The continental subsurface is suggested to contain a significant part of the earth’s total biomass. However, due to the difficulty of sampling, the deep subsurface is still one of the least understood ecosystems. Therefore, microorganisms inhabiting this environment might profoundly influence the global nutrient and energy cycles. In this study, in situ fixed RNA transcripts from two deep continental groundwaters from the Äspö Hard Rock Laboratory (a Baltic Sea-influenced water with a residence time of < 20 years, defined as “modern marine,” and an “old saline” groundwater with a residence time of thousands of years) were subjected to metatranscriptome sequencing. Although small subunit (SSU) rRNA gene and mRNA transcripts aligned to all three domains of life, supporting activity within these community subsets, the data also suggested that the groundwaters were dominated by bacteria. Many of the SSU rRNA transcripts grouped within newly described candidate phyla or could not be mapped to known branches on the tree of life, suggesting that a large portion of the active biota in the deep biosphere remains unexplored.
Despite the extremely oligotrophic conditions, mRNA transcripts revealed a diverse range of metabolic strategies that were carried out by multiple taxa in the modern marine water that is fed by organic carbon from the surface. In contrast, the carbon dioxide- and hydrogen-fed old saline water with a residence time of thousands of years predominantly showed the potential to carry out translation. This suggested these cells were active, but waiting until an energy source episodically becomes available.
IMPORTANCE A newly designed sampling apparatus was used to fix RNA under in situ conditions in the deep continental biosphere and benchmarks a strategy for deep biosphere metatranscriptomic sequencing. This apparatus enabled the identification of active community members and the processes they carry out in this extremely oligotrophic environment. This work presents for the first time evidence of eukaryotic, archaeal, and bacterial activity in two deep subsurface crystalline rock groundwaters from the Äspö Hard Rock Laboratory with different depths and geochemical characteristics. The findings highlight differences between organic carbon fed shallow communities and carbon dioxide- and hydrogen-fed old saline waters. In addition, the data reveal a large portion of uncharacterized microorganisms, as well as the important role of candidate phyla in the deep biosphere, but also the disparity in microbial diversity when using standard microbial 16S rRNA gene amplification versus the large unknown portion of the community identified with unbiased metatranscriptomes.
Keywords: metatranscriptomes, mRNA, rRNA, deep biosphere, groundwaters

Downloads:

  • available with HZDR-Login

Permalink: https://www.hzdr.de/publications/Publ-28913
Publ.-Id: 28913


Investigation of viable taxa in the deep terrestrial biosphere suggests high rates of nutrient recycling

Lopez-Fernandez, M.; Broman, E.; Turner, S.; Wu, X.; Bertilsson, S.; Dopson, M.
The deep biosphere is the largest ‘bioreactor’ on earth, and microbes inhabiting this biome profoundly influence global nutrient and energy cycles. An important question for deep biosphere microbiology is whether or not specific populations are viable. To address this, we used quantitative PCR and high throughput 16S rRNA gene sequencing of total and viable cells (i.e. with an intact cellular membrane) from three groundwaters with different ages and chemical constituents. There were no statistically significant differences in 16S rRNA gene abundances and microbial diversity between total and viable communities. This suggests that populations were adapted to prevailing oligotrophic conditions and that non-viable cells are rapidly degraded and recycled into new biomass. With higher concentrations of organic carbon, the modern marine and undefined mixed waters hosted a community with a larger range of predicted growth strategies than the ultra-oligotrophic old saline water. These strategies included fermentative and potentially symbiotic lifestyles by candidate phyla that typically have streamlined genomes. In contrast, the old saline waters had more 16S rRNA gene sequences in previously cultured lineages able to oxidize hydrogen and fix carbon dioxide. This matches the paradigm of a hydrogen and carbon dioxide-fed chemolithoautotrophic deep biosphere.
Keywords: 16S rRNA gene; deep subsurface; fracture groundwaters; propidium monoazide; viable cells; candidate phyla radiation

Downloads:

  • available with HZDR-Login

Permalink: https://www.hzdr.de/publications/Publ-28912
Publ.-Id: 28912


Focused ion beams in biology: How the Helium Ion Microscope and FIB/SEMs help reveal nature’s tiniest structures

Wolff, A.ORC; Klingner, N.ORC; Thompson, W.; Zhou, Y.; Lin, J.; Peng, Y. Y.; Ramshaw, J. A. M.; Xiao, Y.
Focused Ion Beams such as the Helium Ion Microscope (HIM) as well as FIB/SEMs have sparked great interest within the biological sciences in recent years. The HIM allows high resolution imaging of uncoated non-conductive samples while the FIB/SEM (FIB/SEMs combine a focused ion beam with a Scanning Electron Microscope (SEM)) allows to prepare TEM lamellae, 3D reconstruct the sample or reveal sub surface structures with nanometre precision. FIB/SEMs have become the “go to” tool in the materials sciences and semiconductor industry. Despite these unique capabilities, it is not yet fully established in the biological sciences [1-5]. This is predominantly due to the heat-induced damage from the ion beam when processing soft materials including biological samples.

This presentation shows how the HIM as well as FIB/SEMs can be used in biological sciences to reveal nature’s tiniest structures (Figure 1). The presented work then focuses on the underlying ion-solid interactions and the effect of processing parameters on heating induced by ion beams. The work presented here deals with gallium ion solid interactions, however the broader results are applicable to any type of FIB including the helium ion microscope (HIM) and plasma FIBs. The interactions of gallium ions in skin were simulated using Monte Carlo methods. The program SRIM [6] was used to obtain theoretical results which permit estimation of the ion beam induced temperature increases, using the physical principles of Fourier’s law of conductive heat transfer. The model suggests that the ion beam induced increase in temperature can be reduced by:
1. Reducing the local dose rate (smaller aperture/ion beam current)
2. Reducing the local dose (smaller aperture/ion beam current, introducing beam blur, reducing the beam overlap)
The technique was tested on collagen, a soft biological material which is commonly used in biomedical applications. Collagen was chosen as a suitable test sample as it loses its fibrillary structure when denaturated by heat, permitting damage to easily be recognized. Cross-sections and TEM lamellas were prepared from non-embedded collagen with conventional FIB processing parameters (see Figure 2 left) as well as heat reducing FIB parameters (see Figure 1 right).
The results also show that heat damage can be prevented by reducing the local dose rate and area underneath the ion beam. A TEM comparison of a microtome prepared lamella and a FIB prepared lamella (using heat reducing parameters) shows that the fibrillar structures can be maintained, and heat damage avoided. The approach described here can be used to determine suitable parameters for other soft materials.

The authors acknowledge scientific and technical assistance of Peter Hines, Jamie Riches, Rachel Hancock, and Ning Liu and the facilities at the Australian Microscopy & Microanalysis Research Facility (AMMRF) at the Central Analytical Research Facility (CARF), Queensland University of Technology, Brisbane, Australia.

References:

[1] Drobne et al, ‘Surface Damage Induced by FIB Milling and Imaging of Biological Samples is Controllable’; Microscopy Research and Technique 70; 895-903 (2007)
[2] Earl et al, ‘Characterization of dentine structure in three dimensions using FIB-SEM’; Journal of Microscopy 240, Pt 1, 1-5 (2010)
[3] Schneider et al; ‘Serial FIB/SEM imaging for quantitative 3D assessment of the osteocyte lacuna-canalicular network’; Bone 49, 304-311 (2011)
[4] Stokes et al; ‘A New Approach to Study Biological and Soft Materials Using Focused Ion Beam Scanning Electron Microscopy (FIB/SEM)’; Journal of Physics: Conference Series 26; 50-53 (2006)
[5] Bandara et al.; ‘Bactericidal Effects of Natural Nanotopography of Dragonfly Wing on Escherichia coli’ ACS Applied Materials & Interfaces 2017 9 (8), 6746-6760
[6] Ziegler et al, www.srim.org
  • Invited lecture (Conferences)
    Microscience Microscopy Congress 2019, 01.-04.07.2019, Manchester, United Kingdom
  • Lecture (Conference)
    Microscopy & Microanalysis 2019, 04.-08.08.2019, Portland, United States of America
    DOI: 10.1017/S1431927619005051
  • Lecture (Conference)
    AVS 66th International Symposium & Exhibition, 20.-25.10.2019, Columbus, United States of America

Permalink: https://www.hzdr.de/publications/Publ-28911
Publ.-Id: 28911


Formation of heavy clusters in ion-irradiated compounds

Kavetskyy, T.; Liedke, M. O.; Butterling, M.; Wagner, A.; Krause-Rehberg, R.; Sausa, O.; Meshi, L.; Dahan, I.; Vacik, J.; Horak, P.; Fuks, D.; Mykytenko, N.; Kiv, A.
Ion-irradiated U(Al,Si)3 intermetallide, as an example of compounds with significantly different atomic masses of constituting atoms, was studied by slow positron beam spectroscopy in order to clarify the nature of defects accompanying the process of the ion-induced disordering of this material. The studied compound was irradiated with different Ar+ ion fluences with energy 30 keV. The formation of so-called heavy clusters (Uranium in this case) has been revealed. Such clusters affect the reliability of materials in nuclear reactors. Ion-induced creation of heavy clusters can provide important properties of similar materials.
Keywords: Intermetallic alloys and compounds; ion beam technology; positron annihilation; heavy clusters

Downloads:

  • available with HZDR-Login

Permalink: https://www.hzdr.de/publications/Publ-28910
Publ.-Id: 28910


Probing dense baryon-rich matter with virtual photons

Adamczewski-Musch, J.; Arnold, O.; Behnke, C.; Belounnas, A.; Belyaev, A.; Berger-Chen, J. C.; Biernat, J.; Blanco, A.; Blume, C.; Böhmer, M.; Bordalo, P.; Chernenko, S.; Chlad, L.; Deveaux, C.; Dreyer, J.; Dybczak, A.; Epple, E.; Fabbietti, L.; Fateev, O.; Filip, P.; Fonte, P.; Franco, C.; Friese, J.; Fröhlich, I.; Galatyuk, T.; Garzon, J. A.; Gernhäuser, R.; Golubeva, M.; Greifenhagen, R.; Guber, F.; Gumberidze, M.; Harabasz, S.; Heinz, T.; Hennino, T.; Hlavac, S.; Höhne, C.; Holzmann, R.; Ierusalimov, A.; Ivashkin, A.; Kämpfer, B.; Karavicheva, T.; Kardan, B.; Koenig, I.; Koenig, W.; Kolb, B. W.; Korcyl, G.; Kornakov, G.; Kotte, R.; Kühn, W.; Kugler, A.; Kunz, T.; Kurepin, A.; Kurilkin, A.; Kurilkin, P.; Ladygin, V.; Lalik, R.; Lapidus, K.; Lebedev, A.; Lopes, L.; Lorenz, M.; Mahmoud, T.; Maier, L.; Mangiarotti, A.; Markert, J.; Maurus, S.; Metag, V.; Michel, J.; Mihaylov, D. M.; Morozov, S.; Müntz, C.; Münzer, R.; Naumann, L.; Nowakowski, K. N.; Palka, M.; Parpottas, Y.; Pechenov, V.; Pechenova, O.; Petukhov, O.; Pietraszko, J.; Przygoda, W.; Ramos, S.; Ramstein, B.; Reshetin, A.; Rodriguez-Ramos, P.; Rosier, P.; Rost, A.; Sadovsky, A.; Salabura, P.; Scheib, T.; Schuldes, H.; Schwab, E.; Scozzi, F.; Seck, F.; Sellheim, P.; Siebenson, J.; Silva, L.; Sobolev, Y. G.; Spataro, S.; Ströbele, H.; Stroth, J.; Strzempek, P.; Sturm, C.; Svoboda, O.; Szala, M.; Tlusty, P.; Traxler, M.; Tsertos, H.; Usenko, E.; Wagner, V.; Wendisch, C.; Wiebusch, M. G.; Wirth, J.; Zanevsky, Y.; Zumbruch, P.
Quantum chromodynamics (QCD) supports the existence of a novel state of strongly interacting matter with temperatures above kT = 50 MeV and densities several times higher than those in nuclei. Such matter can be created in the laboratory as a transient state by colliding heavy ions at relativistic energies. The thermal electromagnetic radiation emitted from the dense stage of these collisions has been used to probe microscopic properties of the produced medium. The spectral distribution of virtual photons – manifesting themselves as di-electron pairs – shows a nearly exponential shape which indeed points to an emitting source of temperature in excess of 70 MeV/k and to a strong modification of the properties of its constituents. Regarding bulk properties, this medium is similar to the dense matter formed in the final state of a neutron star merger, as apparent from its recent multi-messenger observation.

Downloads:

Permalink: https://www.hzdr.de/publications/Publ-28909
Publ.-Id: 28909


Pressure-tuning the quantum spin Hamiltonian of the triangular lattice antiferromagnet Cs2CuCl4

Zvyagin, S. A.; Graf, D.; Sakurai, T.; Kimura, S.; Nojiri, H.; Wosnitza, J.; Ohta, H.; Ono, T.; Tanaka, H.
Quantum triangular-lattice antiferromagnets are important prototype systems to investigate phenomena of the geometrical frustration in condensed matter. Apart from highly unusual magnetic properties, they possess a rich phase diagram (ranging from an unfrustrated square lattice to a quantum spin liquid), yet to be confirmed experimentally. One major obstacle in this area of research is the lack of materials with appropriate (ideally tuned) magnetic parameters. Using Cs2CuCl4 as a model system, we demonstrate an alternative approach, where, instead of the chemical composition, the spin Hamiltonian is altered by hydrostatic pressure. The approach combines high pressure electron spin resonance and magnetization measurements, allowing us not only to quasi-continuously tune the exchange parameters, but also to accurately monitor them. Our experiments indicate a substantial increase of the exchange coupling ratio from 0.3 to 0.42 at a pressure of 1.8 GPa, revealing a number of emergent field-induced phases.

Downloads:

  • available with HZDR-Login

Permalink: https://www.hzdr.de/publications/Publ-28907
Publ.-Id: 28907


Effect of insertion layer on electrode properties in magnetic tunnel junctions with a zero-moment half-metal

Titova, A.; Fowley, C.; Clifford, E.; Lau, Y.-C.; Borisov, K.; Betto, D.; Atcheson, G.; Hübner, R.; Xu, C.; Stamenov, P.; Coey, M.; Rode, K.; Lindner, J.; Fassbender, J.; Deac, A. M.
Due to its negligible spontaneous magnetization, high spin polarization and giant perpendicular magnetic anisotropy, Mn₂RuₓGa (MRG) is an ideal candidate as an oscillating layer in THz spin-transfer-torque nano-oscillators. Here, the effect of ultrathin Al and Ta diffusion barriers between MRG and MgO in perpendicular magnetic tunnel junctions is investigated and compared to devices with a bare MRG/MgO interface. Both the compensation temperature, Tcomp, of the electrode and the tunneling magnetoresistance (TMR) of the device are highly sensitive to the choice and thickness of the insertion layer used. High-resolution transmission electron microscopy, as well as analysis of the TMR, its bias dependence, and the resistance-area product allow us to compare the devices from a structural and electrical point of view. Al insertion leads to the formation of thicker effective barriers and gives the highest TMR, at the cost of a reduced Tcomp. Ta is the superior diffusion barrier which retains Tcomp, however, it also leads to a much lower TMR on account of the short spin diffusion length which reduces the tunneling spin polarization. The study shows that fine engineering of the Mn₂RuₓGa/barrier interface to improve the TMR amplitude is feasible.
Keywords: Tunneling Magnetoresistance, Half-Metal, Mn-based alloys, MRAM, Spin Polarisation, Heusler alloy, Ferrimagnetic, Perpendicular Magnetic Anisotropy

Downloads:

  • available with HZDR-Login

Permalink: https://www.hzdr.de/publications/Publ-28906
Publ.-Id: 28906


Equiatomic quinary rare-earth rich amorphous ribbons with excellent magnetocaloric performance

Li, L.; Xu, C.ORC; Yuan, Y.; Zhou, S.
The glass forming ability, microstructure, magnetism and magnetocaloric effect (MCE) in two quinary rare-earth rich amorphous ribbons of Tm20Ho20Gd20Co20Ni20 and Tm20Ho20Gd20Co20Cu20 are reported. Both amorphous ribbons exhibit excellent glass forming ability and a table-like MCE. In addition to large magnetic entropy change of ∼14.0 J/kg-K, an extremely high refrigerant capacity of ∼790 J/kg are achieved which can almost cover the temperature range from liquid hydrogen to liquid nitrogen for the magnetic field change of 0–7 T for both ribbons. Therefore, the quinary rare-earth rich amorphous ribbons can be proposed as a new class of promising magnetic refrigeration materials.

Downloads:

  • available with HZDR-Login

Permalink: https://www.hzdr.de/publications/Publ-28905
Publ.-Id: 28905


Comparison of the stability of U(VI) and Cm(III) doped calcium (aluminum) silicate hydrate (C-(A)-S-H) phases at saline conditions

Wolter, J.-M.; Schmeide, K.ORC; Huittinen, N.; Bok, F.; Weiss, S.; Brendler, V.; Stumpf, T.
Cementitious materials, used in a nuclear waste repository in the form of concrete or grout to ensure mechanical stability and sealing of disposal tunnels, constitute an important containment barrier for radionuclides in the event of water intrusion into a disposal site. The immobilization potential of hardened cement paste (HCP) as well as of calcium silicate hydrate (C-S-H), as main component of HCP, towards radionuclides such as Cm(III) or U(VI) has been demonstrated in a number of studies, e.g. [1-3]. To evaluate the retention potential of cementitious materials towards radionuclides at saline conditions, U(VI) and Cm(III) doped C-S-H phases were exposed to background electrolytes with salinities comparable to those reported for pore waters of North German clay formations, which are considered as potential host rocks.
U(VI) and Cm(III) doped C-S-H phases with calcium-to-silicon (C/S) ratios ranging from 2.0 to 1.0, representing a portlandite saturated C-S-H system as well as chemically degraded cement paste, were synthesized directly in presence of either U(VI) or Cm(III). These phases were characterized by time-resolved laser-induced luminescence spectroscopy (TRLFS), infrared (IR) spectroscopy, powder X-ray diffraction (XRD), and scanning electron microscopy (SEM). Batch leaching experiments were performed for U(VI) doped CSH phases applying 2.5 M NaCl, 2.5 M NaCl/0.02 M Na2SO4, 2.5 M NaCl/0.02 M NaHCO3 or 0.02 M NaHCO3 and for Cm(III) doped CSH phases applying 2.5 M NaCl/0.02 M NaHCO3 or 0.02 M NaHCO3. The time-dependent release of Ca, Si, U or Cm from CSH phases into brines was followed up to 60 days. Leaching induced changes of the C-S-H structure and of the U(VI) or Cm(III) coordination environment were studied mainly with XRD and TRLFS or IR spectroscopy, respectively.
Generally, the high immobilization potential of C-S-H gel towards U(VI) and Cm(III), reported in the literature, was verified. In the presence of saline solutions, the C-S-H phases showed differences with regard to C-S-H stability and radionuclide release in dependence on the C/S ratio, the composition of the leaching solution and the immobilized radionuclide.
The leaching results for U(VI) doped C-S-H gel indicated that the U(VI) retention is maintained in the presence of NaCl rich solutions (2.5 M NaCl/0.02 M Na2SO4) due to the formation of a uranophane-like phase as detected by TRLFS [4]. The presence of carbonate (0.02 M) in the leaching solution, however, led in case of a C-S-H gel with a low C/S ratio (1.5, representing altered HCP) to some dissolution and thus, to a partial release of U(VI) whereby Ca2UO2(CO3)3(aq) is formed at moderate alkaline pH values. Part of the U(VI) is found to be retained in secondary CaCO3 phases after leaching. The release of U(VI) from C-S-H gel with a high C/S ratio (2.0, representing fresh HCP) due to carbonate was significantly smaller, only enhanced to a small extent due to the additional presence of 2.5 M NaCl.
The binding study of Cm(III) incorporated into C-S-H gel revealed at least two Cm(III) species: (i) Cm(III) substituted against Ca2+ from the C-S-H interlayer and (ii) Cm(III) incorporated in the polyhedral CaO plane of the C-S-H structure (c.f. Fig. 1a), which is in accordance with the literature [5]. The luminescence line narrowing effect observed in the site-selective TRLFS measurements (c.f. Fig. 1b) indicates the presence of numerous, chemically similar sorption sites for Cm(III), which can be attributed to the amorphous to semi-crystalline structure of the C-S-H gel. In addition, C-S-H gel with a C/S ratio of 2.0 showed a co-incorporation of Cm(III) into portlandite. Leaching experiments showed that Cm(III) is not mobilized by solutions with increased salinities [6]. Results obtained by XRD showed that due to contact with carbonate-containing solutions part of the C-S-H gel is converted into calcite and aragonite (C/S 1.0) or calcite and vaterite (C/S 2.0). Site-selective TRLFS showed that Cm(III) was still incorporated in C-S-H gel and portlandite and in addition, partially incorporated in secondary CaCO3 phases.
Currently, the mobilization potential of low molecular weight organic ligands, which can be released due to leaching processes from cementitious materials or might occur as degradation products of polymeric cement additives, towards radionuclides retained by C-S-H gel is studied.
The utilization of Al-bearing additives in modern concrete and the usage of tobermorite as an ion exchanger justify the study of Al-containing C-S-H gel and tobermorite with regard to radionuclide retention. Thus, we investigated the Al and U(VI) incorporation into C-S-H phases and tobermorite at different Al/Si ratios (0.025−0.2) and synthesis temperatures (25°C or 200°C) using Al additives such as Al2O3 and Al(NO3)3. The obtained phases were characterized with solid state 27Al and 29Si NMR spectroscopy, TRLFS, XRD, IR and Raman spectroscopy. Subsequently, the synthesized U(VI) and Al containing samples (tobermorite and C-S-H) were exposed to leaching solutions (2.5 M NaCl/0.02 M NaHCO3 or 0.02 M NaHCO3) for 30 days to determine the U(VI) and Al release under degradation conditions. First results indicated a preferred synthesis of tobermorite over C-S-H at hydrothermal conditions while Al was found to enter the silica chain, cross-link the sheets of tobermorite and somewhat reduce the U(VI) retention capabilities of tobermorite in the presence of carbonate.
Keywords: uranium(VI); curium(III); C-S-H; portlandite; calcite; site-selective TRLFS; luminescence line narrowing effect; high ionic strength
  • Poster
    Migration 2019 - 17th International Conference on the Chemistry and Migration Behavior of Actinides and Fission Products in the Geosphere, 15.-20.09.2019, Kyoto, Japan

Permalink: https://www.hzdr.de/publications/Publ-28903
Publ.-Id: 28903


Flow Rate Measurement in Flows with Asymmetric Velocity Profiles by Means of Distributed Thermal Anemometry

Arlit, M.; Schroth, C.; Schleicher, E.; Hampel, U.
Flow rate in closed conduits is one of the most frequently measured parameters in industrial processes and in gas and water supply. For an accurate measurement, flow meters typically require a fully developed symmetric flow profile with preferably no radial or tangential velocity components.
This is commonly secured by mounting flow meters in a pipe at a sufficiently long distance downstream any change in cross-section or pipe direction. In this paper, we introduce a new approach for flow rate measurement of gases or liquids that employs a novel spatially resolving fluid velocity sensor basing on thermal anemometry. The new principle allows accurate flow rate measurements for non-axisymmetric velocity profiles, even directly after pipe bends, T-junctions or other alterations in the pipe geometry. This is exemplified for air flow in three different pipe bend configurations.
Keywords: Flow rate measurement; installation effects; thermal anemometry grid sensor

Downloads:

  • available with HZDR-Login
  • Secondary publication expected from 16.05.2020

Permalink: https://www.hzdr.de/publications/Publ-28902
Publ.-Id: 28902


Reductive immobilization of 99Tc(VII) by different crystalline phases of iron sulfide (FeS2)

Rodriguez, D.; Mayordomo, N.; Brendler, V.; Müller, K.; Schild, D.; Stumpf, T.
99Tc is a fission product with a long half-life of 2.14 × 105 years. Its migration behaviour and bioavailability strongly depends on its speciation in aqueous solution and on its oxidation state. Under aerobic conditions, Tc mainly exists as pertechnetate, TcO4, which is a highly water-soluble anion that does not significantly sorb on minerals or sediments, i.e. is considered inert and its groundwater migration is favoured. Under reducing conditions, Tc(VII) becomes Tc(IV), whose main species, TcO2, is a solid with a low solubility product and, thus, its mobility decreases.

As the presence of reductants like Fe2+ in the near-field of a nuclear waste repository is expected due to canister corrosion, several studies consider 99Tc reductive immobilization by mineral containing reductant moieties, such as magnetite (FeIIFe2IIIO4) or mackinawite (FeS) [1, 2], confirming the 99Tc(VII) reduction and subsequent 99Tc(IV) retention on the mineral surfaces.

Pyrite (cubic FeS2) is a redox sensitive sulfur mineral that has been identified as a good sorbent for Tc(VII) from soil and groundwater in both the absence [3] and presence [4] of humic substances. Under repository conditions, iron sulfide will be formed as both pyrite and marcasite (orthorhombic FeS2) as a result of corrosion processes and microbial action [5]. Moreover, iron sulfides are also accessory minerals in granitic and argillaceous rocks. Therefore, reliable data on 99Tc(VII) retention by both minerals and their mixtures is relevant for the safe disposal of nuclear waste.

We have studied the reductive immobilization of 99Tc(VII) by a synthetic mixture 60:40 marcasite – pyrite, finding that it removes almost 100% of 99Tc(VII) from solution within 7 days at pH = 6.5. This ability decreases linearly with increasing Tc concentration due to the saturation of the mineral, while an increase in the ionic strength has no significant effects. The isotherm plot has a slope of 0.5 suggesting a single reaction mechanism: sorption on one site, which would mean that the affinity of the mineral for the technetium is low [6], or precipitation of 99Tc(IV) most probably as TcO2 [7]. Figure 1 shows the SEM images of the mixture marcasite-pyrite before and after being in contact with 99Tc(VII) for 7 days at pH 6.5.

In comparison to the plain mineral, the micrographs of Tc reacted FeS2 at 2.00 μm clearly show erosion on the surface. Furthermore, the micrograph at 1.00 μm suggests deeper effects, not only the first layers of the mineral, as the morphology has obviously changed. The high surface dynamics may be induced by the incorporation of the radionuclei into the mineral. However, the flat surface of the FeS2 after the 99Tc(VII) uptake reminds to a coating that could be made of technetium polysulphides.

Although it is clear that this Tc retention is due to the reduction from 99Tc(VII) to 99Tc(IV), it has not been possible to determine so far if the 99Tc(IV) is sorbed on the mineral surface, incorporated in its structure or precipitated. As the FeS2 crystal phase as well as Tc oxidation state affect those retention mechanisms, we have also studied the immobilization of 99Tc(VII) by both pure pyrite and pure marcasite with the aim of analysing the crystal rearrangement effect and performing X-ray absorption spectroscopy for structural characterization.

This work has been developed in the frame of VESPA II project (02E11607B), supported by the German Federal Ministry of Economic Affairs and Energy (BMWi).



1 T. Kobayashi, A. C. Scheinost, D. Fellhauer, X. Gaona, M. Altmaier, Radiochim. Acta 101, 323 (2013).
2 F. R. Livens, M. J. Jones, A. J. Hynes, J. M. Charnock, J. F. W. Mosselmans, C. Hennig, H. Steele, D. Collison, D. J. Vaughan, R. A. D. Pattrick, W. A. Reed, L. N. Moyes, J. Environ. Radioact. 74, 211 (2004).
3 L. Huo, W. Xie, T. Qian, X. Guan, D. Zhao, Chemosphere 174, 456 (2017).
4 C. Bruggeman, A. Maes, J. Vancluysen, Phys. Chem. Earth 32, 573 (2007).
5 W. M. B. Roberts, A. L. Walker, A. S. Buchanan, Miner. Depos. 4, 18 (1969).
6 G. Limousin, J.-P. Gaudet, L. Charlet, S. Szenknect, V. Barthès, M. Krimissa, Appl. Geochemistry 22, 249 (2007).
7 R. Guillaumont, T. Fanghänel, V. Neck, J. Fuger, D. A. Palmer, I. Grenthe, M. A. Rand, UPDATE ON THE CHEMICAL THERMODYNAMICS OF URANIUM, NEPTUNIUM, PLUTONIUM,AMERICIUM AND TECHNETIUM, Elsevier, 2003.
Keywords: Technetium, retention, pyrite, marcasite
  • Poster
    Migration 2019 - 17th International Conference on the Chemistry and Migration Behavior of Actinides and Fission Products in the Geosphere, 15.-21.09.2019, Kyoto, Japan

Permalink: https://www.hzdr.de/publications/Publ-28901
Publ.-Id: 28901


Spectroscopic characterization of curium(III) protein interactions

Moll, H.; Raff, J.; Stumpf, T.
Proteins are important biomolecules in all living cells. They perform a large array of functions within organisms. To understand the speciation of actinides in living organisms, their interactions with proteins need to be explored on a molecular level.
Bacterial surface layers (S-layers) are common surface structures in many bacteria and archaea consisting of so-called surface-layer proteins (S-layer proteins) [1]. So far, we could show that S-layers proteins of Lysinibacillus sphaericus JG-A12 selectively bind several metals including U, Pd, Au, and Eu, partly with a high affinity [2]. In the present work we studied the interaction of Cm(III) with bacterial S-layer proteins of L. sphaericus JG-A12.
The formation of aqueous Cm(III) S-layer protein complexes was studied at room temperature by time-resolved laser-induced fluorescence spectroscopy (TRLFS) in 0.1 M NaCl solutions. The experiments were performed at a fixed total concentration for Cm(III) 0.88 µM and the S-layer protein of 5 g/L (39.6 µM) by varying the pH (2.0-9.0) and the type of S-layer. Based on their individual luminescence spectra and lifetimes, a specific and unspecific Cm(III) binding could be distinguished. The formation of the specific Cm3+-S-layer complex A and unspecific Cm3+-S-layer complex B depend on pH and the Ca2+ amount in the S-layer types. The influence of Ca2+ on the Cm3+ S-layer complexation was investigated by Ca2+ titration experiments. The specific Cm3+-S-layer complex A is characterized by a narrow emission band at 602.5 nm combined with a long lifetime of 310 µs. The spectroscopic EDTA titration of Cm3+-S-layer complex A showed an exchange of S-layer ligands by EDTA in the first coordination sphere of Cm(III) at EDTA concentrations of 40 µM and higher. This corresponds to a EDTA:S-layer protein ratio of 1:1.

References:

[1] M. Sára, U.B. Sleytr, J. Bacteriol. 2000, 182,859. [2] M.L. Merroun et al., Appl. Environ. Microbiol. 2005, 71,5532.
Keywords: curium; S-layer proteins; Lysinibacillus sphaericus; luminescence spectroscopy, speciation
  • Lecture (Conference)
    Jahrestagung der Fachgruppe Nuklearchemie der GDCh 2019, 25.-27.09.2019, Dresden, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-28900
Publ.-Id: 28900


Investigation of the availablity of sigma-1 receptors in orthotopic human glioblastoma-bearing mice with positron emission tomography (PET) using (S)-(−)-[18F]fluspidine

Toussaint, M.; Kranz, M.; Deuther-Conrad, W.; Patt, M.; Sabri, O.; Brust, P.
Introduction
The sigma-1 receptor (S1R) is a chaperone protein of the mitochondrion-associated endoplasmic reticulum membrane. Its expression is dysregulated in various cancers including glioblastoma. S1R characterization in glioblastoma could help to better understand the pathophysiology of this cancer and thus help in improving diagnosis or treatment follow-up.
Objectives
In this context, we aim to evaluate the potential of (S)-(−)-[18F]fluspidine to characterize S1R expression in an orthotopic glioblastoma model in mice with small animal PET/MR imaging.
Materials & Methods
11 female nude mice Rj:NMRI-Foxn1nu/nu (24-30 g) aged of 8 weeks (Janvier labs; France), underwent a stereotactic xenograft of U87 human glioblastoma cells (50 000 cells/1 µl) in the right striatum (AP:0.5, L: -2.0, DV:-3.0 mm) (Stoelting Europe, Ireland). PET scans were performed on tumor of a median size of 5.15 mm3. 3 healthy female nude mice Rj:NMRI-Foxn1nu/nu (25-30 g) were used as control group.
(S)-(-)-[18F]Fluspidine (5.6±2.5 MBq; Am: 140±50 GBq/µmol, EOS) was injected intravenously followed by 60 min dynamic PET scans (Mediso nanoScan®, PET/MRI, Hungary). 20 scans were performed and time-activity curves (TAC) from the tumor and the contralateral region were analyzed (PMOD v3.9, PMOD Technologies LLC, Switzerland). Peak-to-end ratios (peak: SUV mean from 2-9 min, end: SUV mean from 45-60 min) were used to compare regions. Paired two-tailed student t-test (p<0.05) was used for statistics.
Results
The TACs from the striatum of healthy mice and from the contralateral side of U87 tumor bearing mice display similar profiles along with comparable peak-to-end SUV ratios (2.11±0.38 vs. 2.19±0.59).
By contrast, the profile of the average TAC of the tumor region is different from the contralateral side, with a lower initial uptake (mean SUV2-9 min p.i.: 0.95 vs. 1.1) and a higher uptake at the end of the scan (mean SUV45-60 min p.i.: 0.6 vs. 0.5). Accordingly, the peak-to-end ratio of the tumor region is significantly different from the ratio of the contralateral region (1.65±0.49 vs. 2.19±0.59, p=0.001).
Conclusion
The PET investigation revealed a significant difference in the pharmacokinetics of (S)-(-)-[18F]fluspidine between tumor and contralateral region, probably related to different S1R availabilities. Further investigations, such as autoradiography, will help to characterize this effect. These first results show the suitability of (S)-(-)-[18F]fluspidine for characterization of U87 S1R status.
Keywords: Sigma-1 receptor, Fluspidine, Glioblastoma, Positron emission tomography
  • Poster
    1. Deutscher Krebsforschungskongress (DKFK), 04.-05.02.2019, Heidelberg, Germany
  • Open Access Logo Poster
    10th Brain tumor meeting - 2019, 23.-24.05.2019, Berlin-Buch, Deutschland

Downloads:

Permalink: https://www.hzdr.de/publications/Publ-28899
Publ.-Id: 28899


Annual Report 2018 - Institute of Resource Ecology

Stumpf, T.; Foerstendorf, H.ORC; Bok, F.; Richter, A.
Annual Report 2018 of the scientific activities of the Institute of Resource Ecology of the Helmholtz-Zentrum Dresden-Rossendorf
  • Open Access Logo Wissenschaftlich-Technische Berichte / Helmholtz-Zentrum Dresden-Rossendorf; HZDR-096 2019
    ISSN: 2191-8708

Downloads:

Permalink: https://www.hzdr.de/publications/Publ-28898
Publ.-Id: 28898


Impact of temperature on the complexation of Eu(III) and Cm(III) with aqueous phosphates

Jordan, N.; Huittinen, N.; Jessat, I.; Réal, F.; Vallet, V.; Starke, S.; Demnitz, M.; Lösch, H.; Brendler, V.
The incorporation of actinides in solid lanthanide phosphates crystallizing in the monazite structure has been intensely investigated in the past decades due to the relevance of these monazites as potential ceramic phases for the immobilization of specific high level radioactive waste (HLW) streams [1-3]. In recent years, understanding the incorporation behaviour of trivalent dopants in the LnPO4×nH2O rhabdophane structure, which is the hydrated phosphate precursor in the synthesis of monazites through precipitation routes and a potential secondary mineral controlling actinide solubility in dissolution and re-precipitation reactions of monazite host-phases, has been given more attention [4,5]. Despite the large interest in lanthanide phosphates and the interaction of actinides with these solids, very little data is available on the complexation of lanthanides and actinides with aqueous phosphates, even though these complexation reactions precede any aqueous synthesis of monazite ceramics and are expected to occur in natural waters as well as in the proximity of monazite-containing HLW repositories. It also suffers from an almost systematic absence of independent spectroscopic validation of the stoichiometry of the proposed complexes. Both from the perspective of aqueous rhabdophane synthesis, which is often carried out at elevated temperatures, and heat-generating HLW immobilization in monazites, the lanthanide and actinide complexation reactions with aqueous phosphates under ambient conditions should be complemented with data obtained at higher temperatures.

In the present work, laser-induced luminescence spectroscopy (LIL) was used to study the complexation of Eu(III) (5×10 6 M) and Cm(III) (5×10 7 or 1×10 8 M) as a function of total phosphate concentration (0-0.3 M ΣPO4) in the temperature regime 25-90°C, using NaClO4 as a background electrolyte (I = 0.5 to 3.1 M). These studies have, in a first step, been conducted in the acidic pH-range (pH = 1) to avoid precipitation of solid Eu or Cm rhabdophane. Both trivalent metal cations form a complex with the anionic H2PO4 species, i.e. EuH2PO42+ and CmH2PO42+. The conditional complexation constants were found to increase upon rising ionic strength and temperature. Extrapolation of the obtained complexation constants to infinite dilution at 25 °C was performed by applying the Specific Ion Interaction Theory (SIT) [6]. The obtained log β° values for EuH2PO42+ and CmH2PO42 were 0.89 ± 0.13 and 0.45 ± 0.19, respectively, for reaction 1 below:

Me3+ + H3PO4 ⇌ MeH2PO42+ + H+ (Me = Eu or Cm) (1)

The ion-ion interaction coefficients ε(EuH2PO42+;ClO4 ) = 0.20 ± 0.08 and ε(CmH2PO42+;ClO4 ) = 0.16 ± 0.12 were derived at 25 °C. Temperature-dependent conditional complexation constants for the identified species were obtained from the recorded luminescence emission spectra. They were subsequently extrapolated to I =0 M, assuming that the ion-ion interaction parameters obtained at 25 °C are not significantly impacted by the temperature increase from 25 °C to 90 °C [6]. Using the extended van´t Hoff equation, the molal enthalpy ΔRHm° and entropy of reaction ΔRSm° values were both found to be positive.
Exactly the same combination of batch, spectroscopic, and thermodynamic studies was used at lower H+ concentrations ( log[H+] = 2.52, 3.44, and 3.65). Our results clearly showed the presence of Eu(H2PO4)2+ and Cm(H2PO4)2+ species, so far never reported in the literature. In addition Eu(HPO4)+ and Cm(HPO4)+ species were identified. Conditional complexation constants for these species will be derived and extrapolated to infinite dilution using the SIT approach.
Finally, relativistic quantum chemical investigations will be performed to shed light on the observed differences in the complexation strength of Eu(III) and Cm(III) with aqueous phosphates. They will also provide insight on the role of spin-orbit coupling and serve to probe the character of the metal water and metal phosphate bonds.
Keywords: Lanthanide; Actinide; Complexation; Luminescence spectroscopy; SIT
  • Contribution to proceedings
    Migration 2019 - 17th International Conference on the Chemistry and Migration Behavior of Actinides and Fission Products in the Geosphere, 15.-20.09.2019, Kyoto, Japan
    Proceedings of Migration 2019

Permalink: https://www.hzdr.de/publications/Publ-28897
Publ.-Id: 28897


Solvent extraction and separation of rare earth elements by diamide type ligands and the complex structure of extracted species

Shimojo, K.; Sasanuki, T.; Schöne, S.ORC; Sugita, T.; Okamura, H.; Ikeda-Ohno, A.ORC
Solvent extraction of rare earth elements using a new type of diamide ligand, DODGAA, was performed to investigate the extractability and separability of the ligand for the separation of rare earth elements. Single crystals of the DODGAA complexes with some rare earth metals were also synthesised and structurally determined by single-crystal X-ray diffraction (SC-XRD) to understand the molecular structure of extracted species.
Keywords: Rare earth elements, separation, solvent extraction, structure determination, single-crystal X-ray diffraction
  • Lecture (Conference)
    The 84th Annual Meeting of the Society of Chemical Engineering, Japan, 13.-15.03.2019, Shibaura Institute of Technology, Toyosu, Tokyo, Japan

Permalink: https://www.hzdr.de/publications/Publ-28896
Publ.-Id: 28896


Coordination chemistry of f-block metal ions with ligands bearing bio-relevant functional groups

Götzke, L.; Schaper, G.; März, J.ORC; Kaden, P.ORC; Huittinen, N.ORC; Stumpf, T.; Kammerlander, K. K. K.; Brunner, E.; Hahn, P.; Mehnert, A.; Kersting, B.; Henle, T.; Lindoy, L. F.; Zanoni, G.; Weigand, J. J.
Over recent decades there has been a great deal of interest and associated research into aspects of the f-block (lanthanide and actinide) metal chemistry of naturally-occurring ligands, such as proteins, peptides, porphyrins and related tetraaza derivatives as well as synthetically modified natural ligands and solely synthetic ligand systems incorporating bio-relevant functional groups. In this review, we present a wide-ranging overview of published work spanning the above areas, with emphasis on selected biological, medical and environmental aspects. Systems capable of discriminating between metal ions from within, or between, the lanthanide and actinide groups are also discussed including the design and synthesis of biomimetic radionuclide chelators and radionuclide decorporation agents as well as solid adsorbent materials for the uptake of radionuclides from the environment and elsewhere. Thus, the interaction of the f-group elements with a range of biopolymers, including systems based on cellulose, chitin, chitosan, humic substances as well as a range of synthetic model systems is also presented. Other applications include the synthesis of new luminescent materials, including luminescent probes and luminescent metal coordination polymers exhibiting unusual photophysical properties as well as systems showing potential for use in the development of new MRI imaging agents.
Keywords: Lanthanides Actinides Maillard products Siderophores Calix[4]arenes Porphyrins Cellulose Chitin Chitosan Humic substances Peptides Proteins

Downloads:

  • available with HZDR-Login

Permalink: https://www.hzdr.de/publications/Publ-28895
Publ.-Id: 28895


Experimental study in the heat flux of a heat exchanger for passive cooling of spent fuel pools by temperature anemometry grid sensor

Unger, S.; Arlit, M.; Beyer, M.; Hampel, U.
In commercial nuclear power plants spent fuel assemblies are usually stored in actively cooled water pools. The continuous decay heat release represents a potential risk in case of a station black out scenario. Thus two-phase passive heat removal systems are a key technology to enhance the safety of nuclear power plants. Such systems work only by the energy provided from the heat source, e.g. by the maintenance of a natural convection cooling. A heat transfer loop using air as an unlimited heat sink consists of a primary heat exchanger in the spent fuel pool water and a secondary heat exchanger located in ambient air. Thus the measurement of the heat flux, which gets transferred from the pool to the ambient air, is an important task. If one would measure heat flux, flow rates and temperatures in many positions by help of local probes, the natural flow would get strongly disturbed. For that reason we introduce a heat flux measurement around the secondary heat exchanger located in ambient air, which applies temperature and velocity measurement by an anemometric principle.
A 6.5m long flow channel with an electrical heated finned tube heat exchanger was set up at the TOPFLOW facility at HZDR. Since the tubes of a heat exchanger would be tilted in a passive heat removal system, i.e. to allow drainage of the condensed heat transfer medium, different tiled angles were adjusted to 0° (horizontal), 20°,30° and 40°. The frontal velocity was varied between 0.5 m/s and 4 m/s and three thermocouples were placed up- and downstream of the heat exchanger respectively. A novel Temperature Anemometry Grind Sensor (TAGS) was located downstream the heat exchanger. It consists of a wire grid with platinum resistance elements, which are placed in the small sub-channels of a flow straightener to generate laminar flow profiles. Two methods were used to calculate the heat flux: arithmetical average and weighting of the flow area. The results of velocity was compared with the average velocity measured by the volume flow control and out of the velocity and temperature the heat flux was calculated and compared with electrical supplied heat flux. The calculated average velocity measured by the TAGS corresponds well with the velocity measured by the volume flow controller up to approximately 3 m/s with a maximum deviation of ±5%, but underestimates the velocity measured by the volume flow controller at higher velocities. The heat flux was calculated by five methods, 1.) from the three thermocouples up- and downstream of the heat exchanger, 2.) from the average temperatures measured by the TAGS, 3.) from the weighted temperature measured by the TAGS, 4.) from the average temperature and velocity measured by the TAGS and 5.) from the weighted temperature and velocity measured by the TAGS. In this order the accuracy of methods increases compared to the electrical supplied heat flux. For the last method the maximum deviation was 6.5% for all tilt angles. This new measurement concept determines the heat flux without disturbing the flow in the loop.
Keywords: Finned Tube Heat Exchanger, Heat Flux Measurement, Heat Transfer, Passive Decay Heat Removal, Temperature Anemometry Grid Sensor, Velocity Measurement.
  • Contribution to proceedings
    SWINTH-2019, 22.-25.10.2019, Livorno, Italy
  • Lecture (Conference)
    SWINTH-2019, 22.-25.10.2019, Livorno, Italy

Downloads:

  • available with HZDR-Login

Permalink: https://www.hzdr.de/publications/Publ-28893
Publ.-Id: 28893


Facile preparation of radium-doped, functionalized nanoparticles as carriers for targeted alpha therapy

Reissig, F.; Hübner, R.; Steinbach, J.; Pietzsch, H.-J.; Mamat, C.
Although significant advances in the tailoring of BaSO4-based nanoparticles have been achieved, the synthesis of particles is strongly dependent on the use of templates, surfactants, and additives, especially when radiolabeled with 133Ba or 224Ra. Herein, direct facile preparation of radiolabeled alendronate-functionalized BaSO4 nanoparticles in an aqueous medium in a one-pot reaction is developed. Remarkably, the size of the formed BaSO4 nanoparticles can be controlled by the type of the organic solvent used. Upon the addition of alendronate, amine functionalities were introduced into the nanoparticles. Additionally, a fluorescence dye-containing alendronate was used to evidence the introduction of the alendronate during the formation of the nanoparticles. The variations in the functionalities were investigated by IR and the morphology of the resulting BASO4 nanoparticles are investigated in detail by transmission electron microscopy. DLS and TEM measurements provided an average diameter of the nanoparticles of approx. 140 nm. Radium-doped alendronate nanoparticles were successfully obtained in a one-pot labeling procedure from [224Ra]RaCl2, Na2SO4 Ba(NO3)2 and alendronate.
Keywords: Radium-223, nanoparticles, Barium sulfate, talpha-theraphy

Downloads:

  • available with HZDR-Login
  • Secondary publication expected from 01.06.2020

Permalink: https://www.hzdr.de/publications/Publ-28892
Publ.-Id: 28892


Vacancy cluster in ZnO films grown by pulsed laser deposition

Wang, Z.; Luo, C.; Anwand, W.; Wagner, A.; Butterling, M.; Azizar Rahman, M.; Phillips, M. R.; Ton-That, C.; Younas, M.; Su, S.; Ling, F. C. C.
Undoped and Ga-doped ZnO films were grown on c-sapphire using pulsed laser deposition (PLD) at the substrate temperature of 600 oC. Positron annihilation spectroscopy study (PAS) shows that the dominant VZn-related defect in the as-grown undoped ZnO grown with relative low oxygen pressure P(O2) is a vacancy cluster (most likely a VZn-nVO complex with n=2, 3) rather than the isolated VZn which has a lower formation energy. Annealing these samples at 900oC induces out-diffusion of Zn from the ZnO film into the sapphire creating the VZn, which favors the formation
of vacancy cluster containing relatively more VZn. Increasing the P(O2) during growth also lead to the formation of the vacancy cluster with relatively more VZn. For Ga-doped ZnO films, the oxygen pressure during growth has significant influence on the electron concentration and the microstructure of the VZn-related defect. Green luminescence (GL) and yellow luminescence (YL) were identified in the cathodoluminescence study (CL) study, and both emission bands were quenched after hydrogen plasma treatment.
Keywords: Vacancy cluster ZnO pulsed laser deposition positron annihilation spectroscopy photo luminescence

Downloads:

  • available with HZDR-Login

Permalink: https://www.hzdr.de/publications/Publ-28891
Publ.-Id: 28891


Two-Dimensional Kagome Lattices Made of Hetero Triangulenes Are Dirac Semimetals or Single-Band Semiconductors

Jing, Y.; Heine, T.ORC
Here we discuss, based on first-principles calculations, two-dimensional (2D) kagome lattices composed of polymerized heterotriangulene units, planar molecules with D3h point group containing a B, C, or N center atom and CH2, O, or CO bridges. We explore the design principles for a functional lattice made of 2D polymers, which involves control of π-conjugation and electronic structure of the knots. The former is achieved by the chemical potential of the bridge groups, while the latter is controlled by the heteroatom. The resulting 2D kagome polymers have a characteristic electronic structure with a Dirac band sandwiched by two flat bands and are either Dirac semimetals (C center), or single-band semiconductors—materials with either exclusively electrons (B center) or holes (N center) as charge carriers of very high mobility, reaching values of up to ∼8 × 103 cm2 V–1 s–1, which is comparable to crystalline silicon.
Keywords: DFT, kagome, 2D polymers, 2D COFs

Downloads:

  • available with HZDR-Login
  • Secondary publication expected from 30.11.2020

Permalink: https://www.hzdr.de/publications/Publ-28890
Publ.-Id: 28890


Assessing robustness of radiomic features by image perturbation

Zwanenburg, A.; Leger, S.; Agolli, L.; Pilz, K.; Troost, E.; Richter, C.; Löck, S.
Image features need to be robust against differences in positioning, acquisition and segmentation to ensure reproducibility. Radiomic models that only include robust features can be used to analyse new images, whereas models with non-robust features may fail to predict the outcome of interest accurately. Test-retest imaging is recommended to assess robustness, but may not be available for the phenotype of interest. We therefore investigated 18 combinations of image perturbations to determine feature robustness, based on noise addition (N), translation (T), rotation (R), volume growth/shrinkage (V) and supervoxel-based contour randomisation (C). Test-retest and perturbation robustness were compared for combined total of 4032 morphological, statistical and texture features that were computed from the gross tumour volume in two cohorts with computed tomography imaging: I) 31 non-small-cell lung cancer (NSCLC) patients; II): 19 head-and-neck squamous cell carcinoma (HNSCC) patients. Robustness was determined using the 95% confidence interval (CI) of the intraclass correlation coefficient (1, 1). Features with CI >= 0:90 were considered robust. The NTCV, TCV, RNCV and RCV perturbation chain produced similar results and identified the fewest false positive robust features (NSCLC: 0.2-0.9%; HNSCC: 1.7-1.9%). Thus, these perturbation chains may be used as an alternative to test-retest imaging to assess feature robustness.

Downloads:

  • available with HZDR-Login

Permalink: https://www.hzdr.de/publications/Publ-28889
Publ.-Id: 28889


Salting-out-assisted-liquid-liquid-extraction of ectoine from a halophilic bacterium

Luque Consuegra, G.; Moore Fischer Gilpin, I.; Kutschke, S.; Pollmann, K.
The aim was detect Ectoine using chemical analysis and to calculate the Setchenow (Ks) constant of Ectoine in salt solutions at different concentrations. Solubility of Ectoine is reduced in increasing salt concentration, thus making a suitable Salting-Out procedure viable. Solubility in Methanol indicates potential solvent to carry out the Salting-Out procedure. A suitable TLC solvent mixture identified which could be used for detection of ectoine from solution
Keywords: Ectoine, Halophilic bacteria, Salting out, Setchenow constant
  • Poster
    GREN 2018, 13.-16.05.2018, Berlin, Deutschland

Downloads:

  • available with HZDR-Login

Permalink: https://www.hzdr.de/publications/Publ-28888
Publ.-Id: 28888


Screening halophilic bacteria metabolites for their potential as pyrite bio-depressants in Cu-Mo bioflotation

Luque Consuegra, G.; Kutschke, S.; Rudolph, M.; Pollmann, K.
To assess the potential of halophilic bacteria metabolites as pyrite biodepressants in flotation using sea water as medium. Halomonas boliviensis, Marinobacter spp, Halobacillus sp, Marinococcus sp and Halomonas eurihalina were tested for their production of metabolites. Biodepression also occurs although in a much lesser extent than when using bacteria as bioreagents. Flotation of pyrite was most reduced under presence of Halomonas boliviensis extract. Yield of hydrophobic metabolites decreases in artificial sea water. Bacterial metabolites contribute to the observed biodepression activity of the bacterial cells although not the mayor contributors.
Keywords: Pyrite, Bioflotation, metabolites, methyl tert-butyl ether, halophilic bacteria
  • Open Access Logo Poster
    Sustainable Minerals 2018, 14.-15.06.2018, Windhoek, Namibia

Downloads:

Permalink: https://www.hzdr.de/publications/Publ-28887
Publ.-Id: 28887


Screening halophilic bacteria for their potential as pyrite bio-depressants in Cu-Mo bioflotation

Luque Consuegra, G.; Kutschke, S.; Rudolph, M.; Pollmann, K.
Halophilic bacteria are adapted to high salinity environments and other extreme conditions. Halophilic bacteria produce Extracellular Polymeric Substances (EPS) that aid them in the formation of biofilms and resist abrupt changes in salinity, pH, temperature and pressure. These EPS could have potential applications in flotation operations performed in sea water, such as the Copper-Molybdenum flotation operations in Chile. To date, there are no reports of halophilic bacteria been used in bio flotation.
Five halophilic bacteria where studied as potential pyrite bio depressants. Micro flotation experiments using Hallimond tubes, as well as hydrophobicity and adhesion experiments were performed in order to assess the potential of these bacteria in the flotation process. In this study we will show the first results of using halophilic bacteria as potential Pyrite bio depressants.
Keywords: Pyrite, Adhesion, Hydrophobicity, Microflotation, bioflotation, halophilic bacteria
  • Poster
    Biohydrometallurgy 2018, 12.-13.06.2018, Windhoek, Namibia

Downloads:

  • available with HZDR-Login

Permalink: https://www.hzdr.de/publications/Publ-28886
Publ.-Id: 28886


Biodepression of Pyrite in seawater for Cu-Mo flotation

Luque Consuegra, G.
Presentation delivered at the TUD on the 4.2.19 outlining the progress in my Ph.D to Prof. Thorsten Mascher and his group.
Keywords: Bioflotation, biodepression, pyrite, chalcopyrite, halophilic bacteria
  • Invited lecture (Conferences)
    Scientific Seminar Microbiology group at TUD, 04.02.2019, Dresden, Deutschland

Downloads:

  • available with HZDR-Login

Permalink: https://www.hzdr.de/publications/Publ-28885
Publ.-Id: 28885


Testing halophilic bacteria for their potential as pyrite biodepressants in Cu-Mo bioflotation

Luque Consuegra, G.
Presentation outlining work up to June 2018 in the screening of halophilic bacteria as pyrite biodepressants in Cu-Mo bioflotation processes delivered in the BHT conference in TUBAF, Freiberg.
Keywords: Bioflotation, Pyrite, Halophilic bacteria, Adhesion, M.A.T.H
  • Lecture (Conference)
    BHT – Freiberger Universitätsforum, 08.06.2018, Freiberg, Deutschland

Downloads:

  • available with HZDR-Login

Permalink: https://www.hzdr.de/publications/Publ-28884
Publ.-Id: 28884


Reduction of range uncertainty in particle treatment planning enabled by patient-individual stopping-power prediction using dual-energy CT

Peters, N.; Wohlfahrt, P.; Möhler, C.; Hofmann, C.; Greilich, S.; Richter, C.
Purpose/Objective:
Comprehensive assessment of range uncertainties in particle treatment planning for a dual-energy CT (DECT) based direct stopping-power prediction (DirectSPR) suitable for clinical implementation.

Material/methods:
The DirectSPR approach, thoroughly validated in prior work and jointly implemented with Siemens Healthineers in a prototype, is characterised by a patient-size dependent model calibration and patient-individual consideration of tissue variability. Uncertainties of this DECT-based approach were quantified regarding image acquisition, modelling and miscellaneous sources (Fig.1) and propagated to the overall range uncertainty via the GUM guideline (Guide to the expression of uncertainty in measurement). Model calibration and validation was based on a multitude of CT scans for phantoms with varying geometries. The resulting overall uncertainty was determined for different clinically relevant tumour entities, separated into an absolute term (for five treatment sites) and a term relative to the particle range (for head, lung and pelvic region).

Results:
The relative range uncertainty (1.5𝜎) was 1.7%, 2.0% and 2.0% for the head, lung and pelvic region, respectively. The absolute term was between 2.5mm (brain) and 3.5mm (head&neck, pancreas). In comparison to the safety margin currently applied in treatment planning based on single-energy CT (3.5%+2mm), the overall range accuracy is increased for beam paths with a water-equivalent thickness above 30mm (70mm) in the head (body) region (Fig.2).

Conclusion:
The uncertainty in particle range calculation is reduced by patient-individual DECT-based stopping-power prediction. The obtained range uncertainties are directly applicable to the currently ongoing clinical implementation of DirectSPR for routine treatment planning at our institution and will result in a dose reduction in normal tissue.
  • Lecture (Conference)
    PTCOG 58, 10.06.2019, Manchester, England

Permalink: https://www.hzdr.de/publications/Publ-28883
Publ.-Id: 28883


Experimental assessment of inter-centre variation and accuracy in SPR prediction within the European Particle Therapy Network

Peters, N.; Wohlfahrt, P.; Bolsi, A.; de Marzi, L.; Ellerbrock, M.; Fracchiolla, F.; Free, J.; Gomà, C.; Góra, J.; Kajdrowicz, T.; Mackay, R.; Molinelli, S.; Nørrevang, O.; Rinaldi, I.; Rompokos, V.; Dahlgren, C. V.; van der Tol, P.; Vermeren, X.; Richter, C.
Purpose/Objective:
Experimental evaluation of inter-centre variation and absolute accuracy in stopping-power-ratio (SPR) prediction within the European Particle Therapy Network.

Material/methods:
A head&body phantom with 17 tissue surrogate inserts were scanned consecutively at the participating centres using their individual clinical scan protocol. The SPR calculation was performed using each centre’s CT scan and HLUT (Fig.1). The inter-centre variation and absolute accuracy in SPR prediction were quantified for lung, soft tissues and bones. To evaluate the integral effect on range prediction for typical clinical beams traversing different tissues, for three simplified beam paths the determined SPR deviations were accumulated according to their respective tissue distribution. So far, data from 12 out of 17 participating centres was analysed.

Results:
A 2σ inter-centre variation in SPR prediction of 7.4% and 6.1% relative to water was determined for the bone inserts in the head and body setup, respectively. Comparable results were observed for the lung tissue surrogates (5.8% and 2.8%). In the soft tissues, smaller variations were achieved (1.4% and 1.2%). For the three exemplary beam paths, inter-centre variations in relative range were 2.1% on average. Moreover, absolute range deviations from reference exceeded 2% in specific centres (Fig 2B).

Conclusion:
Large inter-centre variations in SPR prediction were observed in low- and high density tissue surrogates. The differences in deviation for bone between the two setups indicate a strong influence of scanning parameters such as the level of beam hardening correction, potentially resulting in range shifts of clinical relevance. Hence, inter-centre standardisation is highly desirable.
  • Lecture (Conference)
    PTCOG 58 - 58th Annual Conference of Particle Therapy Cooperative Group, 10.06.2019, Manchester, England

Permalink: https://www.hzdr.de/publications/Publ-28882
Publ.-Id: 28882


Time-Like Baryon Transitions studies with HADES

Ramstein, B.; Adamczewski-Musch, J.; Arnold, O.; Arnoldi-Meadows, B.; Belounnas, A.; Belyaev, A.; Biernat, J.; Blanco, A.; Blume, C.; Böhmer, M.; Bordalo, P.; Chlad, L.; Chudoba, P.; Ciepał, I.; Deveaux, C.; Dittert, D.; Dreyer, J.; Fabbietti, L.; Fateev, O.; Fonte, P.; Franco, C.; Friese, J.; Fröhlich, I.; Galatyuk, T.; Garzón, J. A.; Gernhäuser, R.; Gillitzer, A.; Golubeva, M.; Greifenhagen, R.; Guber, F.; Gumberidze, M.; Harabasz, S.; Heinz, T.; Hennino, T.; Himmelreich, M.; Höhne, C.; Holzmann, R.; Ierusalimov, A.; Ivanov, V.; Ivashkin, A.; Kämpfer, B.; Kajetanowicz, M.; Kampert, K.-H.; Karavicheva, T.; Kardan, B.; Khomyakov, V.; Koenig, I.; Koenig, W.; Korcyll, G.; Kornakov, G.; Kornas, F.; Kotte, R.; Kozela, A.; Kuboś, J.; Kugler, A.; Kunz, T.; Kurepin, A.; Kurilkin, P.; Kushpil, V.; Ladygin, V.; Lalik, R.; Lebedev, A.; Linev, S.; Liu, M.; Lopes, L.; Lorenz, M.; Lykasov, G.; Mahmoud, T.; Malakhov, A.; Markert, J.; Maurus, S.; Metag, V.; Michel, J.; Mihaylov, D. M.; Mikhaylov, V.; Morozov, S.; Müntz, C.; Naumann, L.; Nowakowski, K.; Parpottas, Y.; Patel, V.; Pauly, C.; Pechenov, V.; Pechenova, O.; Pereira, A.; Petousis, V.; Petukhov, O.; Pfeifer, D.; Pietraszko, J.; Przygoda, W.; Pysz, K.; Ramos, S.; Reshetin, A.; Ritman, L.; Rodriguez-Ramos, P.; Rost, A.; Sadovsky, A.; Salabura, P.; Scheib, T.; Schuldes, H.; Schwab, E.; Scozzi, F.; Seck, F.; Sellheim, P.; Selyuzhenkov, I.; Silva, L.; Smyrski, J.; Sobiella, M.; Spataro, S.; Spies, S.; Ströbele, H.; Stroth, J.; Strzempek, P.; Svoboda, O.; Szala, M.; Taranenko, A.; Tlusty, P.; Traxler, M.; Troyan, A.; Tsertos, H.; Wagner, V.; Wendisch, C.; Wiebusch, M. G.; Wintz, P.; Wirth, J.; Włoch, B.; Zhilin, A.; Zinchenko, A.; Zumbruch, P.; Zuschke, M.
The HADES collaboration uses the e+e− production as a probe of the resonance matter produced in collisions at incident energies of 1-3.5 GeV/nucleon at GSI. Elementary reactions provide useful references for these studies and give information on resonance Dalitz decays (R→Ne+e−). Such processes are sensitive to the structure of time-like electromagnetic baryon transitions in a kinematic range where (off-shell) vector mesons play a crucial role. Results obtained in proton-proton reactions and in a commissioning pion-beam experiment are reported and prospects for future pion beam experiments and for first hyperon Dalitz decay measurements are described. The connection with the investigations of medium effects to be continued with HADES in the next years at SIS18 and SIS100 is also discussed.

Downloads:

Permalink: https://www.hzdr.de/publications/Publ-28881
Publ.-Id: 28881


Natural occurring spore-forming sulfate reducers and their influence on the bentonite barrier

Matschiavelli, N.; Kluge, S.; Podlech, C.; Standhaft, D.; Grathoff, G.; Ikeda-Ohno, A.; Warr, L. N.; Chukharkina, A.; Arnold, T.; Cherkouk, A.
To investigate the potential influence of natural occuring microorganisms within the bentonite on its minaralogical properties, we prepared anaerobic microcosm-experiments containing bentonite and a synthetic Opalinus Clay pore-water solution. Two different Bavarian bentonites (a natural and an industrial one) were incubated for one year at 30 °C and 60 °C and analyzed for bio-geochemical parameters and microbial diversity. For stimulation of microbial activity, some set ups were supplied with organics (acetate or lactate) or H2.
Only microcosms containing the industrial bentonite show striking effects. The presence of supplemented lactate or H2 led to the dominance (up to 81 %) of spore-forming Desulfosporosinus spp. – strictly anaerobic, sulfate-redung microorganisms. The respective microcosms show an increase of ferrous iron and a simoultaneous decrease of ferric iron as well as a decrease in sulfate-concentration. Concomitantly, the redoxpotential dropped and hydrogen-sulfide was fomed – leading very likely to the formation of the observed fractures and iron-sulfur precipitations. Furthermore, lactate-containing microcosms show the formation of acetate in the same amount as lactate was consumed. The here mentioned, microbial formed metabolites could affect the dissolution bahavior of minerals and ions within the bentonite and, thus, potentially change the sealant and adsorbent properties of the bentonite barrier.
  • Lecture (others)
    MIND Project Annual Meeting 2019, 07.-09.05.2019, Stockholm, Sweden

Permalink: https://www.hzdr.de/publications/Publ-28880
Publ.-Id: 28880


Characterization of Continuous Wave Laser-Induced Thermal Gradients in Magnetic Tunnel Junctions Integrated Into Microresonators via COMSOL Simulations

Cansever, H.; Lindner, J.; Huebner, T.; Niesen, A.; Reiss, G.; Faßbender, J.ORC; Deac, A. M.
Spin caloritronics investigates static and dynamic effects on magnetic structures due to spin-currents generated by thermalgradients. Here, we present COMSOL simulation results using a 2-D heat transfer module applied to Co2FeAl/MgO/CoFeB magnetictunnel junctions (MTJs) integrated into microcavity resonators. Microresonators are used in order to study the effects of temperaturegradients on single micro-/nano-objects. We find that the thermal conductivity of the insulating barrier (MgO) plays a crucialrole, influencing the overall temperature, as well as the thermal gradient over the barrier. Taking into account the microresonatorstructure around the MTJ, which is mainly made from copper, strongly affects the uniform heating of the overall stack. Nevertheless,the gradient over the barrier is relatively unaffected by the surrounding conditions. The simulation results provide insight intothe temperature profile of the whole structure and show how modifying the structure of the surrounding materials may tune andoptimize the thermal gradient magnitude and ultimately provide a path for quantifying spin-transfer torques induced by thermalgradients.
Keywords: COMSOL simulation, ferromagnetic resonance (FMR), magnetic tunnel junction (MTJ), microresonator

Downloads:

  • available with HZDR-Login
  • Secondary publication expected

Permalink: https://www.hzdr.de/publications/Publ-28879
Publ.-Id: 28879


Fast-neutron-induced fission cross section of Pu(242) measured at the neutron time-of-flight facility nELBE

Kögler, T.ORC; Junghans, A. R.ORC; Beyer, R.ORC; Dietz, M.; Düllmann, C. E.ORC; Eberhardt, K.; Lorenz, C.; Müller, S. E.ORC; Nolte, R.; Reinhardt, T. P.; Schmidt, K.; Runke, J.; Schwengner, R.ORC; Takacs, M.; Vascon, A.; Wagner, A.ORC
The fast-neutron-induced fission cross section of ²⁴²Pu was measured at the neutron time-of-flight facility nELBE. A parallel-plate fission ionization chamber with novel, homogeneous, large-area ²⁴²Pu deposits on Si-wafer backings was used to determine this quantity relative to the IAEA neutron cross-section standard ²³²U(n, f ) in the energy range of 0.5 to 10 MeV. The number of target nuclei was determined from the measured spontaneous fission rate of ²⁴²Pu. This helps to reduce the influence of the fission fragment detection efficiency on the cross section. Neutron transport simulations performed with GEANT 4, MCNP 6, and FLUKA 2011 are used to correct the cross-section data for neutron scattering. In the reported energy range the systematic uncertainty is below 2.7% and on average the statistical uncertainty is 4.9%. The determined results show an agreement within 0.67(16)% to recently published data and a good accordance to current evaluated data sets.
Keywords: neutron-induced fission, plutonium, parallel plate fission ionization chambers, cross section measurements, neutron transport simulations, nuclear reactions, nucleon induced nuclear reactions, nELBE
Related publications
Fast-neutron-induced fission cross section of Pu(242) … (Id 28970) HZDR-primary research data are used by this publication

Downloads:

Permalink: https://www.hzdr.de/publications/Publ-28878
Publ.-Id: 28878


Impact of radiation, systemic therapy and Treatment sequencing on survival of patients with melanoma brain metastases

Rauschenberga, R.; Bruns, J.; Brüttinga, J.; Daubner, D.; Lohaus, F.; Zimmer, L.; Forschner, A.; Zips, D.; Hassel, J. C.; Berking, C.; Kaehler, K. C.; Utikal, J.; Gutzmer, R.; Terheyden, P.; Meiss, F.; Rafei-Shamsabadi, D.; Kiecker, F.; Debus, D.; Dabrowski, E.; Arnold, A.; Garzarolli, M.; Kuske, M.; Beissert, S.; Löck, S.; Linn, J.; Troost, E. G. C.; Meier, F.
Background
Combining stereotactic radiosurgery (SRS) and active systemic therapies (STs) achieved favourable survival outcomes in patients with melanoma brain metastases (MBMs) in retrospective analyses. However, several aspects of this Treatment strategy remain poorly understood. We Report on the Overall survival (OS) of patients with MBM treated with a combination of radiotherapy (RT) and ST as well as the Impact of the v-Raf murine sarcoma viral oncogene homolog B (BRAF)-V600 Mutation (BRAFmut) status, types of RT and ST and their sequence. Patients and methods Data of 208 patients treated with SRS or whole brain Radiation therapy (WBRT) and either immunotherapy (IT) or targeted therapy (TT) within a 6-week- interval to RT were analysed retrospectively. OS was calculated from RT to death or last follow-up. Univariate- and multivariate Cox proportional hazard analyses were performed to determine prognostic Features associated with OS.
Results
The median follow-up was 7.3 months. 139 patients received IT, 67 received TT and 2 received IT and TT within 6 weeks to RT (WBRT 45%; SRS 55%). One-year Kaplan-Meier OS rates were 69%, 65%, 33% and 18% (P < .001) for SRS with IT, SRS with TT, WBRT with IT and WBRT with TT, respectively. Patients with a BRAF mut receiving IT combined with RT experienced higher OS rates (88%, 65%, 50% and 18%). TT following RT or started before and continued thereafter was associated with improved median OS compared with to TT solely before RT (12.2 [95% confidence interval {CI} 9.3–15.1]; 9.8 [95% CI 6.9–12.6] versus 5.1 [95% CI 2.7–7.5]; P = .03).
Conclusion
SRS and IT achieved the highest OS rates. A BRAFmut appears to be a favourable prognostic factor for OS. For the combination of RT and TT, the sequence appears to be crucial. Combinations of WBRT and ST achieved unprecedentedly high OS rates and Warrant further studies.
Keywords: Melanoma; Brain metastases; Stereotactic radiosurgery; Whole brain Radiation therapy; Immunotherapies; Targeted therapy; Immune checkpoint inhibitors; BRAF inhibitors

Downloads:

  • available with HZDR-Login

Permalink: https://www.hzdr.de/publications/Publ-28875
Publ.-Id: 28875


Carboranyl Analogues of Celecoxib with Potent Cytostatic Activity against Human Melanoma and Colon Cancer Cell Lines

Buzharevski, A.; Paskas, S.; Sárosi, M. B.; Laube, M.; Lönnecke, P.; Neumann, W.; Mijatovic, S.; Maksimovic-Ivanic, D.; Pietzsch, J.ORC; Hey-Hawkins, E.
Nonsteroidal anti-inflammatory drugs (NSAIDs) are the most common way of treating inflammatory disorders. Their widespread use helped reveal their other modes of action as pharmaceuticals, such as a profound effect on various cancers. Celecoxib has proven to be a very prominent member of this group with cytostatic activities. On the other hand, the highly dynamic field of drug design is constantly searching for new ways of modifying known structures to obtain more powerful and less harmful drugs. A very interesting development is the implementation of carboranes in pharmacologically active structures, mostly as phenyl mimetics. Herein we report the synthesis of three carborane-containing derivatives of the COX-2-selective NSAID celecoxib. The new compounds proved to have promising cytostatic potential against various melanoma and colorectal adenocarcinoma cell lines. Inhibited proliferation accompanied by caspase-independent apoptotic cell death was found to be the main cause of decreased cell viability upon treatment with the most efficient celecoxib analogue, 3 b (4-[5-(1,7-dicarba-closo-dodecaboranyl)-3-trifluoromethyl-1H-pyrazol-1-yl]-1-methylsulfonylbenzene).
Keywords: cancer; carboranes; celecoxib; cytotoxicity; drug discovery

Downloads:

Permalink: https://www.hzdr.de/publications/Publ-28874
Publ.-Id: 28874


Simulation of the Radiation Field at the University Proton Therapy Dresden (UPTD)

Lutz, B.; Swanson, R.; Fiedler, F.; Enghardt, W.
Radiation therapy is one of the most used treatment modalities of cancer. While most patients receive photon-therapy, a growing number of patients are treated with particles, mainly protons. Protons offers a more localised dose deposition compared to photon-therapy. This allows to reduce the dose that is applied by the primary beam to the healthy tissue outside the target volume. At the same time, the use of protons leads to a change in the composition of the radiation field, when compared to photons. For example, the out-of-field dose is dominated by secondary neutrons. Additionally, the radiation quality of protons is a function of energy. Therefore, the biological effect depends not only on the physical dose, but also on the linear energy transfer (LET). The neutron field and the LET, like other scientifically interesting quantities, are challenging to measure experimentally. Hence, a simulation that can reproduce the radiation field of a radiation treatment facility is of great value for the study of various aspects of proton therapy.
This work describes the simulation of the University Proton Therapy Dresden (UPTD) beam delivery system and treatment room.
Keywords: simulation, proton therapy, Geant4, TOPAS, double scattering
  • Lecture (Conference)
    EURADOS Annual Meeting 2019, 11.-14.02.2019, Lodz, Poland

Permalink: https://www.hzdr.de/publications/Publ-28873
Publ.-Id: 28873


Fluorine-18 labeling of S100 proteins for small animal positron emission tomography

Laube, M.; Kniess, T.; Neuber, C.; Haase-Kohn, C.; Pietzsch, J.ORC
The interaction of S100 proteins (S100s), a multigenic family of Ca2+-binding and Ca2+-modulated proteins, with pattern recognition receptors, e.g., Toll-like receptors (TLRs), the receptor for advanced glycation end products (RAGE), or scavenger receptors (SR), is hypothesized to be of high relevance in the pathogenesis of various diseases. This includes chronic inflammatory conditions, atherosclerosis, cardiomyopathies, neurodegeneration, and progression of cancers. However, data concerning the role of circulating S100s in these pathologies are scarce. One reason for this is the shortage of suitable radiolabeling methods for direct assessment of the metabolic fate of circulating S100s in vivo. We report a radiotracer approach using radiolabeling of recombinant human S100s with the positron emitter fluorine-18 (18F) by conjugation with N-succinimidyl 4-[18F]fluorobenzoate ([18F]SFB). The methodological radiochemical part focuses on an optimized and automated synthesis of [18F]SFB comprising HPLC purification to achieve higher chemical purity. The respective radioligands, [18F]fluorobenzoylated S100s ([18F]FB-S100s), were obtained with appropriate radiochemical purities, yields, and effective molar activities. Biological applications comprise cell and tissue binding experiments in vitro, biodistribution and metabolite studies in rodents in vivo/ex vivo, and dynamic positron emission tomography studies using dedicated small animal PET systems. Radiolabeling of S100s with 18F and, particularly, the use of small animal PET provide novel probes to delineate both their metabolic fate and the functional expression of their specific receptors under normal and pathophysiological conditions in rodent models of disease.
Keywords: Bolton-Hunter-type reagent; in vivo imaging; radiopharmacological characterization; 18F building block; module-assisted radiosynthesis; S100 proteins; calcium; EF-hand

Downloads:

Permalink: https://www.hzdr.de/publications/Publ-28872
Publ.-Id: 28872


Modeling discontinuous potential distributions using the finite volume method, and application to liquid metal batteries

Weber, N.; Landgraf, S.; Mushtaq, K.; Nimtz, M.; Personnettaz, P.; Weier, T.; Zhao, J.; Sadoway, D.
The electrical potential in a battery jumps at each electrode-electrolyte interface. We present a model for computing three-dimensional current and potential distributions, which accounts for such internal voltage jumps. Within the framework of the finite volume method we discretize the Laplace and gradient operators such that they account for internal jump boundary conditions. After implementing a simple battery model in OpenFOAM we validate it using an analytical test case, and show its capabilities by simulating the current distribution and discharge curve of a Li||Bi liquid metal battery.

Downloads:

  • available with HZDR-Login
  • Secondary publication expected from 21.06.2020

Permalink: https://www.hzdr.de/publications/Publ-28871
Publ.-Id: 28871


The Inverse Trans Effect in Uranium complexes containing N-heterocyclic Carbenes

Köhler, L.; März, J.; Patzschke, M.; Kloditz, R.; Stumpf, T.
Aim of this work was to investigate the inverse trans influence (ITI) in uranium complexes containing soft-donor ligands. Uranium(IV) and (V) complexes were synthesized by using the N-heterocylic carbene ligand iPrIm (L¹ ) and lithium bis(trimethylsilyl)amide (TMSA) as a base. The structural characterization by SC-XRD and geometry optimization of the resulting compounds [U(IV)(L¹ )₂(TMSA)Cl₃] (1) and (HL¹ )₂ [U(V)(TMSI)Cl₅] (2) (TMSI = trimethylsilylimide) confirmed the occurrence of an inverse trans influence (ITI) by means of the silylamido- or silylimido ligand.
Keywords: inverse trans influence, ITI, uranium complex, actinides
  • Lecture (others)
    Bilaterales Treffen mit AK Roesky (KIT), 10.-11.01.2019, Karlsruhe, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-28869
Publ.-Id: 28869


Reversible adiabatic temperature change in the shape memory Heusler alloy NiMn0.8Ga: An effect of structural compatibility

Devi, P.; Ghorbani Zavareh, M.; Salazar Mejia, C.; Hofmann, K.; Albert, B.; Felser, C.; Nicklas, M.; Singh, S.
The large magnetocaloric effect (MCE) observed in Ni-Mn based shape memory Heusler alloys put them forward to use in magnetic refrigeration technology. It is associated with a first-order magnetostructural (martensitic) phase transition.We conducted a comprehensive study of the MCE for the off-stoichiometric Heusler alloy Ni2.2Mn0.8Ga in the vicinity of its first-order magnetostructural phase transition. We found a reversible MCE under repeated magnetic field cycles. The reversible behavior can be attributed to the small thermal hysteresis of the martensitic phase transition. Based on the analysis of our detailed temperature dependent x-ray diffraction data, we demonstrate the geometric compatibility of the cubic austenite and tetragonal martensite phases. This finding directly relates the reversible MCE behavior to an improved geometric compatibility condition between cubic austenite and tetragonal martensite phases. The approach will help to design shape memory Heusler alloys with a large reversible MCE taking advantage of the first-order martensitic phase transition.

Downloads:

  • available with HZDR-Login

Permalink: https://www.hzdr.de/publications/Publ-28868
Publ.-Id: 28868


Effect of background electrolyte composition on the formation of Th(IV) nanoparticles on the muscovite (001) basal plane

Schmidt, M.ORC; Qiu, C.; Hellebrandt, S.; Eng, P. J.; Skanthakumar, S.; Steppert, M.; Soderholm, L.
Reliable long-term predictions regarding the safety of a nuclear waste disposal facility must be based on a sound understanding of the fundamental processes controlling radionuclide mobility in a subsurface environment. In particular, reactions at the water/mineral interface must be characterized on the molecular level.[1] Several actinides (An) show a tendency to form An-oxo-nanoparticles[2], which may be enhanced in the presence of mineral surfaces and even drive redox reactions.[3-6] As these reaction may, both, enhance and reduce the mobility of the actinides, it is of utmost importance to understand their mechanism and which parameters control the nanoparticle formation in environmental systems.
Recently, we have reported an unusual variability in the reactivity of ThIV on the basal plane of muscovite mica dependent on the composition of the background electrolyte.[7] In this study, based on surface X-ray diffraction [SXD; crystal truncation rod diffraction (CTR) and resonant anomalous X-ray reflectivity (RAXR)] and alpha spectrometry, it was observed that ThIV sorption from NaClO4 solution was significantly lower [< d.l. (~0.04 ThIV per area of the muscovite unit cell AUC)] than from NaCl solution (θNaCl = 0.4 Th/AUC) under otherwise identical conditions.[8] The study also revealed that the adsorbed quantity of ThIV was significantly higher in LiClO4 medium (θLiClO4 = 4.9 Th/AUC), than in NaClO4 with KClO4 intermediate between Li and Na (θKClO4 ~ 0.1 Th/AUC). In the case of LiClO4 it could be shown by RAXR, that sorption occurs in the form of small particles a few nm in size.
Here, we present a study using SXD in combination with alpha spectrometry and atomic force microscopy (AFM) aiming to identify the basis of the previously observed, unexpected effects. To probe whether anion and cation effect occur independently, ThIV sorption was studied in the presence of LiCl and KCl ([Th] = 0.1 mM, pH = 3.3, I = 0.1 M). ThIV uptake is strongest in the presence of LiCl (θLiCl = 8.8 Th/AUC), while sorption in the presence of KCl is weaker (θKCl = 3.6 Th/AUC) but still exceeds the surface occupancy previously found in NaCl media.[8] For all cations ThIV sorption is stronger when Cl- is the counterion compared to ClO4-, confirming that the cation effect is indeed independent of the background electrolyte’s anion. The influence of aqueous speciation on the sorption processes was determined using electro-spray-ionization time-of-flight mass spectrometry (ESI-TOF-MS), which finds a speciation dominated by the ThIV aquo ion in all media, indicating that any electrolyte effects must occur at the water/mineral interface. We investigated the influence of the presence of oligomers on the sorption process, by repeating experiments at higher initial [Th] = 3.0 mM. As expected ThIV sorption is significantly increased. ThIV adsorbs at a preferential height of ~6.5 Å, which can be identified as the preferred size of Th-nanochains on the mica basal plane by AFM (Fig. 1). Uptake from LiCl media is still larger than from NaCl, but only by ~32% compared to 2100% at the lower ThIV concentration. This suggests that the electrolyte cation influences the formation or aggregation of ThIV oligomers at the interface, and its influence is diminished when these are initially present.

Fig. 1. Total electron density and ThIV electron density as a function of distance from the mineral surface determined by SXD upon sorption from NaCl, KCl, and LiCl, respectively. Upper curves (grey, light blue, dark red) are total electron densities determined by CTR, lower curves (black, dark blue, light red) are ThIV electron density distributions from RAXR.

References
[1] H. Geckeis, et al., Chem. Rev., 113, 1016 (2013).
[2] K. E. Knope, et al., Chem. Rev., 113, 944 (2012).
[3] S. Hellebrandt, et al., Langmuir, 32, 10473 (2016).
[4] A. E. Hixon, et al., Environmental Science: Processes & Impacts, 20, 1306 (2018).
[5] M. Schmidt, et al., Env. Sci. Tech., 47, 14178 (2013).
[6] C. Walther, et al., Chem. Rev., 113, 995 (2013).
[7] M. Schmidt, et al., Geochim. Cosmochim. Acta, 165, 280 (2015).
[8] M. Schmidt, et al., Geochim. Cosmochim. Acta, 88, 66 (2012).
Keywords: Surface X-ray Diffraction, CTR, RAXR, AFM, Nucleation, Thorium, background electrolytes
  • Lecture (Conference)
    49èmes Journées des Actinides, 14.-17.04.2019, Erice, Italia

Permalink: https://www.hzdr.de/publications/Publ-28867
Publ.-Id: 28867


Focusing of multi-MeV, subnanosecond proton bunches from a laser-driven source

Jahn, D.; Schumacher, D.; Brabetz, C.; Kroll, F.; Brack, F.-E.; Ding, J.; Leonhardt, R.; Semmler, I.; Blazevic, A.; Schramm, U.; Roth, M.
We report on our latest transverse focusing results of subnanosecond proton bunches achieved with a laser-driven multi-MeV ion beamline. In the frame of the LIGHT collaboration, a target normal sheath acceleration (TNSA) source based 6 m long beamline was installed. In the past years, the laser-driven proton beam was transported and shaped by this beamline. The particle beam is collimated with a pulsed high-field solenoid and rotated in longitudinal phase space with a radio-frequency cavity which leads to an energy compression with an energy spread of (2.7 +/- 1.7)% (Delta E/E-0 at FWHM) or a time compression to the subnanosecond regime. Highest peak intensities in the subnanosecond regime open up an interesting field for several applications, e.g., proton imaging, as injectors in conventional accelerators or precise stopping power measurements in a plasma. We report on achieving highest peak intensities using an installed second solenoid as a final focusing system in our beamline to achieve small focal spot sizes. We measured a focal spot size of 1.1 x 1.2 mm leading to 5.8 x 10(19) protons per s cm(2) at a central energy bin of (9.55 +/- 0.25) MeV, which can be combined with a bunch duration below 500 ps at FWHM.

Downloads:

Permalink: https://www.hzdr.de/publications/Publ-28866
Publ.-Id: 28866


4He irradiation of zircon, ZrSiO4, using a micro-patterned, Si-based energy filter

Nasdala, L.; Akhmadaliev, S.; Chanmuang N., C.; Zowalla, A.; Csato, C.; Rüb, M.
The quantitative evaluation of alpha-particle damage in the mineral zircon, ZrSiO4, using 4He irradiation experiments is difficult because the vast majority of atomic knock-ons in the target are concentrated in a narrow depth range near the ends of the He-ion trajectories. Here we present a new concept to overcome this problem, namely, tailoring the depth profile of damage by means of a micromechanically fabricated “energy filter”. Lamellae of 1.5 μm thickness, prepared from ZrSiO4 using the focused-ion-beam technique, were subjected to irradiation with 8.8 MeV 4He ions. Five irradiations with ion fluences in the range 2.5 × 1015–1 × 1017 cm-2 have resulted in mild to severe damage, as monitored by the broadening and downshift of SiO4-stretching Raman bands. Our results may provide a means for quantifying the contribution of alpha particles to the total self-irradiation damage in zircon.
Keywords: Radiation damage, Helium irradiation, Energy filter, Focused ion beam, Raman spectroscopy

Downloads:

  • available with HZDR-Login

Permalink: https://www.hzdr.de/publications/Publ-28865
Publ.-Id: 28865


Software in the context of luminescence dating: status, concepts and suggestions exemplified by the R package Luminescence

Kreutzer, S.; Burow, C.; Dietze, D.; Fuchs, M. C.; Fischer, M.; Schmidt, C.
The relevance of luminescence dating is re- flected by the steadily growing quantity of published data. At the same time, the amount of data available for analysis has increased due to technological and methodological advances. Routinely, luminescence data are analysed using a mixture of commercially available soft- ware, self-written tools and specific solutions. Based on a luminescence dating literature screening we show how rarely articles report on the software used for the data analysis and we discuss potential problems arising from this. We explore the growing importance of the statistical programming language R in general and especially its reflection in recent software developments in the context of lu- minescence dating. Specifically, for the R package ‘Luminescence’ we show how the transparency, flexibility and reliability of tools used for the data analysis have been improved. We finally advocate for more transparency if unvalidated software solutions are used and we emphasise that more attention should be paid to the tools used for analysing the data.
Keywords: R, Software, Luminescence dating, Data analysis
  • Open Access Logo Ancient TL 35(2017)2, 1-11

Downloads:

Permalink: https://www.hzdr.de/publications/Publ-28863
Publ.-Id: 28863


Laser-induced fluorescence and hyperspectral imaging integrated in one sensor system - the inSPECtor project

Fuchs, M.; Lorenz, S.; Beyer, J.; Seidel, P.; Sharma, S. K.; Heitmann, J.; Gloaguen, R.
Optical spectroscopy-based methods provide an immense potential for identifying rock compositions in a non-invasive and highly efficient manner, which is crucial for innovative, sustainable and acceptable technologies in raw material exploration. In principle, we employ two fundamental types from the set of light-material interactions light absorption used for hyperspectral imaging (HSI), and light emission used for laser-induced fluorescence (LiF) spectroscopy. The light spectra measured after illumination may be used as fingerprints of a sample’s composition, as long as the characteristic spectral features are known and distinguishable.
In the inSPECtor project, we develop an integrated sensor system that combines the two types of spectroscopy in order to increase the range of detectable materials and the robustness of results. HSI has already proven successful for the mapping of various minerals and also of some REEs such as Nd. However, the complexity of natural samples leads to mixed spectra with masked or only weak REE-related features complicating or even precluding a robust identification of many other REEs. Here, LiF spectroscopy provides a much more sensitive alternative as REEs show very distinct emission features characteristic transitions in REE3+ ions, as encountered in typical REE-containing minerals.
Here, we present how the inSPECtor project combines the potential of both HSI and LiF, especially for REE identification. We focus on the qualitative aspects of REE characterization in synthetic REE standards, in natural minerals and complex rocks from a range of typical REE-mineral deposits. Based on the characterization and successful identification of Nd3+, Pr3+, Sm3+, Eu3+, Yb3+, Ho3+, Dy3+, Er3+, Tb3+ and Tm3+ , we summarize required sensor specifications and illustrate needed data analyses routines.
Keywords: optical spectroscopy, spectroscopic sensors, hyperspectral imaging, laser-induced fluorescence, rare earth elements, raw material exploration
  • Poster
    9th Workshop on Hyperspectral Image and Signal Processing, 23.-26.09.2018, Amsterdam, Netherlands

Permalink: https://www.hzdr.de/publications/Publ-28862
Publ.-Id: 28862


News from the sandbox – from virtual sediment sections to full measurement models

Dietze, M.; Fuchs, M.; Kreutzer, S.
Geomorphic concepts and hypotheses are usually formulated based on empiric data from the field or the laboratory (deduction). After translation into models they can be applied to case study scenarios (induction). However, the other way around - expressing hypotheses explicitly by models and test these by empiric data - is a rarely touched trail. There are several models tailored to investigate the boundary conditions and processes that generate, mobilise, route and eventually deposit sediment in a landscape. Thereby, the last part, sediment deposition, is usually omitted. Essentially, there is no model that explicitly focuses on mapping out the characteristics of sedimentary deposits - the material that is used by many disciplines to reconstruct landscape evolution. The R-package sandbox is a model framework that allows creating and analysing virtual sediment sections for exploratory, explanatory, forecasting and inverse research questions. sandbox is a probabilistic and rule-based model framework for a wide range of possible applications. It has been advanced and linked to another model to allow the full work flow of modelling luminescence measurements. This contribution introduces news about recent developments and shows a set of applications.
Keywords: R package, sandbox, sediments
  • Open Access Logo Contribution to proceedings
    EGU General Assembly 2018, 04.-13.04.2018, Vienna, Austria
    News from the sandbox – from virtual sediment sections to full measurement models

Downloads:

Permalink: https://www.hzdr.de/publications/Publ-28861
Publ.-Id: 28861


inSPECtor - integrated spectroscopy sensor system for laser-induced fluorescence and hyperspectral imaging

Fuchs, M.; Lorenz, S.; Beyer, J.; Seidel, P.; Sharma, S. K.; Gloaguen, R.; Heitmann, J.
The raw material sector demands for fast and non-invasive exploration technologies to reduce economic and ecologic costs as well as increasing public acceptance. Within the inSPECtor project, we develop an integrated spectroscopic sensor system that uses the light spectrum measured after illumination of a target as fingerprint of a sample's composition. The idea is to integrate information from two basic types of light-material interactions, light absorption used for hyperspectral imaging (HSI), and light emission used for laser-induced fluorescence (LiF) spectroscopy. HSI has already proven successful for various mineral identification and also allows the mapping of REEs such as Nd, which may be used as pathfinder for other REEs. However, the complexity of natural samples leads to mixed spectra with masked or weak REE-related features complicating or even precluding a robust identification of many other REEs. Here, LiF spectroscopy provides a much more sensitive alternative as REEs show very distinct emission features characteristic of the f-f type electronic transitions in REE3+ ions, as encountered in typical REE-containing minerals. We present the potential of both HSI and LiF, especially for REE identification and for raw material exploration. We focus on the qualitative and quantitative aspects of REE characterization in synthetic REE standards and in natural minerals and complex rocks from a range of typical REE-mineral deposits.
Keywords: inSPECtor, spectroscopy, laser-induced fluorescence, hyperspectral imaging
  • Open Access Logo Contribution to proceedings
    EGU General Assembly 2018, 04.-13.04.2018, Vienna, Austria
    Proceedings of EGU

Downloads:

Permalink: https://www.hzdr.de/publications/Publ-28860
Publ.-Id: 28860


The Need for Multi-Source, Multi-Scale Hyperspectral Imaging to Boost Non-Invasive Mineral Exploration

Gloaguen, R.; Ghamisi, P.; Lorenz, S.; Kirsch, M.; Zimmermann, R.; Booysen, R.; Andreani, L.; Jackisch, R.; Hermann, E.; Tusa, L.; Unger, G.; Contreras, C.; Khodadadzadeh, M.; Fuchs, M.
The high demand for raw materials in our post-industrial societies contrasts the increasing difficulties to find new mineral deposits. In Europe, accessible and high-grade deposits are mostly exhausted or currently mined. Hence, future exploration must focus on the remaining, more remote locations or penetrate much deeper into the Earth's crust. Sustaining mining activities in Europe would allow the development of key technologies but also sustainable and ethical production of technological metals. Thus, we suggest to focus research on advances in multi-scale and multi-sensor remote sensing-based Earth integration techniques. The scale should range from satellite to air- and drone-borne systems and include ground validation. Multi-sensor downscaling methods involving SAR and optical data are particularly promising. We demonstrate that the integration with other sensors and/or measures such as geophysical/geochemical data as well as non-conventional remote sensing features such as textures and geometries are of interest. Thus, ultimately, our objective is to boost the competitiveness, growth, sustainability and attractiveness of the raw material sector in Europe. While we focus on the raw material sector as it is currently of strategic importance, the required methods are transferable to most environmental studies.
Keywords: Hyperspectral Imaging, Mineral Exploration
  • Open Access Logo Contribution to proceedings
    IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium, 22.-27.09.2018, Valencia, Spain
    Proceedings of IGARSS 2018

Permalink: https://www.hzdr.de/publications/Publ-28859
Publ.-Id: 28859


Heavy Metal Binding Peptides – Design and Construction of new Biosorbents

Braun, R.ORC; Schönberger, N.; Bachmann, S.; Matys, S.ORC; Lederer, F.ORC; Pollmann, K.ORC
Heavy metal contaminations in both industrial and environmental waters are widely occurring. However, removal is both challenging and cost-intensive. In this study, we identified metal-binding peptide sequences using phage surface display (PSD). Fusion proteins with PSD-derived sequences were construced for further recombinant production, future scale-up and as alternative to chemical synthesis. The construction of the fusion proteins included usage of inteins and affinity tags for simplified expression and purification. Quartz crystal microbalance with dissipation monitoring (QCM-D) was used for further characterization of the peptide-metal interaction. The system developed in this study provides metal-binding peptides with high specificity and sensitivity. Being biodegradable, the constructed peptides can be used in multiple applications. The identified motifs can furthermore provide a deeper understanding of peptide-metal interaction, leading to the discovery of novel metal-interacting biomolecules and better prediction of involved amino acids.
  • Poster
    8th Peptide Engineering Meeting, 08.-10.11.2018, Berlin, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-28858
Publ.-Id: 28858


System noise of a digital pulse processing module for nuclear instrumentation

Ma, Y.; Fischer, W.; Henniger, J.; Weinberger, D.; Kormoll, T.
Suppressing noise is important for the digital pulse processing (DPP) in the nuclear radiation detection, which requires precise knowledge of system noise. This work presents a DPP electrical module based on an FPGA of Lattice and derives a simple system noise distribution by experiment and analysis of acquired digital data using this system. The measured noise distribution of this system shows a multivariate Gaussian mixture model with different means and variances as a simple predict.
Keywords: digital signal processing; FPGA; noise; Gaussian; nuclear
  • Contribution to proceedings
    ANIMMA 2019 - International conference on Advancements in Nuclear Instrumentation Measurement Methods and their Applications, 17.-21.06.2019, Portorož, Slowenien
    Proceedings of ANIMMA 2019

Permalink: https://www.hzdr.de/publications/Publ-28857
Publ.-Id: 28857


Multivariate Data Assimilation for Resource Model Updating

Prior, A.; Benndorf, J.; Tolosana-Delgado, R.; van den Boogaart, K. G.
This is just a presentation in the COSMO Day. I did not submit an abstract since I was invited speaker
  • Invited lecture (Conferences)
    COSMO Day 2018, 05.07.2018, Montreal, Canada

Permalink: https://www.hzdr.de/publications/Publ-28856
Publ.-Id: 28856


Multivariate Ensemble Based Sequential Update Of The Resource Model For Real Time Mine Settings

Prior, A.; Tolosana-Delgado, R.; Prior-Arce, A.
Mining industry is continuously monitoring key performance indicators (KPI), and geo-metallurgical properties such as grade, fragmentation or tonnage and reconciling estimates to online capture production performance parameters. New technology is looking for monitoring also other properties as grain size.
Relevant information is obtained from sensors installed at different mining production process stages, as in a Block Evaluation or Schedule and Blending.
This study aims to develop an efficient updating framework based on Sequential Ensemble Filtering by using compositional data statistics that will be able to cope with the non-linearities of the system.
  • Poster
    POF Evaluation, 28.02.-02.03.2018, Dresden, Germany

Permalink: https://www.hzdr.de/publications/Publ-28855
Publ.-Id: 28855


Resource model updating for underground mining production settings

Prior, A.; Benndorf, J.; Mariz, C.
This research is part of the European Union funded 'Real Time Mining' project, which aims to develop a new framework to reduce uncertainties during the extraction process in highly selective underground mining settings. A continuously self-updating resource/grade control model concept is presented and aims to improve the raw material quality control and process efficiency of any type of mining operation. Applications in underground mines include the improved control of different components of the mineralogy and geochemistry of the extracted ore utilizing available “big data” collected during production. The development of the methodology is based on two full scale case study, the copper-zinc mine Neves-Corvo in Portugal and Reiche-Zeche mine in Germany. These serve for both, for the definition of method requirements and also as a basis for defining a Virtual Asset Model (VAM), which serves for artificial sampling as benchmark for performance analysis. This contribution introduces to the updating concept, provides a brief description of the method, explains details of the test cases and demonstrates the value added by an illustrative case study.
Keywords: Underground Mining, Data Assimilation, Geostatistitcs
  • Open Access Logo Contribution to proceedings
    REAL TIME MINING - Conference on Innovation on Raw Material Extraction Amsterdam 2017, 10.-11.10.2017, Amsterdam, The Netherlands

Permalink: https://www.hzdr.de/publications/Publ-28854
Publ.-Id: 28854


Tissue-type mapping of gliomas.

Raschke, F.; Barrick, T. R.; Jones, T.; Yang, G.; Ye, X.; Howe, F. A.
PURPOSE:

To develop a statistical method of combining multimodal MRI (mMRI) of adult glial brain tumours to generate tissue heterogeneity maps that indicate tumour grade and infiltration margins.

MATERIALS AND METHODS:

We performed a retrospective analysis of mMRI from patients with histological diagnosis of glioma (n = 25). 1H Magnetic Resonance Spectroscopic Imaging (MRSI) was used to label regions of "pure" low- or high-grade tumour across image types. Normal brain and oedema characteristics were defined from healthy controls (n = 10) and brain metastasis patients (n = 10) respectively. Probability density distributions (PDD) for each tissue type were extracted from intensity normalised proton density and T2-weighted images, and p and q diffusion maps. Superpixel segmentation and Bayesian inference was used to produce whole-brain tissue-type maps.

RESULTS:

Total lesion volumes derived automatically from tissue-type maps correlated with those from manual delineation (p < 0.001, r = 0.87). Large high-grade volumes were determined in all grade III & IV (n = 16) tumours, in grade II gemistocytic rich astrocytomas (n = 3) and one astrocytoma with a histological diagnosis of grade II. For patients with known outcome (n = 20), patients with survival time < 2 years (3 grade II, 2 grade III and 10 grade IV) had a high-grade volume significantly greater than zero (Wilcoxon signed rank p < 0.0001) and also significantly greater high grade volume than the 5 grade II patients with survival >2 years (Mann Witney p = 0.0001). Regions classified from mMRI as oedema had non-tumour-like 1H MRS characteristics.

CONCLUSIONS:

1H MRSI can label tumour tissue types to enable development of a mMRI tissue type mapping algorithm, with potential to aid management of patients with glial tumours.
Keywords: Glioma; Magnetic resonance spectroscopy (MRS); Multimodal MRI; Nosologic imaging; Pattern recognition

Downloads:

  • available with HZDR-Login

Permalink: https://www.hzdr.de/publications/Publ-28845
Publ.-Id: 28845


Dynamics of the magnetoelastic phase transition and adiabatic temperature change in Mn1.3Fe0.7P0.5Si0.55

Fries, M.; Gottschall, T.; Scheibel, F.; Pfeuffer, L.; Skokov, K. P.; Skourski, I.; Acet, M.; Farle, M.; Wosnitza, J.; Gutfleisch, O.
The adiabatic temperature change ΔTad of a Mn1.3Fe0.7P0.5Si0.55 Fe2P-type alloy was measured under different magnetic field-sweep rates from 0.93 Ts−1 to 2870 Ts−1. We find a field-sweep-rate independent magnetocaloric effect due to a partial alignment of magnetic moments in the paramagnetic region overlapping with the magnetocaloric effect of the first-order phase transition. Additionally, the first-order phase transition is not completed even in fields up to 20 T leading to a non-saturating behavior of ΔTad. Measurements in different pulsed fields reveal that the first-order phase transition cannot follow the fast field changes as previously assumed, resulting in a distinct field-dependent hysteresis in ΔTad.

Downloads:

  • available with HZDR-Login

Permalink: https://www.hzdr.de/publications/Publ-28844
Publ.-Id: 28844


Influence of pH, carbonate and calcium concentration on U(VI) retention by clay minerals at (hyper)alkaline conditions – A batch sorption and spectroscopy study

Philipp, T.; Schmeide, K.ORC; Rossberg, A.; Huittinen, N.; Stumpf, T.
Clays are considered as potential host rocks and backfill material for deep geological repositories for radioactive waste. Therefore, profound understanding of radionuclide retention processes at clay mineral surfaces is essential for a long-term safety assessment. As a result of the degradation of concrete within such a repository, hyperalkaline cement pore waters can evolve. Since the U(VI) sorption behavior at alkaline conditions is still poorly understood, batch experiments were combined with spectroscopic investigations in order to gain insight into the underlying retention processes on the molecular level.
U(VI) batch sorption experiments (pH 8-13) with various clay minerals at different carbonate concentrations (absence, 0.5 and 100 mM) showed a decreased U(VI) retention in the presence of carbonate up until a certain pH (pH 9.5 or pH 11, depending on [CO32-]) due to the formation of weakly sorbing uranyl carbonate complexes in aqueous solution, confirmed by time-resolved laser-induced fluorescence spectroscopy (TRLFS). This is in accordance with previous studies. However, also in the presence of carbonate, U(VI) retention is increased in even stronger alkaline solutions, which is attributed to the preferred formation of hydrolyzed U(VI) species.
In order to clarify the mechanisms responsible for the very strong U(VI) retention in the pH range 10-12 (absence and 0.5 mM CO32-), uranyl complexes on Ca-bentonite surfaces were examined directly, using site-selective TRLFS and extended X-ray absorption fine structure (EXAFS) spectroscopy (ESRF, Grenoble). Both techniques showed the presence of two different U(VI) surface complexes and no indication for U(VI) precipitation. Consequently, under the given conditions, adsorption is the dominant retention process despite the negative mineral surface charge and the anionic character of prevailing aqueous U(VI) species (i.e. UO2(OH)3-). The retention could be realized by mediating cations, which adsorb to the mineral surface in the first place, leading to a local compensation of negative surface charge. Experiments with different calcium concentrations confirmed that the presence of calcium significantly enhances the U(VI) retention between pH 10 an 12.
Keywords: uranium, Ca-bentonite, site-selective TRLFS, EXAFS, speciation, surface complexation, carbonate, calcium
  • Lecture (Conference)
    International Conference on Clay Science and Technology – EUROCLAY 2019, 01.-05.07.2019, Paris, France

Permalink: https://www.hzdr.de/publications/Publ-28843
Publ.-Id: 28843


Enzymes Immobilized on Carbon Nitride (C3N4) Cooperating with Metal Nanoparticles for Cascade Catalysis

Wang, Y.; Zhang, N.; Hübner, R.; Tan, D.; Löffler, M.; Facsko, S.; Zhang, E.; Ge, Y.; Qi, Z.; Wu, C.
The exploration of effective platforms for immobilizing chemo- and biocatalysts to develop biohybrid catalysts is an attractive subject of practical interest. In this work, carbon nitride (C3N4) is used for the first time as a platform for the immobilization of metal catalyst (Pd nanoparticles) and biocatalyst (Candida antarctica lipase B, CalB) in a facile manner to prepare biohybrid catalyst. The optimal biohybrid catalyst inherits the intrinsic performance of both Pd nanoparticles and CalB, and shows high activity in the one-pot cascade reaction converting benzaldehyde to benzyl hexanoate at room temperature. With this proof of concept, it is expected that C3N4 can be utilized for immobilizing more types of chemo- and biocatalysts for perspective applications.
Keywords: biohybrid catalysts, CalB, carbon nitride, cascade reactions, Pd nanoparticles

Downloads:

  • available with HZDR-Login

Permalink: https://www.hzdr.de/publications/Publ-28842
Publ.-Id: 28842


Technical Note: Experimental verification of magnetic field-induced beam deflection and Bragg peak displacement for MR-integrated proton therapy.

Schellhammer, S. M.; Gantz, S.; Lühr, A.; Oborn, B. M.; Bussmann, M.; Hoffmann, A. L.
Purpose: Given its sensitivity to anatomical variations, proton therapy is expected to benefit greatly from integration with magnetic resonance imaging for online anatomy monitoring during irradiation.
Such an integration raises several challenges, as both systems mutually interact. The proton beam will experience quasi-continuous energy loss and energy-dependent electromagnetic deflection at the same time, giving rise to a deflected beam trajectory and an altered dose distribution with a displaced Bragg peak. So far, these effects have only been predicted using Monte Carlo and analytical models, but no clear consensus has been reached and experimental benchmark data are lacking. We measured proton beam trajectories and Bragg peak displacement in a homogeneous phantom placed inside a magnetic field and compared them to simulations.
Methods: Planar dose distributions of proton pencil beams (80–180 MeV) traversing the field of a 0.95 T NdFeB permanent magnet while depositing energy in a PMMA slab phantom were measured using EBT3 radiochromic films and simulated using the Geant4 toolkit. Deflected beam trajectories and the Bragg peak displacement were extracted from the measured planar dose distributions and compared against the simulations.
Results: The lateral beam deflection was clearly visible on the EBT3 films and ranged from 1 to 10 mm for 80 to 180 MeV, respectively. Simulated and measured beam trajectories and Bragg peak displacement agreed within 0.8 mm for all studied proton energies.
Conclusions: These results prove that the magnetic field-induced Bragg peak displacement is both measurable and accurately predictable in a homogeneous phantom at 0.95 T, and allows Monte Carlo simulations to be used as gold standard for proton beam trajectory prediction in similar frameworks for MR-integrated proton therapy.
Keywords: magnetic field induced Bragg peak displacement, Monte Carlo simulation, MR guidance, proton dosimetry, proton therapy

Downloads:

  • available with HZDR-Login

Permalink: https://www.hzdr.de/publications/Publ-28841
Publ.-Id: 28841


SDF-1/CXCR4 expression is an independent negative prognostic biomarker in patients with head and neck cancer after primary radiochemotherapy

De-Colle, C.; Menegakis, A.; Mönnich, D.; Welz, S.; Boeke, S.; Sipos, B.; Fend, F.; Mauz, P. S.; Tinhofer, I.; Budach, V.; Abu, J. J.; Stuschke, M.; Balermpas, P.; Rödel, C.; Grosu, A. L.; Abdollahi, A.; Debus, J.; Belka, C.; Ganswindt, U.; Pigorsch, S.; Combs, S. E.; Lohaus, F.; Linge, A.; Krause, M.; Baumann, M.; Zips, D.
Introduction: Preclinical and clinical data suggest that the chemokine pathway governed by SDF-1 and CXCR4 contributes to a resistant phenotype. This retrospective biomarker study aims to explore the specific prognostic value of SDF-1 and CXCR4 expression in locally advanced head and neck squamous cell carcinomas (HNSCC) treated with primary radiochemotherapy (RT-CT).
Material and methods: Biopsies from 141 HNSCC tumours of the oral cavity, oropharynx and hypopharynx were evaluated for SDF-1 and CXCR4 expression by immunofluorescence. SDF-1 and CXCR4 expression was correlated with clinico-pathological characteristics and outcome after RT-CT.
Results: Patients with tumours exhibiting overexpression of intracellular SDF-1 and CXCR4 have a higher risk for loco-regional relapse and a worse overall survival after RT-CT (multivariate analysis, hazard ratio 2.33, CI [1.18–4.62], p = 0.02 and hazard ratio 2.02, CI [1.13–3.59], p = 0.02, respectively). Similar results were observed when only the subgroup of HPV DNA negative patients were analysed (hazard ratio 2.23 and 2.16, p = 0.02 and p = 0.01, respectively).
Conclusions: Our data support the importance of SDF-1 and CXCR4 expression for loco-regional control and overall survival in HNSCC after primary radiochemotherapy. Prospective multivariate validation and further studies into CXCR4 inhibition to overcome radiation resistance are warranted.
Keywords: SDF-1 CXCR4 Head and neck cancer Prognostic Biomarker Primary radiochemotherapy

Downloads:

  • available with HZDR-Login

Permalink: https://www.hzdr.de/publications/Publ-28840
Publ.-Id: 28840


Improved effectiveness of stereotactic radiosurgery in large brain metastases by individualized isotoxic dose prescription: an in silico study

Zindler, J. D.; Schiffelers, J.; Lambin, P.; Hoffmann, A. L.
Introduction In large brain metastases (BM) with a diameter of more than 2cm there is an increased risk of radionecrosis (RN) with standard stereotactic radiosurgery (SRS) dose prescription, while the normal tissue constraint is exceeded. The tumor control probability (TCP) with a single dose of 15Gy is only 42%. This in silico study tests the hypothesis that isotoxic dose prescription (IDP) can increase the therapeutic ratio (TCP/Risk of RN) of SRS in large BM.
Materials and methods A treatment-planning study with 8 perfectly spherical and 46 clinically realistic gross tumor volumes (GTV) was conducted. The effects of GTV size (0.5–4cm diameter), set-up margins (0, 1, and 2mm), and beam arrangements (coplanar vs non-coplanar) on the predicted TCP using IDP were assessed. For single-, three-, and five-fraction IDP dose–volume constraints of V12Gy = 10cm3, V19.2 Gy = 10cm3, and a V20Gy = 20cm3, respectively, were used to maintain a low risk of radionecrosis.
Results In BM of 4cm in diameter, the maximum achievable single-fraction IDP dose was 14Gy compared to 15Gy for standard SRS dose prescription, with respective TCPs of 32 and 42%. Fractionated SRS with IDP was needed to improve the TCP. For three- and five-fraction IDP, a maximum predicted TCP of 55 and 68% was achieved respectively (non-coplanar beams and a 1mm GTV-PTV margin).
Conclusions Using three-fraction or five-fraction IDP the predicted TCP can be increased safely to 55 and 68%, respectively, in large BM with a diameter of 4cm with a low risk of RN. Using IDP, the therapeutic ratio of SRS in large BM can be increased compared to current SRS dose prescription.
Keywords: Radiotherapy · Stereotactic · Dose prescription · Normal tissue tolerance · Large brain metastases

Downloads:

  • available with HZDR-Login

Permalink: https://www.hzdr.de/publications/Publ-28839
Publ.-Id: 28839


Electro-vortex flow in liquid metal batteries

Nore, C.; Ziebell Ramos, P.; Herreman, W.; Cappanera, L.; Guermond, J.-L.; Weber, N.
We study the generation of rotational flows in electrically conducting fluids due to the Electro-Vortex-Flow (EVF) phenomenon, i.e. the interaction of a non-uniform current with the magnetic field it generates. We have been developing a so-called code SFEMaNS since 2001 [2] capable of simulating the nonlinear magnetohydrodynamic (MHD) equations in heterogeneous domains (with electrical conductivity or magnetic permeability jumps) in axisymmetric geometries and with several fluids [1]. Liquid Metal Batteries are composed of three layers of fluids (liquid metal electrode–electrolyte–liquid metal electrode) of different densities lying over each other and stabilized by gravity. These batteries are prone to magnetohydrodynamical instabilities (e.g. the Tayler instability [3], the Metal Pad Roll instability [4], etc) which may deform the electrode–electrolyte interfaces until the ultimate situation of short circuit when the two metals touch each other.
In this talk we first discuss the typical intensity and structure of the axisymmetric flow in a liquid metal column covered by many previous studies. After that, we focus on EVF in liquid metal batteries (see figure 1). We discuss the deformation of the electrolyte-liquid metal interfaces caused by EVF and we characterize how EVF helps in mixing the bottom alloy layer.
  • Lecture (Conference)
    17th European Turbulence Conference, 03.09.2019, Turin, Italien

Permalink: https://www.hzdr.de/publications/Publ-28838
Publ.-Id: 28838


Impaired DNA damage response signaling by FUS-NLS mutations leads to neurodegeneration and FUS aggregate formation

Naumann, M.; Pal, A.; Goswami, A.; Lojewski, X.; Japtok, J.; Vehlow, A.; Naujock, M.; Günther, R.; Jin, M.; Stanslowsky, N.; Reinhardt, P.; Sterneckert, J.; Frickenhaus, M.; Pan-Montojo, F.; Storkebaum, E.; Poser, I.; Freischmidt, A.; Weishaupt, J. H.; Holzmann, K.; Troost, D.; Ludolph, A. C.; Boeckers, T. M.; Liebau, S.; Petri, S.; Cordes, N.; Hyman, A. A.; Wegner, F.; Grill, S. W.; Weis, J.; Storch, A.; Hermann, A.
Amyotrophic lateral sclerosis (ALS) is the most frequent motor neuron disease. Cytoplasmic fused in sarcoma (FUS) aggregates are pathological hallmarks of FUS-ALS. Proper shuttling between the nucleus and cytoplasm is essential for physiological cell function. However, the initial event in the pathophysiology of FUS-ALS remains enigmatic. Using human induced pluripotent stem cell (hiPSCs)-derived motor neurons (MNs), we show that impairment of poly(ADP-ribose) polymerase (PARP)-dependent DNA damage response (DDR) signaling due to mutations in the FUS nuclear localization sequence (NLS) induces additional cytoplasmic FUS mislocalization which in turn results in neurodegeneration and FUS aggregate formation. Our work suggests that a key pathophysiologic event in ALS is upstream of aggregate formation. Targeting DDR signaling could lead to novel therapeutic routes for ameliorating ALS.

Downloads:

  • available with HZDR-Login

Permalink: https://www.hzdr.de/publications/Publ-28837
Publ.-Id: 28837


Differential effects of α-catenin on the invasion and radiochemosensitivity of human colorectal cancer cells

Förster, S.; Hehlgans, S.; Rödel, F.; Otto, B.; Cordes, N.
Driven by genetic and epigenetic alterations, progression, therapy resistance and metastasis are frequent events in colorectal cancer (CRC). Although often speculated, the function of cell-cell contact for radiochemosensitivity, particularly associated with E-cadherin/catenin complex, warrants further clarification. In this study, we investigated the role of the E-cadherin/catenin complex proteins under more physiological three-dimensional (3D) cell culture conditions in a panel of CRC cell lines. In contrast to floating spheroids and growth in the laminin-rich matrix, collagen type 1 induced the formation of two distinct growth phenotypes, i.e., cell groups and single cells, in 5 out of the 8 CRC cell lines.
Further characterization of these subpopulations revealed that, intriguingly, cell-cell contact proteins are important for invasion, but negligible for radiochemosensitivity, proliferation and adhesion. Despite the generation of genomic and transcriptomic data, we were unable to elucidate the mechanisms through which α-catenin affects collagen type 1 invasion. In a retrospective analysis of patients with rectal carcinoma, a low α-catenin expression trended with overall survival, as well as locoregional and distant control. Our results suggest that the E-cadherin/catenin complex proteins forming cell-cell contacts are mainly involved in the invasion, rather than the radiochemosensitivity of 3D grown CRC cells. Further studies are warranted in order to provide a better understanding of the molecular mechanisms controlling cell-cell adhesion in the context of radiochemoresistance.
Keywords: colorectal cancer, α-catenin, radiochemotherapy, E-cadherin

Downloads:

  • available with HZDR-Login

Permalink: https://www.hzdr.de/publications/Publ-28836
Publ.-Id: 28836


Pretherapeutic FDG–PET total metabolic tumor volume predicts response to induction therapy in pediatric Hodgkin’s lymphoma

Rogasch, J.; Hundsdoerfer, P.; Hofheinz, F.; Wedel, F.; Schatka, I.; Amthauer, H.; Furth, C.
Background

Standardized treatment in pediatric patients with Hodgkin’s lymphoma (HL) follows risk stratification by tumor stage, erythrocyte sedimentation rate and tumor bulk. We aimed to identify quantitative parameters from pretherapeutic FDG-PET to assist prediction of response to induction chemotherapy.

Methods

Retrospective analysis in 50 children with HL (f:18; m:32; median age, 14.8 [4–18] a) consecutively treated according to EuroNet-PHL-C1 (n = 42) or -C2 treatment protocol (n = 8). Total metabolic tumor volume (MTV) in pretherapeutic FDG-PET was defined using a semi-automated, background-adapted threshold. Metabolic (SUVmax, SUVmean, SUVpeak, total lesion glycolysis [MTV*SUVmean]) and heterogeneity parameters (asphericity [ASP], entropy, contrast, local homogeneity, energy, and cumulative SUV-volume histograms) were derived. Early response assessment (ERA) was performed after 2 cycles of induction chemotherapy according to treatment protocol and verified by reference rating. Prediction of inadequate response (IR) in ERA was based on ROC analysis separated by stage I/II (1 and 26 patients) and stage III/IV disease (7 and 16 patients) or treatment group/level (TG/TL) 1 to 3.


Results

IR was seen in 28/50 patients (TG/TL 1, 6/12 patients; TG/TL 2, 10/17; TG/TL 3, 12/21). Among all PET parameters, MTV best predicted IR; ASP was the best heterogeneity parameter. AUC of MTV was 0.84 (95%-confidence interval, 0.69–0.99) in stage I/II and 0.86 (0.7–1.0) in stage III/IV. In patients of TG/TL 1, AUC of MTV was 0.92 (0.74–1.0); in TG/TL 2 0.71 (0.44–0.99), and in TG/TL 3 0.85 (0.69–1.0). Patients with high vs. low MTV had IR in 86 vs. 0% in TG/TL 1, 80 vs. 29% in TG/TL 2, and 90 vs. 27% in TG/TL 3 (cut-off, > 80 ml, > 160 ml, > 410 ml).

Conclusions

In this explorative study, high total MTV best predicted inadequate response to induction therapy in pediatric HL of all pretherapeutic FDG-PET parameters – in both low and high stages as well as the 3 different TG/TL.
Keywords: Pediatric Hodgkin’s lymphoma Early response assessment FDG-PET Metabolic tumor volume Asphericity

Downloads:

  • available with HZDR-Login

Permalink: https://www.hzdr.de/publications/Publ-28835
Publ.-Id: 28835


Enhancement of the effective mass at high magnetic fields in CeRhIn5

Jiao, L.; Smidman, M.; Kohama, Y.; Wang, Z. S.; Graf, D.; Weng, Z. F.; Zhang, Y. J.; Matsuo, A.; Bauer, E. D.; Lee, H.; Kirchner, S.; Singleton, J.; Kindo, K.; Wosnitza, J.; Steglich, F.; Thompson, J. D.; Yuan, H. Q.
The Kondo-lattice compound CeRhIn5 displays a field-induced Fermi surface reconstruction at B* ≈ 30 T, which occurs within the antiferromagnetic state, prior to the quantum critical point at Bc0 ≈ 50 T. Here, in order to investigate the nature of the Fermi surface change, we measured the magnetostriction, specific heat, and magnetic torque of CeRhIn5 across a wide range of magnetic fields. Our observations uncover the field-induced itineracy of the 4f electrons, where above Bonset ≈ 17 T there is a significant enhancement of the Sommerfeld coefficient, and spin-dependent effective cyclotron masses determined from quantum oscillations. Upon crossing Bonset , the temperature dependence of the specific heat also shows distinctly different behavior from that at low fields. Our results indicate that the Kondo coupling is remarkably robust upon increasing the magnetic field. This is ascribed to the delocalization of the 4f electrons at the Fermi surface reconstruction at B*.

Downloads:

  • available with HZDR-Login

Permalink: https://www.hzdr.de/publications/Publ-28834
Publ.-Id: 28834


Concise Review: Prostate Cancer Stem Cells: Current Understandin

Skvortsov, S.; Skvortsova, I. I.; Tang, D. G.; Dubrovska, A.
Prostate cancer (PCa) is heterogeneous, harboring phenotypically diverse cancer cell types. PCa cell heterogeneity is caused by genomic instability that leads to the clonal competition and evolution of the cancer genome and by epigenetic mechanisms that result in subclonal cellular differentiation. The process of tumor cell differentiation is initiated from a population of prostate cancer stem cells (PCSCs) that possess many phenotypic and functional properties of normal stem cells. Since the initial reports on PCSCs in 2005, there has been much effort to elucidate their biological properties, including unique metabolic characteristics. In this Review, we discuss the current methods for PCSC enrichment and analysis, the hallmarks of PCSC metabolism, and the role of PCSCs in tumor progression.
Keywords: Prostate • Cancer • Cancer stem cells • Heterogeneity • Metabolism

Downloads:

Permalink: https://www.hzdr.de/publications/Publ-28833
Publ.-Id: 28833


Field-induced phases in a heavy-fermion U(Ru0.92Rh0.08)2Si2 single crystal

Prokes, K.; Förster, T.; Huang, Y.-K.; Mydosh, J. A.
We report the high-field-induced magnetic phases and phase diagram of a high quality U(Ru0.92Rh0.08 )2Si2 single crystal prepared using a modified Czochralski method. Our paper, that combines high-field magnetization and electrical resistivity measurements, shows for fields applied along the c-axis direction three field-induced magnetic phase transitions at μ0Hc1 = 21.60, μ0Hc2 = 37.90, and μ0Hc3 = 38.25 T, respectively. In agreement with a microscopic up-up-down arrangement of the U magnetic moments the phase above Hc1 has a magnetization of about one-third of the saturated value. In contrast the phase between Hc2 and Hc3 has a magnetization that is a factor of 2 lower than above the Hc3 where a polarized Fermi-liquid state with a saturated moment Ms ≈ 2.1μB/U is realized. Most of the respective transitions are reflected in the electrical resistivity as sudden drastic changes. Most notably, the phase between Hc1 and Hc2 exhibits substantially larger values. As the temperature increases, transitions smear out and disappear above ≈15 K. However, a substantial magnetoresistance is observed even at temperatures as high as 80 K. Due to a strong uniaxial magnetocrystalline anisotropy, a very small field effect is observed for fields applied perpendicular to the c-axis direction.

Downloads:

  • available with HZDR-Login

Permalink: https://www.hzdr.de/publications/Publ-28832
Publ.-Id: 28832


Jahn-Teller effect problems via ultrasonic experiments. Application to the impurity crystal CdSe:Cr

Averkiev, N. S.; Bersuker, I. B.; Gudkov, V. V.; Zhevstovskikh, I. V.; Sarychev, M. N.; Zherlitsyn, S.; Yasin, S.; Korostelin, Y. V.; Surikov, V. T.
Based on the data analysis of ultrasonic experiments, a novel approach has been developed to explore Jahn-Teller effect (JTE) problems in non-cubic crystals with JT centers without involving additional experimental data beyond the information about the electronic term and crystal symmetry. Distinguished from cubic crystals, the axis of symmetry of the bulk non-cubic crystal do not necessarily coincide with those of the local impurity center, thus complicating the relation between the distortions produced by the ultrasound wave and the JTE active modes. We analysed the problem with corresponding calculations for the wurtzite-type hexagonal crystal CdSe:Cr2+, in which the chromium ion substitutes the cadmium one in the tetrahedral environment, resulting in its electronic ground state 5T2(e2t2). Experimental investigation of this system by ultrasound at frequencies of 28-105 MHz in the temperature range of 4-180 K, yields a peak in the attenuation of the ultrasound below 40 K for the normal modes related to the c 11, c 44, c 55, c 55, and c 66 elastic moduli. The peak has been interpreted as the manifestation of the JTE, similar to the one, observed in cubic crystals doped with 3d ions. However, no anomalies of attenuation have been detected for the mode related to the c 33 elastic modulus, in contradiction to the theoretical predictions based on the previous method, worked out for cubic crystals. In the new method we obtained direct relations between the deformations, related to the crystal moduli, and the local JT modes, calculated the partition functions for each of the three possible JTE problems for systems with an electronic T term, T⊗e, T⊗t2 and T⊗(e + t2) revealed how these deformations alter the vibronic energy levels responsible for the relaxations in the JT centers. It emerged that in the wurtzite crystal under consideration, only in the T⊗e problem the deformation related to the elastic moduli c 33 displaces all the vibronic energy level uniformly, without relaxation possibilities, thus supporting the new method and explaining the experimental observations.

Downloads:

  • available with HZDR-Login

Permalink: https://www.hzdr.de/publications/Publ-28831
Publ.-Id: 28831


Changing the properties of GaAs via strain engineering in core/shell nanowires

Balaghi, L.; Bussone, G.; Grifone, R.; Hübner, R.; Grenzer, J.; Shan, S.; Fotev, I.; Pashkin, A.; Ghorbani-Asl, M.; Krasheninnikov, A.; Schneider, H.; Helm, M.; Dimakis, E.
III-V compound semiconductors have fueled many breakthroughs in photonics owing to their direct optical band gap and the possibility to tailor it in ternary or quaternary alloys by selecting the chemical composition appropriately. More recently, III-V semiconductors in the form of free-standing nanowires have found new strengths for a wide range of future applications in nanotechnology, including nano-photonics. Here we explore the great possibilities for strain engineering in core/shell nanowires as an alternative route to tailor the optical band gap of III-V semiconductors without changing their chemical composition. In particular, we demonstrate that the GaAs core in GaAs/InxGa1-xAs or GaAs/InxAl1-xAs core/shell nanowires can sustain unusually large misfit strains that would have been impossible in equivalent thin-film heterostructures, and undergoes a significant modification of its electronic proper-ties.

Core/shell nanowires were grown in the self-catalyzed mode on SiOx/Si(111) substrates by molecular beam epitaxy [1, 2]. Strain analysis was performed using synchrotron X-ray diffraction and Raman scat-tering spectroscopy, and showed that for a thin enough core, the magnitude and the spatial distribution of the built-in misfit strain can be regulated via the composition and the thickness of the shell. Beyond a critical shell thickness, we obtain a heavily tensile-strained core and an almost strain-free shell. The tensile strain of the core exhibits a predominantly-hydrostatic character and causes the reduction of the GaAs band gap energy (Figure 1) in accordance with our theoretical predictions using deformation-potential theory and first-principle calculations. For 7 % of strain (x = 0.54), the band gap energy was reduced to 0.87 eV at 300 K, i.e. a remarkable reduction of 40 %. This is particularly important for ap-plications in optical fiber telecommunications because the emission from strained GaAs nanowires can now cover the O-band and potentially the S-band of telecommunication wavelengths.

Besides the optical band gap, a similar reduction is expected for the effective mass of free electrons in tensile-strained GaAs. The corresponding electron mobility was estimated by time-domain terahertz spectroscopy to be in the range of 4000 – 5000 cm2/V·s at 300 K (core diameter = 22 nm, x = 0.39–0.49). These values are the highest reported, even in comparison to GaAs/AlxGa1-xAs nanowires with double the core thickness. This means that high-mobility transistors could now be possible with strained GaAs nanowires.

All in all, our results demonstrate that strained GaAs in core/shell nanowires can resemble the electronic properties of InxGa1-xAs, which makes it suitable for near-infrared nano-photonics. The use of a binary alloy instead of a ternary one would be advantageous because phenomena like phase separation, surface segregation or alloy disorder that typically exist in ternary alloys and limit the performance of photonic or electronic devices, become now irrelevant.
  • Invited lecture (Conferences)
    Nanostructures for Photonics, 07.05.2018, Saint Petersburg, Russia

Permalink: https://www.hzdr.de/publications/Publ-28829
Publ.-Id: 28829


Broadband photo-excited coherent acoustic frequency combs and mini-Brillouin-zone modes in a MQW-SESAM structure

Li, C.; Gusev, V.; Dimakis, E.; Dekorsy, T.; Hettich, M.
A multiple quantum-well semiconductor saturable absorber mirror (MQW-SESAM) structure has been investigated by femtosecond pump-probe laser spectroscopy at a central wavelength of around 1050 nm. Coherent acoustic phonons are generated and detected over a wide frequency range from ~15 GHz to ~800 GHz. In the optical absorption region, i.e., in the multiple quantum wells (In0.27Ga0.73As), acoustic frequency combs centered at ~365 GHz, with a comb spacing of ~33 GHz, are generated. Most importantly, in the transparent region, i.e., in the distributed Bragg reflector, which is formed by a non-doped long-period semiconductor GaAs/Al0.95Ga0.05As superlattice, the mini-Brillouin-zone center, as well as zone-edge acoustic modes, are observed. The mini-zone-center modes with a fundamental frequency of 32 GHz can be attributed to the spatial modulation of the pump optical interference field with a period very close to that of the distributed Bragg reflector, in combination with the periodic spatial modulation of the electrostriction coefficient in the distributed Bragg reflector. The excitation of mini-zone-edge modes is attributed to the stimulated subharmonic decay of the fundamental center modes. Their subsequent back-folding to the mini-Brillouin-zone center makes them Raman active for the probe light.
Keywords: coherent acoustic phonons; pump-probe spectroscopy; quantum well; semiconductor; superlattice; mini-Brillouin-zone; high-speed asynchronous optical sampling
  • Open Access Logo Applied Sciences 9(2019), 289

Downloads:

  • available with HZDR-Login

Permalink: https://www.hzdr.de/publications/Publ-28828
Publ.-Id: 28828


Observation of sidearm splitting studied by high resolution X-ray radiography

Shevchenko, N.; Grenzer, J.; Keplinger, O.; Rack, A.; Eckert, S.
The local dynamics of dendritic sidearms during the growth stage are studied by in-situ radiography observations at high spatial resolution of < 1 µm. A flat sample of a Ga-In alloy is solidified top-down applying a vertical temperature gradient. The evolving dendritic microstructure is visualized using synchrotron X-ray imaging at the beamline ID19 (ESRF, France). The experimental investigations on the dendrite evolution revealed a transition from a four-fold symmetry to a hyperbranched dendritic morphology. Both, the sidearm-splitting phenomena – responsible for this morphological transition – as well as the arm growth dynamics are characterized by image processing.
Keywords: Dendritic growth, Solidification, Sidearm splitting, Synchrotron X-ray imaging

Downloads:

  • available with HZDR-Login
  • Secondary publication expected from 01.01.2021

Permalink: https://www.hzdr.de/publications/Publ-28827
Publ.-Id: 28827


Development and radiosynthesis of the first 18F-labeled inhibitor of monocarboxylate transporters (MCTs)

Sadeghzadeh, M.; Moldovan, R.-P.; Fischer, S.; Wenzel, B.; Ludwig, F.-A.; Teodoro, R.; Deuther-Conrad, W.; Jonnalagadda, S.; K. Jonnalagadda, S.; Gudelis, E.; Šačkus, A.; R. Mereddy, V.; R. Drewes, L.; Brust, P.
Monocarboxylate transporters 1 and 4 (MCT1 and MCT4) are involved in tumor development and progression. Their expression levels are related to clinical disease prognosis. Accordingly, both MCTs are promising drug targets for treatment of a variety of human cancers. The non-invasive imaging of these MCTs in cancers is regarded to be advantageous for assessing MCT-mediated effects on chemotherapy and radiosensitization using specific MCT inhibitors. Herein, we describe a method for the radiosynthesis of [18F]FACH ((E)-2-cyano-3-{4-[(3-[18F]fluoropropyl)(propyl) amino]-2-methoxyphenyl}acrylic acid), as a novel radiolabeled MCT1/4 inhibitor for imaging with PET. A fluorinated analog of α-cyano-4-hydroxycinnamic acid (FACH) was synthesized and the inhibition of MCT1 and MCT4 was measured via an [14C]lactate uptake assay. Radiolabeling was performed via a two-step protocol comprising the radiosynthesis of the intermediate (E)/(Z)-[18F]tert-Bu-FACH (tert-butyl (E)/(Z)-2-cyano-3-{4-[(3-[18F]fluoropropyl)(propyl)amino]-2-methoxyphenyl}acrylate) followed by deprotection of the tert-butyl group. The radiofluorination was successfully implemented using either K[18F]F-K2.2.2-carbonate or [18F]TBAF. The final deprotected product [18F]FACH was only obtained when [18F]tert-Bu-FACH was formed by the latter procedure. After optimization of the deprotection reaction, [18F]FACH was obtained in high radiochemical yields (39.6 ± 8.3%, EOB) and radiochemical purity (>98%).
Keywords: Radiofluorination, [18F]FACH, Positron emission tomography (PET), Monocarboxylate transporters (MCTs), α-cyano-4-hydroxycinnamic acid (α-CHC)
  • Journal of Labelled Compounds and Radiopharmaceuticals 62(2019)8, 411-424
    DOI: 10.1002/jlcr.3739

Downloads:

  • available with HZDR-Login
  • Secondary publication expected from 30.06.2020

Permalink: https://www.hzdr.de/publications/Publ-28825
Publ.-Id: 28825


Structural and optical properties of pulsed-laser deposited crystalline β-Ga2O3 thin films on silicon

Berencén, Y.; Xie, Y.; Wang, M.; Prucnal, S.; Rebohle, L.; Zhou, S.
Crystalline β-Ga2O3 thin films on (100)- and (111)-oriented Si substrates are produced by pulsed laser deposition. The as-deposited thin films are demonstrated to be polycrystalline and contain a slight deficit of oxygen atoms as measured by x-ray diffraction spectroscopy and Rutherford backscattering spectrometry, respectively. The crystallographic orientation of the Si substrate is found to play no role on the ultimate properties of the films. A direct optical band gap of 4.8 eV is determined by temperature-dependent photoluminescence excitation (PLE). Temperature-dependent PLE spectra reveal the existence of a deep acceptor level of around 1.1 eV with respect to the valence band related to self-trapped holes. We experimentally demonstrate that point defects in O-poor β-Ga2O3 thin films act as deep donors and the optical transitions are found to take place via recombination of electrons from one of the intrinsic deep donor levels with self-trapped holes located at 1.1 eV above the valence band. The 3.17 eV ultraviolet photoluminescence is proven to be related to self-trapped holes in a small polaron state between two O(II)-s sites, whereas the two blue (2.98, 2.72 eV) and the green (2.39 eV) luminescence bands are mainly originated from gallium-oxygen vacancy pairs in the (1-) charge state, gallium vacancies in the (2-) charge state and neutral oxygen interstitials, respectively.
Keywords: β-Ga2O3 thin film on Si, pulsed laser deposition, photoluminescence, substrate orientation

Downloads:

Permalink: https://www.hzdr.de/publications/Publ-28824
Publ.-Id: 28824


Geological 3D model of the Thaba Chrome Mine, Bushveld Complex, South Africa

Schwäbe, A.; Gutzmer, J.; Bachmann, K.
This 3D geologic-stratigraphic modelling project is based on comprehensive drilling data originating from the Thaba mining lease area in the Western Bushveld Complex, South Africa. The geometric shape and distribution of manifold ultramafic and mafic rock types of the cyclic units of Lower and Upper Critical Zone of the Rustenburg Layered Suite is subject of this study. These 2.06 Ga old Paleoproterozoic successions occur as layered sequences at Thaba Mine and are characterized by shallow inclination towards SE (dipping angles 15° to 27°), distinct lateral and vertical continuity of the layering and the regular stratigraphic order of the horizons.
Therewith, the requirements for the 3D geologic modelling approach are complied. The technique is called ‘Integrated Stratigraphic Modelling’ and is utilized by Maptek’s Vulcan modelling suite. The project is started by compiling a drilling database of more than 400 boreholes that host collar, survey, geology, and assay data. The present rock types of the source data are classified into five classes (chromitite, ‘silicate’, alteration, structure, burden) and a stratigraphic list of 42 horizons is developed based on the positions of chromitite horizons in the drilling data. Preparations for the modelling include modifications of original drilling data by applying the succession of horizons on the stratigraphy field in the geology table of the database.
The developed stratigraphic horizon list is utilized by the software to sequence and interpolate floor and roof positions of each horizon. In total, the model consists of 21 chromitite layers (LG1 to MG4b) and 21 mafic interlayers. Interlayer horizons with the suffix -‘SIL’ comprise all rock types between two chromitite layers. Pyroxenite, harzburgite, and norite are most dominant; the higher in the stratigraphic column the more likely are rock types that contain cumulus plagioclase, e.g. anorthosites. Altered rock types such as troctolites and serpentinites are also occurring relatively frequent, but also discordant IRUP bodies as well as dykes and pegmatitic rocks.
Chromitite layers are representing the basal parts of cyclic units with average thicknesses between a few centimeters and one meter, in some cases up to a few meters. Especially Lower Group chromitites are occurring with relative constant thicknesses over the entire study area. The farms Schilpadnest, south-west Zwartkop, and Elandskuil are parts of the study area where the layering is developed best. Middle Group chromitites and their mafic host rocks are distributed much more discontinuous on the farms Zwartkop (north-east), Roodedam, and Middellaagte.
A pronounced lateral variation of the distribution of chromitites and host rock interlayers is recognizable in different parts of the study area, particularly areas of intense faulting between the farms Zwartkop and Middellaagte plus between Middellaagte and Elandskuil. Additionally, the consistency of the modelling results is reduced in areas were dominantly short boreholes occur, especially on the north-east section of farm Zwartkop.
Keywords: -
  • Master thesis
    TU BA Freiberg, 2018
    Mentor: Jens Gutzmer
    90 Seiten

Permalink: https://www.hzdr.de/publications/Publ-28823
Publ.-Id: 28823


A new single crystal diffractometer at BM20/ESRF

Hennig, C.; Ikeda-Ohno, A.; Radoske, T.; Scheinost, A. C.
The Institute of Resource Ecology / Helmholtz-Zentrum Dresden-Rossendorf operates since 20 years the Rossendorf Beamline (ROBL/BM20) at the European Synchrotron Radiation Facility (ESRF). The ESRF will interrupt the user operation for a large upgrade between January 2019 and July 2020. This time will be used to refurbish the existing experiments and to extend the experimental capacities including a diffractometer for single crystal diffraction.
This diffractometer intends to fill the gap between small molecule and large molecule crystallography. The photon flux of up to 1012 photons/sec allow the structure determination of small single crystals. The analysis of complex intergrown crystals and electron density studies is possible. The energy range of 5-35 keV allows the use of anomalous dispersion. In-situ experiments will be supported.
The objective requires the combination of a large detector, precise sample position and sufficient space for additional equipment. The diffractometer consists of an adjustable granite table with a metal frame which carry the detector. It follows a design of SNBL/ESRF and is manufactured by Instrument Design Technology Ltd/UK. The Bragg reflexes will be registered with a silicon Pilatus3 X 2M single photon counting detector. Samples will be mounted on a kappa goniometer. A microscope will be placed in a large distance 170 mm from the crystal, which allows to install a cryo cooler (80-400 K), a heater (1200 K), and a Vortex X90 CUBE silicon drift detector with a FalconX1 processor. The data extraction with will be performed with CRYSALIS. Individual components are already tested with X-ray beam.
The new single crystal diffractometer will be accessible starting from August 2020.
Keywords: single crystal diffraction, small molecule and large molecule crystallography, SCXRD, Rossendorf Beamline
  • Lecture (Conference)
    Annual Meeting of the German Crystallographic Society, 25.-28.03.2019, Leipzig, Germany
  • Abstract in refereed journal
    Zeitschrift für Kristallographie Supplement 39(2019), S16-04

Permalink: https://www.hzdr.de/publications/Publ-28822
Publ.-Id: 28822


Multivariate geochemical classification of chromitite seams in the Bushveld Complex, South Africa

Bachmann, K.; Menzel, P.; Tolosana-Delgado, R.; Schmidt, C.; Hill, M.; Gutzmer, J.
The Bushveld Complex, the largest layered mafic-ultramafic intrusion worldwide, is host of numerous, laterally continuous and chemically similar chromitite seams. Based on their stratigraphic position the seams are subdivided into a lower, middle and upper group (LG, MG and UG). Within these groups the seams are numbered successively – from the base to the top of each group. Attempts of discriminating between single seams based on their composition have failed – mainly due to the significant overlap of compositional fields, e.g. of chromitite mineral assemblages and chromite mineral chemistry between (neighboured) seams. In this contribution a tailored and easy to use multivariate classification scheme for the chromitite seams is proposed, based on a comprehensive classification routine for the LG and MG chromitites. This routine allows a clear attribution with known uncertainty of eight distinct chromitite seams. The study was carried out at the Thaba Mine, a chromite mine located on the western limb of the Bushveld Complex. The classification is based on a large geochemical database (N = 1205) from Thaba Mine. It comprises of a hierarchical discrimination approach relying on linear discriminant analysis and involves five distinct steps. Using default homogeneous prior probabilities, classification results are excellent for the first discrimination steps (LGs vs. MGs, 97 %; LG-6 vs. LG-6A, 94 %) and very good for the following steps (MG-1/2 vs. MG-3/4, 86 %; MG-1 vs. MG-2, 92 %; MG-3 vs. MG-4, 93 %; MG-4 vs. MG-4Z, 97 %; MG-4 vs. MG-4A, 88 %). The classification scheme was tested using the same sample set as a training set with unknown composition. Overall classification results for unknown samples belonging to one of the seams are 81 %. Hence, the classification scheme is at least valid for the Thaba mine. The approach may, however, be extended across the entire Bushveld, provided that an appropriate geochemical data set is available.
Keywords: Linear discriminant analysis, PGE, Thaba Mine, Lower group chromitites, Middle group chromitites, compositional data analysis

Downloads:

  • available with HZDR-Login
  • Secondary publication expected from 27.02.2020

Permalink: https://www.hzdr.de/publications/Publ-28821
Publ.-Id: 28821


Variations in Composition, Texture, and Platinum Group Element Mineralization in the Lower Group and Middle Group Chromitites of the Northwestern Bushveld Complex, South Africa

Kaufmann, F. E. D.; Hoffmann, M. C.; Bachmann, K.; Veksler, I. V.; Trumbull, R. B.; Hecht, L.
Small-scale variations in mineral chemistry, textures and platinum group element (PGE) mineralization were investigated in the Lower and Middle Group chromitite layers LG6, LG6a, MG1, MG2, MG2 II from vertical drill core profiles at the Thaba mine in the northwestern limb of the Bushveld Complex. We present detailed geochemical profiles of chromite composition and chromite crystal-size distribution curves to shed light on the processes of chromite accumulation and textural modification as well as mineralization. Multiple samples within each layer were assayed for platinum-group element concentrations and the respective platinum-group mineral association was determined by mineral liberation analysis (MLA).
There is strong evidence for post-cumulus changes in the chromitites. The crystal size distribution curves suggest that the primary chromite texture was coarsened by a combination of adcumulus growth and textural equilibration, while compaction of the crystal mush played only a minor role. Mineral compositions were also modified by post-cumulus processes, but because of the very high modal amount of chromite and its local preservation in orthopyroxene oikocrysts, that phase retained much primary information. Vertical variations of chromite composition within chromitite layers, and from one layer to another do not support the idea of chromite accumulation from crystal-rich slurries nor crystal settling from a large magma chamber. Instead, we favor a successive buildup of chromitite layers by repeated injections of relatively thin layers of chromite-saturated magmas, with in-situ crystallization occurring at the crystal mush-magma interface. The adcumulus growth of chromite grains to form massive chromitite required addition of Cr to the layers, which we attribute to downward percolation from the overlying magma.
The PGE concentrations are elevated in all chromitite layers compared to adjacent silicate rocks, and show a systematic increase upwards from LG6 (ave. 807 ppb Ir+Ru+Rh+Pt+Pd+Au) to MG2 II (ave. 2062 ppb). There are also significant internal variations in all layers, with enrichments at hanging and/or footwalls. The enriched nature of chromitites in PGE compared to host pyroxenites is a general feature, independent of the layer thickness. The MLA results distinguish two principal groups of PGE mineral associations: the LG6, LG6 and MG1 are dominated by the malanite series, laurite and PGE sulfarsenides, while the MG2 and MG2 II layers are characterized by laurite and PGE sulfides, as well as Pt-Fe-Sn and PGE-Sb-Bi-Pb alloys. Differences in the PGE associations are attributed to post-cumulus alteration of the MG2 and MG2 II layer, while the chromitites below, particularly LG6 and LG6a, contain the primary association.
Keywords: Bushveld Complex, chromitites, PGE mineralization, crystal size distribution, Thaba Mine, MLA

Downloads:

  • available with HZDR-Login

Permalink: https://www.hzdr.de/publications/Publ-28820
Publ.-Id: 28820


On defects role in enhanced perpendicular magnetic anisotropy in Pt/Co/Pt, induced by ion irradiation

Jakubowski, M. M.; Liedke, M. O.ORC; Butterling, M.; Dynowska, E.; Sveklo, I.; Milińska, E.; Kurant, Z.; Böttger, R.; von Borany, J.; Maziewski, A.; Wagner, A.; Wawro, A.
Modifications of magnetic and magneto-optical properties of Pt/Co(dCo)/Pt upon Ar+ irradiation (with energy 1.2, 5 and 30 keV) and fluence, F at the range from 2e13-2e16 Ar+/cm^2) were studied. Two ‘branches’ of increased perpendicular magnetic anisotropy (PMA) and enhanced magneto-optical response are found on two-dimensional (dCo, F) diagrams. The difference in F between ‘branches’ is driven by ion energy. Structural features correlated with magnetic properties have been analysed thoroughly by X-ray diffraction, Rutherford backscattering spectrometry and positron annihilation spectroscopy. Experimental results are in agreement with TRIDYN numerical calculations of irradiation-induced layers intermixing. Our work discusses particularly structural factors related to crystal lattice defects and strain, created and modified by irradiation, co-responsible for the increase in PMA.
Keywords: thin films; magnetic measurements; vacancy formation; Rutherford backscattering, RBS; atom, molecule, and ion impact; positron spectroscopies

Downloads:

  • available with HZDR-Login

Permalink: https://www.hzdr.de/publications/Publ-28819
Publ.-Id: 28819


Spin currents and spin-transfer torques

Deac, A. M.
To-date, the best known (or most successfully implemented) spin-based device is the hard-disk read-head. Indeed, the discovery of giant magnetoresistance enabled a paradigm shift in the miniaturization of magnetic storage technology, which was disruptive enough to earn a Nobel for the two researchers who carried out the initial studies [1]. In a nutshell, giant magnetoresistance refers to the fact that the electrical properties of a multilayer containing at least two magnetic layers depend on the orientation of their magnetic moment. For instance, if the magnetic layers are cobalt, iron or nickel (or their alloys), the resistance of the structure is maximum when the magnetic moments are antiparallel to each other, and minimum when they are parallel.
More recently, it has been demonstrated the inverse phenomenon can also be observed: the relative orientation of the magnetic moments of two ferromagnetic layers can be manipulated by applying an electrical bias (i.e. a current or a voltage) across the structure. This is a consequence of spin-momentum transfer between the conduction electrons and the magnetization of the layer they are travelling across, which effectively induces a torque on the magnetization, the so-called ‘spin-transfer torque’ or ‘spin-torque’ [2-6]. Two main effects can be induced exploiting this torque: the magnetic moment of a given layer can be switched to a chosen direction – for instance, from parallel to antiparallel to the magnetization of the second layer – or it can be induced to gyrate around a given direction for as long as the electrical bias is applied. Today, spin-transfer switching is the write scheme for non-volatile, ultra-fast Spin-Transfer Torque Random Access Memory (STT-RAM) devices. STT-RAM can be designed so that they can scale down to more than one fifth of all other available technologies, including SRAM [7,8]. Spin-transfer driven precession [6] has been suggested as working principle for other spin-based nanoelectronics devices currently under consideration, which range from tuneable, low input power radio-frequency oscillators wireless communication, to magnetic field sensors, negative resistors, amplifiers, write heads and random number generators. Indeed, the frequency of such devices can be adjusted simply by changing the applied bias, and they provide sufficient power [9] while at the same time being about 50 times smaller than present devices used in mobile telecommunication [10]. Moreover, novel materials hold the promise of pushing the frequency limit beyond what present-day technology can achieve [11]. Possible applications include anti-collision systems for cars, remote hospitals and immersive audio-video entertainment systems.
The talk will present the different projects focusing on spin currents and spin-transfer-torque induced phenomena being pursued by the Spintronics Group at the Helmholtz-Zentrum Dresden-Rossendorf (Germany).

[1] http://www.nobelprize.org/nobel_prizes/physics/laureates/2007/index.html
[2] J. C. Slonczewski, J. Magn. Magn. Mater. 159, L1 (1996).
[3] L. Berger, Phys. Rev. B 54, 9353 (1996).
[4] M. D. Stiles, A. Zangwill, Phys. Rev. B 66, 014407 (2002).
[5] J. A. Katine, F. J. Albert, R. A. Buhrman et al., Phys. Rev. Lett. 84, 3149 (2000).
[6] S. I. Kiselev, J. C. Sankey, I. N. Krivorotov et al., Nature (London) 425, 380 (2003).
[7] http://www.avalanche-technology.com/technology/ram
[8] http://www.everspin.com/
[9] A. Deac, A. Fukushima, H. Kubota, et al., Nature Phys. 4, 803 (2008).
[10] P. Villard, U. Ebels, D. Houssameddine, et al., IEEE J. Solid-State Circuits 45, 214 (2010).
[11] S. Mizukami, F. Wu, A. Sakuma, et al., Phys. Rev. Lett. 106, 117201 (2011).
Keywords: magnetism, spin currents, spin-transfer torques
  • Lecture (others)
    Seminar, 04.02.2019, Melbourne, Australia

Permalink: https://www.hzdr.de/publications/Publ-28818
Publ.-Id: 28818


[11C]-Methionine-PET/MRI is superior to MRI alone for detecting residual tumor burden in glioblastoma multiforme undergoing radical radiochemotherapy – analysis of a prospective trial

Beuthien-Baumann, B.; Seidlitz, A.; Platzek, I.; Petr, J.ORC; Kotzerke, J.; Jentsch, C.; Löck, S.; Zessin, J.; Krex, D.; Zöphel, K.; Schackert, G.; van den Hoff, J.; Baumann, M.; Krause, M.
kein Abstrakt vorhanden
Keywords: [11C]Methionin, Glioblastoma, Positronen-Emissions-Tomographie
  • Abstract in refereed journal
    European Journal of Nuclear Medicine and Molecular Imaging 45(2018)S1, OP-088

Permalink: https://www.hzdr.de/publications/Publ-28817
Publ.-Id: 28817


Microstructure of accumulative roll bonded high purity aluminium laminates

Chekhonin, P.; Zöllner, D.; Zimmer, E.; Scharnweber, J.; Romberg, J.; Skrotzki, W.
Aluminium sheets of high purity were produced by accumulative roll bonding (ARB) at room temperature. The microstructure of the sheets up to 16 ARB cycles was analyzed by scanning electron microscopy. In all sheets discontinuous dynamic recrystallization occurred leading to coarse grains. In general, the grain size decreases with increasing number of applied ARB cycles, but remains much larger than the theoretical layer thickness after 6 or more ARB cycles. It is shown for the first time, how the interfaces introduced by ARB have a significant effect on the elongated grain shape by a combined experimental-numerical-study: The resulting microstructure is qualitatively discussed with regard to defects introduced at the interfaces by the ARB process, while two-dimensional Potts model simulations yield very good qualitative agreements with the experiments and underpin the importance of the ARB interfaces as barriers for the motion of grain boundaries.
Keywords: accumulative roll bonding, microstructure, dynamic recrystallization, modelling

Downloads:

  • available with HZDR-Login
  • Secondary publication expected

Permalink: https://www.hzdr.de/publications/Publ-28816
Publ.-Id: 28816


Contact of a tumour with the pleura is not associated with regional recurrence following stereotactic ablative radiotherapy for early stage non-small cell lung cancer

Wink, K. C. J.; Löck, S.; Rossi, M.; van Baardwijk, A.; Belderbos, J.; de Ruysscher, D.; Troost, E. G. C.ORC
Background and purpose: The aim was to investigate the incidence of isolated regional failure following stereotactic ablative radiotherapy (SABR) and risk factors for recurrence. Materials and methods: Early stage non-small cell lung cancer (NSCLC) patients treated with SABR were included in this retrospective cohort study, with isolated regional recurrence (IRR) as primary endpoint, distant recurrence (DR) and overall survival (OS) as secondary endpoints. Survival analyses were performed using the cumulative incidence function (IRR and DR) or the Kaplan–Meier method (OS) and Cox proportional hazards modelling for univariate and multivariate analyses. The prognostic effect of contact between the tumour and the pleura was investigated using the CT scans used for SABR planning. Results: A total of 554 patients were included, of whom 494 could be analysed for IRR. The median follow-up for surviving patients was 48.1 months. Twenty-one patients developed an IRR (4%). The cumulative incidence of IRR and DR after 1-, 2-, and 5 years was 2%, 3%, 7% and 8%, 15% and 21%, respectively. Two year OS was 71%. The presence and type of pleural contact was not associated with any of the studied outcomes. Conclusion: The presence, type and length of pleural contact as surrogate for visceral pleural invasion were not predictive for outcome. Further studies focussing on risk factors for occult nodal involvement, (I)RR, distant metastases and mortality in early stage NSCLC are warranted for the development of risk adapted diagnostic, treatment and follow-up strategies as more younger, operable and fitter patients receive SABR. © 2018 Elsevier B.V.
Keywords: Early stage NSCLC, Isolated regional recurrence, Radiotherapy, SABR, Visceral pleural invasion

Downloads:

  • available with HZDR-Login

Permalink: https://www.hzdr.de/publications/Publ-28814
Publ.-Id: 28814


Optically detected spin-mechanical resonance in silicon carbide membranes

Poshakinskiy, A. V.; Astakhov, G.ORC
Hybrid spin-mechanical systems are a promising platform for future quantum technologies. Usually they require application of additional microwave fields to project integer spin to a readable state. We develop a theory of optically detected spin-mechanical resonance associated with half-integer spin defects in silicon carbide (SiC) membranes. It occurs when a spin resonance frequency matches a resonance frequency of a mechanical mode, resulting in a shortening of the spin relaxation time through enhanced spin-phonon coupling. The effect can be detected as an abrupt reduction of the photoluminescence intensity under optical pumping without application of microwave fields. We propose all-optical protocols based on such spin-mechanical resonance to detect external magnetic fields and mass with ultra-high sensitivity. We also discuss room-temperature nonlinear effects un- der strong optical pumping, including spin-mediated cooling and heating of mechanical modes. Our approach suggests a new concept for quantum sensing using spin-optomechanics.
Keywords: Quantum sensing, spin-mechanical systems, silicon carbide, point defects

Downloads:

Permalink: https://www.hzdr.de/publications/Publ-28813
Publ.-Id: 28813


Influence of microscopic precipitate structures on macroscopic pattern formation in reactive flows in a confined geometry

Balog, E.; Bittmann, K.; Schwarzenberger, K.; Eckert, K.ORC; de Wit, A.; Schuszter, G.
Thanks to the coupling between chemical precipitation reactions and hydrodynamics, new dynamic phenomena may be obtained and new types of materials can be synthesized. Here we experimentally investigate how the characteristic microscopic crystal properties affect the macroscopic pattern obtained. To shed light on such interactions, different reactant solutions are radially injected into a calcium chloride solution at different volumetric flow rates in a confined geometry. Depending on the reactants used and the flow conditions, deformed precipitate membranes have been observed due to reaction-driven viscous fingering. In such cases we show that upon injection a large number of small particles is produced in situ by the reaction at the miscible interface between the two reactant solutions. Therefore, a colloidal gel composed of those tiny particles is pushed forward by the injected aqueous solution giving rise to a viscosity gradient-driven hydrodynamic instability.

Downloads:

Permalink: https://www.hzdr.de/publications/Publ-28812
Publ.-Id: 28812


Multiphase Flow Imaging - From Fundamentals to Applications

Hampel, U.ORC
The invited lecture discusses fundamentals and applications of tomographic imaging for multiphase flow measurement. A focus is given to the fields of oil and gas production, chemical engineering and nuclear engineering. Th etals addresses open quesions and future needs and exemplarily demonstrates the use of tomographic imaging techniques in fundmental and engineering research at HZDR.
Keywords: multiphase flow, flow measurement, flow imaging, tomograpy, chemical engineering, nuclear engineering, oil and gas production
  • Invited lecture (Conferences)
    SPIE Student Chapter, 12.02.2019, Dresden, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-28811
Publ.-Id: 28811


Robust Bayesian inference using Bayes spaces

van den Boogaart, K. G.ORC
In the world of geoanalytics and mining statistics we are often confronted with indirect and uncertain measurments, where there might be considerable bias in the observations itself. This contribution addresses a new view to robust Bayesian inference, which might be suitable to address such problems.

Bayes spaces are spaces of distributions and likelihoods, similar to compositions and the Aitchison simplex. In these spaces the updating a prior to a posterior is a vector addition. This simple structure allows it to reconsider questions from Bayesian statistical analysis. E.g. a posteriors from different priors have a constant difference independent of the actual observation.

In this contribution we will consider robustness against uncertainty in model assumptions and data errors. The structure allows it to introduce uncertainty about the prior knowledge by replacing a single prior by convex set of possible priors and a single model of likelihoods by convex sets of possible models. A Bayesian update is than convex Minkowski sum of the two sets, which can be explictly computed and analysed. We will show in examples how model uncertainty and possible data errors can be expressed.

We will also discuss the uncertainty introduced by this approach. While uncertainty measured in the geometry of the Bayes spaces measured as diameter convex result will diverge at rate n, we can typically observe a constant residual uncertainty in the model estimation.
Keywords: Robust Statistics, Bayesian inference, Minkovski Sum
  • Lecture (Conference)
    IAMG2019 - 20th Annual Conference of the International Association for Mathematical Geosciences, 10.-16.08.2019, University Park, Pennsylvenia, USA

Permalink: https://www.hzdr.de/publications/Publ-28810
Publ.-Id: 28810


Estimating the distribution of the field for Multiple Point Statistics

van den Boogaart, K. G.ORC; Selia, S. R. R.; Tolosana Delgado, R.
Multiple Point statistics typically provides a known distribution of the random field by means of the training image. Classical Geostatistics estimates the variogram, which is only an aspect of the distribution of the field. Both thus might use an inappropriate description of the distribution of the random field. The only exception are the high order cummulants methods and spline methods using a completly nonparametric approach. This contribution addresses the possibility to estimate the distributions for Nongaussian Random fields at the example of categorical random fields in a multiple point statistics setting.

The core idea is to discribe possible characteristics of fields by using small training patches, which can be combinded to span a space of possible random field distribution models. The specific combination is selected by a distribution valued parameter, which can be estimated from an a sampled random fields using an estimation procedure based on observation likelihoods.

Similarly to the difficulty in estimating the shape parameter of the Matern variogram there is little power in this procedure to estimate the roughness of boundaries. We will thus introduce a prior preweighting of the patches according to our physical assumptions about the boundaries.

The same procedure allows to measure, how good the high order statistics of final simulation fit to the orignal observations. We will use this to check the conditional simulations for distributional consistency with the conditioning set.
Keywords: MPS, Geostatistical Simulation, Object Simulation, High Order Statistics
  • Lecture (Conference)
    IAMG 2019 - 20th Annual Conference of the International Association for Mathematical Geosciences, 10.-16.08.2019, Pennsylvania, USA

Permalink: https://www.hzdr.de/publications/Publ-28809
Publ.-Id: 28809


Predictive Geometallurgy

Gutzmer, J.ORC; Birtel, S.; Büttner, P.; Bachmann, K.; Kern, M.ORC; Frenzel, M.ORC
For centuries the German proverb “Vor der Hacke ist es duster” has aptly described the lack of knowledge about ore volumes, grades and beneficiation characteristics during the incremental progress of mining operations. Although much progress has been made constraining ore volumes and grades by following rigorous exploration drilling programs and applying appropriate geostatistical and spatial modelling tools, there still remains considerable technical risk when exploration turns into exploitation. This is illustrated by the observation that ca. 70% of mines perform below the prediction of their feasibility study (Wood, 2018). This underperformance is usually attributed to deficiencies in the collection of tangible geoscientific data needed to design the mine and the minerals processing plant (Wood, 2018).
Geometallurgy is an interdisciplinary approach that aims to connect the data available from geosciences with the information required to predict the performance of technologies used for ore extraction and mineral beneficiation. Tangible resource characteristics – beyond grade and tonnage - are quantified to create a model that links the geology of an ore deposit with the performance achieved during mining, mineral processing and extractive metallurgy. Successful geometallurgical programs may thus be used to mitigate the risk of production planning and plant design. However, the tools of geometallurgy have thus far mostly been used by the mining industry to improve metal recoveries and to monitor process efficiency of mineral processing plants only.
Present research goes beyond these current applications of geometallurgy. Predictive geometallurgical models for complex ore bodies and even anthropogenic raw materials are being developed by interdisciplinary teams including expertise in exploration, resource characterization, minerals processing, geostatistics and spatial modelling. Case studies will be presented in this contribution that illustrate the approach taken. These examples include (1) the recovery of Sn from a historic flotation tailings storage facility; (2) the recovery of PGE as a by-product of chromite exploitation; and (3) the intelligent use of quantitative mineral abundance and mineral association data to predict the prospects of success of sensor-based sorting.
Results obtained in the three case studies illustrate the prospects of increasing resource and energy efficiency in the mining industry. Innovative approaches are of general applicability and can be easily extended to other metals and ore deposit types. The results clearly illustrate the value of conducting comprehensive geometallurgical assessments already during the latter stages of exploration; the initial process of constructing a predictive geometallurgical model will, of course, benefit greatly from regular follow-up during the phase of active exploitation.
Keywords: geometallurgy, geosciences, minerals processing, metallurgy
  • Invited lecture (Conferences)
    4th GOOD Meeting, 23.-25.01.2019, Bremen, Germany
  • Contribution to proceedings
    4th GOOD Meeting, 23.-25.01.2019, Bremen, Germany
    4th GOOD Meeting Abstract Volume, Bremen

Permalink: https://www.hzdr.de/publications/Publ-28808
Publ.-Id: 28808


Corrigendum to “Synchrotron tomographic quantification of the influence of Zn concentration on dendritic growth in Mg-Zn alloys” [Acta Mater. 156 (2018) 287-296]

Phillion, A.; Shuai, S.; Guo, E.; Wang, J.; Jing, T.; Ren, Z.; Neumann-Heyme, H.; Beckermann, C.; Lee, P.
In solidification science, the solid-liquid interfacial area density is a key metric that characterizes the overall semi-solid morphology in a general sense. This interfacial area density can be defined in two different ways... [Abstract not available for Corrigenda]

Downloads:

Permalink: https://www.hzdr.de/publications/Publ-28807
Publ.-Id: 28807


Geometric reconstruction of 3D dendrite evolution from 2D transmission radiography data by a simple phase-field method

Neumann-Heyme, H.
For the in-situ observation of dynamical processes radiographic imaging possess significant advantages over tomographic reconstruction in terms of e.g. time resolution and data handling. However, on the other hand essential spatial information is lost in the projected 2D image. The proposed method demonstrates, how in the case of continuously growing, coherent structures such as dendrites their time evolution can be utilized in recovering the 3D morphology. In addition, the reconstruction incorporates some prior knowledge including the smoothness and preferential growth directions of the interface. The capabilities of the method are assessed for different situations based on simulated experiments of dendritic growth. Finally, the reconstruction of evolving dendrites from flat sample synchrotron experiments is shown.
  • Lecture (Conference)
    55th Annual Technical Meeting of the Society of Engineering Science (SES2018), 10.-12.10.2018, Madrid, Spain

Permalink: https://www.hzdr.de/publications/Publ-28806
Publ.-Id: 28806


4D particle tracking velocimetry to analyze bubble-particles collisions and flotation recovery at low Stokes numbers

Sommer, A.-E.ORC; Heitkam, S.ORC; Eckert, K.ORC
Froth flotation is a fundamental technique to separate minerals. Hydrophobized target particles attach to the fluidic interface of gas bubbles rising in a suspension. The success of the process depends on both the surface chemistry for the hydrophobization of particles and the hydrodynamics for an encounter between bubble and particle. In the first part of the talk on overview about flotation research and modeling is given.
The second part of the talk is devoted to own research on the hydrodynamics in model cells. To quantify this performance in terms of recovery, the number of target particles at various times in a reference volume is measured. One of the remaining challenges in this field is the flotation of fine particles with a size below 10 µm. Caused by their small inertia, the particles follow the streamlines around the bubble and no collision occurs [1]. This work focuses on the measurement of the collision probability of particles with a small inertia at the bubble surface to advance our understanding of relevant microprocesses and its influence on the flotation recovery. With a 4D particle tracking velocimetry device the particle and bubble trajectories were measured simultaneously with a high temporal (1000 fps) and spatial resolution (0.03 mm/pixels). We developed an algorithm to evaluate the flotation recovery based on the collision and attachment probability [2]. The three-phase flow within a rectangular bubble column consisted of fluorescent polystyrene particles (33 µm, 1.05 g/cm3), a bubble chain (1-7 mm) and deionized water with methanol. The variation of the bubble diameter and methanol concentration led to a change of the fluid flow around the bubble (Re = 100 - 1200) and the particle hydrophobization. The results show the preferred collision of the particles at the rear of the bubble due to a higher acceleration within the vortices in the wake.

[1] Yoon and Luttrell, Mineral Processing and Extractive Metallurgy Review 5, 101 (1989).
[2] AE Sommer, M Nikpay, S Heitkam, M Rudolph, K Eckert, Minerals Engineering 124, 116-122 (2018)
Keywords: flotation, particle image velocimetry
  • Invited lecture (Conferences)
    Permsker Wissenschaftliche Lesung, 24.-28.9.2018, Perm, Rusland

Permalink: https://www.hzdr.de/publications/Publ-28805
Publ.-Id: 28805


Coarsening and refinement phenomena in dendritic solidification

Neumann-Heyme, H.; Eckert, K.ORC; Beckermann, C.
Curvature-driven interface motion plays an important role in the formation of the final microstructure during dendritic solidification. Usually, such motion results in a coarser microstructure via coalescence or retraction of dendrite sidebranches \cite{ref1}. Under certain conditions, however, the microstructure can be refined due to curvature-driven pinching events that lead to dendrite fragmentation. Such pinching events are a strong function of the size and shape of the initial dendrite structure \cite{ref2}. In the present study, two- and three-dimensional phase-field simulations are performed to investigate coarsening and refinement phenomena during directional solidification of alloys. The phase-field model is solved using a finite element library that permits adaptive mesh refinement and exhibits wide parallel scalability on supercomputing facilities. A semi-implicit time integration scheme is used to allow for adaptive time stepping, which is important in particular, since curvature-driven interface motion occurs on significantly larger time scales than the initial growth. The present talk will focus on some characteristics of the applied model and physical insights that were obtained.
  • Lecture (Conference)
    5th GAMM Workshop on Phase-Field Modeling, 08.-09.02.2018, TU Dresden, Germany

Permalink: https://www.hzdr.de/publications/Publ-28804
Publ.-Id: 28804


Evaluation of Brain Nuclear Medicine Imaging Tracers in a Murine Model of Sepsis-Associated Encephalopathy

Szöllősi, D.; Hegedűs, N.; Veres, D. S.; Futó, I.; Horváth, I.; Kovács, N.; Martinecz, B.; Dénes, Á.; Seifert, D.; Bergmann, R.ORC; Lebeda, O.; Varga, Z.; Kaleta, Z.; Szigeti, K.; Máthé, D.
Purpose: The purpose of this study was to evaluate a set of widely used nuclear medicine imaging agents as possible methods to study the early effects of systemic inflammation on the living brain in a mouse model of sepsis-associated encephalopathy (SAE). The lipopolysaccharide (LPS)-induced murine systemic inflammation model was selected as a model of SAE.
Procedures: C57BL/6 mice were used. A multimodal imaging protocol was carried out on each animal 4 h following the intravenous administration of LPS using the following tracers: [99mTc][2,2-dimethyl-3-[(3E)-3-oxidoiminobutan-2-yl]azanidylpropyl]-[(3E)-3-hydroxyiminobutan-2-yl]azanide ([99m
Tc]HMPAO) and ethyl-7-[125I]iodo-5-methyl-6-oxo-4H-imidazo[1,5-a][1,4]ben-zodiazepine-3-carboxylate ([125I]iomazenil) to measure brain perfusion and neuronal damage, respectively; 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) to measure cerebral glucose uptake.
We assessed microglia activity on another group of mice using 2-[6-chloro-2-(4-[125I]iodo-phenyl)-imidazo[1,2-a]pyridin-3-yl]-N-ethyl-N-methyl-acetamide ([125I]CLINME). Radiotracer uptakes were measured in different brain regions and correlated. Microglia activity was also assessed using immunohistochemistry. Brain glutathione levels were measured to investigate oxidative stress.
Results: Significantly reduced perfusion values and significantly enhanced [18F]FDG and [125I]CLINME uptake was measured in the LPS-treated group. Following perfusion compensation, enhanced [125I]iomazenil uptake was measured in the LPS-treated group’s hippocampus and cerebellum. In this group, both [18F]FDG and [125I]iomazenil uptake showed highly negative correlation to perfusion measured with ([99mTc]HMPAO uptake in all brain regions. No significant differences were detected in brain glutathione levels between the groups. The CD45 and P2Y12 double-labeling immunohistochemistry showed widespread microglia activation in the LPS-treated group.
Conclusions: Our results suggest that [125I]CLINME and [99mTc]HMPAO SPECT can be used to detect microglia activation and brain hypoperfusion, respectively, in the early phase (4 h post injection) of systemic inflammation. We suspect that the enhancement of [18F]FDG and [125I]iomazenil uptake in the LPS-treated group does not necessarily reflect neural hypermetabolism and the lack of neuronal damage. They are most likely caused by processes emerging during neuroinflammation, e.g., microglia activation and/or immune cell infiltration.
Keywords: Systemic infection, Neuroinflammation, Microglia activation, LPS, [99mTc]HMPAO, [18F]FDG, [125I]iomazenil, [125I]CLINME, SPECT/CT, PET/MRI

Downloads:

  • available with HZDR-Login

Permalink: https://www.hzdr.de/publications/Publ-28803
Publ.-Id: 28803


Effects of electron beam generated lattice defects on the periodic lattice distortion structure in 1T-TaS2 and 1T-TaSe2 thin layers

Kinyanjui, M. K.; Björkman, T.; Lehnert, T.; Köster, J.; Krasheninnikov, A.ORC; Kaiser, U.
We have investigated the influence of electron beam generated defects on the structure of periodic lattice distortions (PLDs) which accompany charge density wave modulations in 1T -TaS2 and 1T -TaSe2 . Lattice defects were generated through irradiation with high-energy electrons in a transmission electron microscope (TEM). Using atomically resolved high-resolution TEM imaging, we investigate the PLD structure and the changes in this structure with prolonged exposure to the electron beam. We observe the formation of dislocationlike topological defects in the PLD structure. Prolonged exposure to the electron beam also leads to an increase in density of these defects. This is also accompanied by an increase in structural disorder of the PLD. Density functional theory calculations were also performed in order to understand sulfur (S) and selenium (Se) vacancy defect formation in 1T -TaSe2 and 1T -TaS2 and their effects on the PLD structure. The formation energy of Se/S vacancies was calculated to be lowest for the highly displaced S/Se atoms in the vicinity of PLD maxima. Vacancies formed at the less displaced sites near the PLD minima were found to have lower formation energy. The calculations also showed that an increase in the S/Se vacancies leads to the formation of dislocations and an increase in disorder in the PLD structures. This supports the experimental observations.
Keywords: TEM, 2D materials, first-principles calculations

Downloads:

Permalink: https://www.hzdr.de/publications/Publ-28802
Publ.-Id: 28802


Investigation of density variations in molded wood tubes using gamma-ray CT and correlation with load-bearing behavior

Hartig, J. U.; Bieberle, A.ORC; Engmann, C.; Haller, P.
It is well known that mechanical properties of wood correlate with the density. Since wood is a naturally grown material, variations in the density distribution still exist in timber elements leading to a non-uniform distribution of mechanical properties. To investigate the density distribution in timber elements at the meter scale non-destructively, the gamma-ray computed tomography (CT) scanner, firstly introduced in 2007 by Hampel et al., has been applied. The CT scanner offers a spatial resolution of about 1-2 mm. Nevertheless, small single structures like cracks or branches can be revealed up to a size of several micrometers.
As object of interest, a molded wooden tube (MWT) [3] with a length of 3 m and a diameter of 0.3 m made of beech (Fagus sylvatica) is used. The MWT is produced in a thermo-hydro-mechanical process incorporating densification and recovery of wood transverse to the grain. Thus, besides naturally grown density variations also variations due to the production process of the MWT occur.
In order to verify the assumption that the mechanical properties correlate with the density, an axial compression test is performed with the MWT previously scanned with CT. The spatial deformations on the surface of the MWT were measured by photogrammetry and digital image correlation (DIC) is applied to determine the strain distribution.
The density and geometry data gathered by CT is also used to create a finite element (FE) model. Based on the density data, the elastic properties of the respective elements are defined. The axial compression test is simulated and the results in terms of the strain distributions are compared to the experimental data determined by DIC.
The results of the investigations showed that computed tomography is highly suitable for the non-destructive determination of the density distribution in structural elements of timber. Thus, besides for research purposes CT scanning might be used also in the future for industrial grading of timber elements.
Keywords: molded wooden tube, gamma-ray CT
  • Contribution to proceedings
    International Conference on Computational Methods in Wood Mechanics - CompWood 2019, 17.-19.06.2019, Växjö, Sweden

Permalink: https://www.hzdr.de/publications/Publ-28801
Publ.-Id: 28801


Characterization of continuous wave laser-induced thermal gradients in magnetic tunnel junctions integrated into microresonators via COMSOL simulations

Cansever, H.ORC; Lindner, J.; Huebner, T.; Niesen, A.; Reiss, G.; Fassbender, J.; Deac, A. M.
Spin caloritronics still is a vivid field and aims to investigate static and dynamic effects on magnetic structures due to spin-currents generated by thermal gradients [1]. In magnetic tunnel junctions, magnetization dynamics can be induced by bias voltage as well as thermal gradients [2]. In most research, COMSOL simulations are used to estimate the overall temperature of the magnetic tunnel junction as well as the thermal gradient over the insulating barrier [3-5]. Here, we perform COMSOL simulations using the 2D heat transfer module for specific Co2FeAl/MgO(2nm)/CoFeB magnetic tunnel junctions which are integrated into so-called microresonators [6]. Microresonators have been recently used as alternative approach to investigate the magnetization dynamics of the free-layer within magnetic tunnel junctions, induced by a thermal gradient by means of its ferromagnetic resonance response [6]. Utilizing microresonators for ferromagnetic resonance detection allow for the detection of signals from micron/nano-sized object under laser heating in terms of linewidth and resonance field and thus provide the possibility to detect influences of a thermal gradient on the magnetization dynamics far below the threshold of magnetic switching. The heat diffusion over all layers are modeled by starting with a 2D (vertical) rectangular shape in which we consider the MTJ stack with the MgO-substrate and backside metallization as part of the microresonators shown in Fig 1. Moreover, we consider an air ‘layer’ and the metal-contacts defining the microresonator on top of the MgO-substrate. Upon rotation of this two-dimensional shape around the central vertical z-axis of the MTJ, we obtain a 3D cylinder in which the heat profile is simulated (see Fig 2). The simulation parameters for the materials were chosen similar to those in [3,4]. In the simulation, the fundamental properties of layers i.e. thermal conductivity, heat capacity and material density are used to obtain a temperature profile of the magnetic structure. According to the simulation results, the thermal conductivity of the insulating barrier (MgO) and top metal thicknesses influence the thermal gradient, while uniform heating is strongly affected by the surrounding material of the microresonator which is mainly made from copper (high thermal conductivity). The simulation results provide insight into the heat profile of the whole structure and in particular demonstrate that not only changing the magnetic object itself but also modifying the structure of the surrounding materials yields a handle to tune and optimize the thermal gradient.
Figure 1. 2D sketch of MTJ structure integrated into a microresonator for COMSOL modelling. Heat source, i.e. cw- laser is applied to magnetic layers through the top-metal. The temperature of the bottom of the whole structure is set to 293.15 K.
Figure 2. (a) Temperature profile across the MTJ integrated in a microresonator with the applied power of 145 mW inset (b) 3D cylindrical image of MTJ structure.


[1] Bauer G E W, Saitoh E and van Wees B J 2012 Nat. Mater. 11 391
[2] Jia X, Xia K and Bauer G E W 2011 Phys. Rev. Lett.107 176603
[3] Walter M et al 2011 Nat. Mater. 10 742
[4] Huebner T, Boehnke A, Martens U, Thomas A, Schmalhorst J M, Reiss G, Münzenberg M and Kuschel T 2016 Phys. Rev. B 93 224433
[5] T Huebner et al 2018 J. Phys. D: Appl. Phys. 51 224006
[6] H Cansever et al 2018 J. Phys. D: Appl. Phys. 51 224009
Keywords: COMSOL Simulation, magnetic tunnel junction, microresonator, ferromagnetic resonance
  • Lecture (Conference)
    Joint MMM-Intermag Conference 2019 Washington D.C., 14.-18.01.2019, Washington D.C., The United States of America

Permalink: https://www.hzdr.de/publications/Publ-28800
Publ.-Id: 28800


New collective mode in superconducting cuprates uncovered by Higgs spectroscopy

Chu, H.; Kim, M.-J.; Katsumi, K.; Kovalev, S.ORC; Dawson, R. D.; Schwarz, L.; Yoshikawa, N.; Kim, G.; Putzky, D.; Li, Z. Z.; Raffy, H.; Germanskiy, S.; Deinert, J.-C.ORC; Awari, N.ORC; Ilyakov, I.; Green, B.ORC; Chen, M.ORC; Bawatna, M.; Christiani, G.; Logvenov, G.; Gallais, Y.; Boris, A. V.; Keimer, B.; Schnyder, A.; Manske, D.; Gensch, M.ORC; Wang, Z.ORC; Shimano, R.; Kaiser, S.
The complexity of competing interactions in high-temperature superconductors provides a fertile ground for collective modes of different origins. Their coupling to the superconducting order parameter may give important insight into the microscopic pairing mechanism. One prominent example in cuprates is the magnetic resonant mode, whose experimental observation spawned theoretical investigations of pairing scenarios mediated by antiferromagnetic fluctuations. Now, phase-resolved nonlinear terahertz spectroscopy of the superconducting Higgs mode offers a new way to reveal the coupling between the collective modes and the superconducting order parameter.
Using this technique, we discover a new collective mode distinct from the heavily damped Higgs mode in different families of cuprates. We discuss the origin of this mode and characterize its interplay with the Higgs mode. Our results demonstrate Higgs spectroscopy as a new approach to uncover interactions directly relevant to superconductivity. This technique opens up entirely new avenues for understanding unconventional superconductivity and calls for supporting theoretical work to unlock its full power.
Keywords: Cuprate high-temperature superconductors, Higgs mode, nonlinear THz spectroscopy

Downloads:

  • available with HZDR-Login

Permalink: https://www.hzdr.de/publications/Publ-28799
Publ.-Id: 28799


Pages: [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48] [49] [50] [51] [52] [53] [54] [55] [56] [57] [58] [59] [60] [61] [62] [63] [64] [65] [66] [67] [68] [69] [70] [71] [72] [73] [74] [75] [76] [77] [78] [79] [80] [81] [82] [83] [84] [85] [86] [87] [88] [89] [90] [91] [92] [93] [94] [95] [96] [97] [98] [99] [100] [101] [102] [103] [104] [105] [106] [107] [108] [109] [110] [111] [112] [113] [114] [115] [116] [117] [118] [119] [120] [121] [122] [123] [124] [125] [126] [127] [128] [129] [130] [131] [132] [133] [134] [135] [136] [137] [138] [139] [140] [141] [142] [143] [144] [145] [146] [147] [148] [149] [150] [151] [152] [153] [154] [155] [156] [157] [158] [159] [160] [161] [162] [163] [164] [165] [166] [167] [168] [169] [170] [171] [172] [173] [174] [175] [176] [177] [178] [179] [180] [181] [182] [183] [184] [185] [186] [187] [188] [189] [190] [191] [192] [193] [194] [195] [196] [197] [198] [199] [200] [201] [202] [203] [204] [205] [206] [207] [208] [209] [210] [211] [212] [213] [214] [215] [216] [217] [218] [219] [220] [221] [222] [223] [224] [225] [226] [227] [228] [229] [230] [231] [232] [233] [234] [235] [236] [237] [238] [239] [240] [241] [242] [243] [244] [245] [246] [247] [248] [249] [250] [251] [252] [253] [254] [255] [256] [257] [258] [259] [260] [261] [262] [263] [264] [265] [266] [267] [268] [269] [270] [271] [272] [273] [274] [275] [276] [277]