Publications Repository - Helmholtz-Zentrum Dresden-Rossendorf

"Online First" included
Without submitted and only approved publications
Only approved publications

35836 Publications

On self-created and self-creating dynamos

Stefani, F.

The lecture gives an overview about recent and future (self-created) liquid metal experiments on dynamo action and magnetically triggered flow instabilities. Some aspects of non-linear (self-creating) dynamos, in which induction and flow instabilities conspire to provide self-excitation, are also discussed.

  • Invited lecture (Conferences)
    11th PAMIR International Conference - Fundamental and Applied MHD, 01.-05.07.2019, Reims, France

Permalink: https://www.hzdr.de/publications/Publ-30349
Publ.-Id: 30349


Measure where protons stop in the patient: Verification of proton therapy by means of prompt gamma rays

Khamfongkhruea, C.; Nenoff, L.; Priegnitz, M.; Barczyk, S.; Berthold, J.; Vander Stappen, F.; Petzoldt, J.; Smeets, J.; Enghardt, W.; Pausch, G.; Richter, C.

Introduction
Proton therapy is the most advanced radiotherapeutic technique. For the same dose in the tumor, the dose in the surrounding normal tissue is substantially lower than in classical radiation therapy using photon beams. Protons stop in the patient and no dose is deposited behind that position. However, the resulting dose deposition is more sensitive to anatomical changes during treatment and to uncertainties in the CT-based range calculation. Therefore, monitoring of the proton range during treatment would substantially improve proton therapy. Prompt gamma radiation, which is emitted in nuclear reactions of the proton beam with the patient’s tissue, can be used to conclude on the proton range. The most translational advanced approach is prompt-gamma imaging (PGI) using a so-called slit camera [1]. A one-dimensional projection of the prompt-gamma distribution is acquired through a slit collimator onto a spatially resolved detector (Fig.1). The system, developed by IBA, is evaluated concerning its clinical benefit.

Materials and Methods
The PGI slit-camera was first enabled for routine clinical use by developing dedicated calibration and QA procedures as well as a clinical workflow and setting up a clinical study. In 2015, we were able to perform the first in-man PGI-based range verification [2], 13 years after the idea was initially proposed. In addition, the sensitivity and accuracy of the PGI slit-camera to detect different types of treatment deviations were evaluated for pencil-beam-scanning (PBS) proton therapy in an anthropomorphic phantom [3]. Following, a 2nd generation system was developed to improve positioning accuracy and reproducibility. Clinical application of this system in PBS proton therapy started in 2018.

Results
In the first in-man applications, detected inter-fractional global range variations were below ±2 mm, and thereby within the overall measurement uncertainties. This was verified with independent control CTs acquired directly before treatment. The phantom study revealed, that global and local range shifts can be detected with high sensitivity. Shift detection accuracy was better than 2 mm under clinical conditions. With the 2nd generation system, positioning uncertainty could be reduced to about 1 mm, potentially allowing a first in-man validation of the absolute range prediction as the measurement uncertainty is below the range prediction uncertainty.

Conclusion
With the translation from basic physics experiments into clinical operation, we were able to demonstrate the applicability of PGI-based range verification for improving the accuracy of proton therapy. Currently, we systematically evaluate the clinical benefit of the approach aiming for an automated detection of clinical relevant treatment deviation and classification of the underlying error source.

  • Poster
    1. German Cancer Research Congress - GCRC, 04.-05.02.2019, Heidelberg, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-30348
Publ.-Id: 30348


Polar Waves and Chaotic Flows in Thin Rotating Spherical Shells

Garcia Gonzalez, F.; Chambers, F.; Watts, A.

Convection in rotating spherical geometries is an important physical process in planetary and stellar systems. Using continuation methods at a low Prandtl number, we find both strong equatorially asymmetric and symmetric polar nonlinear rotating waves in a model of thermal convection in thin rotating spherical shells with stress-free boundary conditions.
For the symmetric waves, convection is confined to high latitude in both hemispheres but is only restricted to one hemisphere close to the pole in the case of asymmetric waves. This is in contrast to what is previously known from studies in the field. These periodic flows, in which the pattern is rotating steadily in the azimuthal direction, develop a strong axisymmetric component very close to onset. Using stability analysis of periodic orbits, the regions of stability are determined and the topology of the stable/unstable oscillatory flows bifurcated from the branches of rotating waves is described. By means of direct numerical simulations of these oscillatory chaotic flows, we show that these three-dimensional convective polar flows exhibit characteristics, such as force balance or mean physical properties, which are similar to flows occurring in planetary atmospheres.
We show that these results may open a route to understanding unexplained features of gas giant atmospheres, particularly in the case of Jupiter. These include the observed equatorial asymmetry with a pronounced decrease at the equator (the so-called dimple), and the coherent vortices surrounding the poles recently observed by the Juno mission.

Keywords: Astrophysical fluid dynamics; Bifurcations; Convection; Geophysical fluid dynamics; Rotating geophysical flows

Downloads:

Permalink: https://www.hzdr.de/publications/Publ-30347
Publ.-Id: 30347


Dual-energy computed tomography for improved proton therapy treatment planning

Peters, N.; Wohlfahrt, P.; Möhler, C.; Greilich, S.; Richter, C.

Purpose/Objective:
Cancer treatment with protons requires an accurate prediction of the particle’s range in tissue. In cCurrently clinical practice, computed tomography (CT) images are used to voxelwise translate the CT number into the tissue’s stopping power relative to water (SPR) via heuristic relations (HLUT). However, the general validity of this approach is limited due to the different physical interaction processes of photons and ions. The resulting range uncertainty is taken into account in the treatment plan by adding a safety margin around the tumor, effectively limiting the potential benefits of particle therapy over conventional radiotherapy. The use of dual-energy CT (DECT) allows for a direct derivation of tissue parameters, resulting in a better characterization of the tissue. The potential of a DECT-based,and ultimately allows a patient-individualized range prediction (DirectSPR) has been shown in previous work. In 2015, we were first to introduce DECT scans for routine clinical treatment planning, still using a generic HLUT. Here, we portray the next steps towards the full clinical implementation of DirectSPR, namely its validation and assessment of its clinical benefit.

Material and Methods:
To validate the method for realistic clinical scenarios, its accuracy was investigated in an anthropomorphic head phantom as well as in porcine biological tissue. Furthermore, intra- and inter-patient variabilities in CT-based SPR prediction were investigated in a retrospective analysis of 102 brain-tumor and 25 prostate-cancer patients. The clinical HLUT was then refined by performing a step-wise weighted linear fit of the resulting SPR distribution in different tissue regionsusing the DirectSPR information of the investigated patient cohort. To assess the effect of this refinement on the proton range within the patient, treatment plans were recalculated using the clinical HLUT, the refined HLUT as well as the DirectSPR approach.

Results:
In the complex head geometry, DirectSPR showed an improved accuracy compared to the clinical HLUT approach. For biological tissues in a simple geometry, an accuracy below 0.2% could be achieved. Between clinical HLUT and DirectSPR, mean range differences (±1SD) of (1.2±0.7)% for brain-cancer and (1.7±0.5)% for prostate-tumor patients were determined. By refining the HLUT, they were significantly reduced (p≪0.001, two-sample t-test) below 0.3%. HoweverMoreover, an observed intra-patient soft-tissue diversity of 6% as well as an inter-patient bone diversity of 5%, underline an additional benefit of the DirectSPR approach, as such variabilities cannot be considered by any generic HLUT-based range prediction.

Conclusions:
The clinical feasibility of DirectSPR for proton range prediction as well as its advantage over the HLUT approach has been demonstrated. A retrospective application on patient data allowed for a reduction of systematic deviations found in clinical HLUT. The refined HLUT was implemented at our institution as a step towards the currently ongoing full integration of DirectSPR. The Its higher precision accuracy in range prediction is reflected in a potentially allows a reduction of the safety margin, which is currently under investigation.

  • Poster
    1. German Cancer Research Congress GCRC, 04.-05.02.2019, Heidelberg, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-30346
Publ.-Id: 30346


A model for tidal synchronization and modulation of the solar dynamo

Stefani, F.; Giesecke, A.; Weier, T.

We present a solar dynamo model of Tayler-Spruit type with an Omega-effect that is conventionally produced by solar-like differential rotation, while its alpha-effect is periodically modulated by planetary tidal forcing. The underlying resonance builds upon the tendency of the Tayler instability to generate helicity oscillations which can be synchronized by periodic tidal forces. We focus on the 11.07 years alignment periodicity of the planets Venus, Earth, and Jupiter and analyze its synchronization with the solar dynamo. The typically emerging dynamo modes are dipolar or quadrupolar fields, oscillating with a 22.14 years period or pulsating with a 11.07 years period. When starting from a conventional alpha-Omega-dynamo, the addition of the periodic alpha-part can lead to entrainment of the entire dynamo via parametric resonance. Phase coherent transitions between dipoles and quadrupoles are discussed, too.

  • Lecture (Conference)
    11th PAMIR International Conference - Fundamental and Applied MHD, 01.-05.07.2019, Reims, France
  • Contribution to proceedings
    11th PAMIR International Conference - Fundamental and Applied MHD, 01.-05.07.2019, Reims, France
    Proceedings of the 11th PAMIR International Conference - Fundamental and Applied MHD, Reims, France: University of Reims Champagne-Ardenne, 43-47

Permalink: https://www.hzdr.de/publications/Publ-30345
Publ.-Id: 30345


Dual Energy - Stopping Power Ratio: Facilitating clinical implementation of Dual Energy CT-based stopping power prediction – What‘s the benefit?

Richter, C.; Möhler, C.

Facilitating clinical implementation of Dual Energy CT-based stopping power prediction – What‘s the benefit?

  • Invited lecture (Conferences)
    Siemens Healthineers Lunch Symposium at ESTRO 38, 29.04.2019, Milano, Italia

Permalink: https://www.hzdr.de/publications/Publ-30344
Publ.-Id: 30344


CT-based delineation: What can we gain from state-of-the-art CT image acquisition and reconstruction techniques?

Richter, C.; Negwer, F.; Troost, E. G. C.; Wohlfahrt, P.

X-ray computed tomography (CT) has been the standard imaging modality in radiation oncology for both, treatment planning and delineation of targets and organs at risk for decades. For further improvement, especially for delineation, magnetic resonance imaging (MRI) and positron emission tomography (PET) are being extensively investigated and more often included into clinical routines. They can provide better soft tissue contrast and functional information. Still, also in the field of CT imaging relevant improvements have been made, that are not so much in the spotlight. Hence, this talk will focus on novel CT image acquisition and reconstruction techniques and their potential benefit for radiation oncology applications.
First, the potential value of dual-energy CT (DECT) for delineation will be discussed. DECT has already been proven to allow for a more accurate treatment planning, especially in particle therapy. It provides additional tissue information compared to conventional CT imaging. Furthermore, DECT enables the reconstruction of different CT datasets with varying image contrasts. Currently, it is unproven whether this additional information translates into improvement of the segmentation and delineation quality. The exploration of this benefit in combination with machine learning approaches is envisioned. First studies will be presented.
Second, the potential of iterative CT reconstruction methods will be highlighted. They allow for a substantial reduction of imaging dose to reach a similar noise level as conventional filtered back projection. Hence, iterative reconstruction is of high relevance for adaptive protocols as it reduces the dose burden from more frequent CT imaging during treatment.
Third, the value and challenges of metal artefact reduction algorithms will be covered. It has been shown that the visual image impression can be substantially improved for regions suffering from metal artefacts in conventional CT reconstruction, suggesting a direct benefit for delineation purposes. However, as these algorithms can also quantitatively alter the image in regions not influenced by metal artefacts, great care should be taken – especially in particle therapy planning.
In summary, state-of-the-art CT imaging can provide additional value for radiation oncology purposes. This talk aims to increase awareness of this potential. By revisiting the institutional imaging protocol, one can potentially improve the image quality for delineation and/or safe dose to patients.

  • Invited lecture (Conferences)
    ESTRO 38, 26.-30.04.2019, Milano, Italia
  • Open Access Logo Abstract in refereed journal
    Radiotherapy and Oncology 133(2019), S361-S361
    DOI: 10.1016/S0167-8140(19)31118-1

Permalink: https://www.hzdr.de/publications/Publ-30343
Publ.-Id: 30343


Translational medical physics research: Increasing accuracy in particle therapy towards its physical limit

Richter, C.

Translational medical physics research: Increasing accuracy in particle therapy towards its physical limit

  • Invited lecture (Conferences)
    Sino-German Round Table Symposium on Cancer Precision Medicine in the Era of Big Data, 19.-20.06.2019, Tianjin, China

Permalink: https://www.hzdr.de/publications/Publ-30342
Publ.-Id: 30342


Bildgeführte Teilchentherapie und Bestrahlungs-Verifizierung

Richter, C.

Bildgeführte Teilchentherapie und Bestrahlungs-Verifizierung

  • Invited lecture (Conferences)
    Fachkundekurs und Aktualisierungskurs für die Partikeltherapie, 07.-09.11.2019, Dresden, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-30341
Publ.-Id: 30341


Dual-Energy CT for particle therapy planning and beyond

Richter, C.

Dual-Energy CT for particle therapy planning and beyond

  • Invited lecture (Conferences)
    ESTRO School: Imaging for Physicists, 29.09.-03.10.2019, Manchester, United Kingdom

Permalink: https://www.hzdr.de/publications/Publ-30340
Publ.-Id: 30340


CT-based in-room imaging

Richter, C.

CT-based in-room imaging

  • Invited lecture (Conferences)
    ESTRO School: Imaging for Physicists, 29.09.-03.10.2019, Manchester, United Kingdom

Permalink: https://www.hzdr.de/publications/Publ-30339
Publ.-Id: 30339


CT for radiotherapy planning

Richter, C.

CT for radiotherapy planning

  • Invited lecture (Conferences)
    ESTRO School: Imaging for Physicists, 29.09.-03.10.2019, Manchester, United Kingdom

Permalink: https://www.hzdr.de/publications/Publ-30338
Publ.-Id: 30338


Clinical implementation of TPS-independent DECT-based patient-individual SPR prediction and its way into Raystation

Richter, C.; Wohlfahrt, P.

Clinical implementation of TPS-independent DECT-based patient-individual SPR prediction and its way into Raystation

  • Invited lecture (Conferences)
    Raysearch Particle Premeeting at PTCOG, 12.06.2019, Manchester, United Kingdom

Permalink: https://www.hzdr.de/publications/Publ-30337
Publ.-Id: 30337


The DRESDYN Project at HZDR

Stefani, F.; Eckert, S.; Gerbeth, G.; Giesecke, A.; Seilmayer, M.; Vogt, T.

We discuss the background and the recent status of the DRESDYN project at HZDR. Special focus is laid on the relation with sodium flow problems specific to SFR's.

  • Lecture (Conference)
    ESFR-SMART workshop on Instrumentation for the Safety of Liquid Metal Facilities, 10.-12.04.2019, Dresden, Germany

Permalink: https://www.hzdr.de/publications/Publ-30336
Publ.-Id: 30336


Bubble Generation at Micro-Orifices with Application to Wastewater Treatment

Mohseni, E.; Reinecke, S. F.; Hampel, U.

Many chemical, biochemical and environmental processes are characterized by inefficient mass transfer and mixing. This hold particularly for aeration and ozonisation in waste water treatment. Therefore, technologies for efficient fine gas dispersion and creation of small gas bubbles are of interest. One way to achieve finer gas dispersion is to scale-down the opening at which the gas bubbles are generated. At very small openings, the bubble formation process is highly influenced by high capillary pressure and gas kinetic energy. So far, the leverage of small orifices, especially smaller than 1 mm, to the final gas bubble size is not well understood. In the current investigation, we experimentally studied the dynamics of gas bubble formation from submerged orifices ranging between 0.04 and 0.8 mm in a wide range of gas flow rates. We observed different mechanisms of bubble formation at micro-orifices compared to millimetre orifices. Moreover, we present a bubbling regime map to describe the dynamic behaviour of forming bubbles. Finally, to evaluate the performance of micro-orifice spargers, we compared them with industrial rubber membrane diffusers with respect to the Sauter mean bubble diameter.

Keywords: Bubble Generation; Micro-orifices; Aeration; Biological Wastewater Treatment; Rubber Membrane Diffusers

  • Poster
    LET2019- The 16th IWA Leading Edge Conference on Water and Wastewater Technologies, 10.-14.06.2019, Edinburgh, United Kingdom

Permalink: https://www.hzdr.de/publications/Publ-30335
Publ.-Id: 30335


Planetary dynamos in the lab

Stefani, F.

Magnetic fields of planets are known to be generated by the homogeneous dynamo effect in moving liquid metals, such as iron or metallic hydrogen. For a long time, hydromagnetic dynamos have been the subject of purely theoretical and numerical research. This situation changed in 1999 when the threshold of magnetic-field self-excitation was crossed in the two large-scale liquid sodium experiments in Riga and Karlsruhe. Since 2006, the VKS dynamo experiment in Cadarache has successfully reproduced key processes of geophysical interest such as reversals and excursions. Further liquid metal experiments in Grenoble, Madison, Maryland, Perm, Princeton, Perm, Queretaro, and Socorro have contributed important findings to dynamo research. After giving an overview about those recent achievements, the talk will delineate the present status of the DRESDYN precession experiment at HZDR. A few further issues connected with the experimental demonstration of magnetically triggered flow instabilities, such as magnetorotational and Tayler instability, are also discussed.

  • Invited lecture (Conferences)
    8th Joint Workshop on High Pressure, Plnaetary and Plasma Physics (HP4), 09.-11.10.2019, Dresden, Germany

Permalink: https://www.hzdr.de/publications/Publ-30334
Publ.-Id: 30334


Schwabe, Gleissberg, Suess-de Vries: A simple model for synchronizing solar cycles by planetary forces

Stefani, F.; Giesecke, A.; Seilmayer, M.; Stepanov, R.; Weier, T.

Aiming at a simple and consistent planetary synchronization model of both short-term and long-term solar cycles we analyze Schove's data of the cycle minima and maxima. Their residuals from the average cycle duration of 11.07 years show a high degree of regularity, comprising a dominant period of 200 years (Suess-de Vries cycle), and a few periods around 90 years (Gleissberg cycle). Based on Dicke's ratio between the mean square of the residuals to the mean square of the difference of two consecutive residuals, we conjecture that the Schwabe cycle is synchronized, very likely via a helicity-mediated parametric resonance, by the 11.07 years alignment cycle of the tidally dominant planets Venus, Earth and Jupiter. In an attempt to explain the rather regular long-term behaviour, we enhance our Parker-type solar dynamo model by a modulation of the field-storage capacity of the tachocline with the 19.86 years periodicity of the movement of the sun around the barycenter of the solar system, which results basically from the Jupiter-Saturn synodes. Not surprisingly, this modulation leads to a 193-year beat period of dynamo activity which is indeed close to the observed 200 years Suess-de Vries cycle. In cases, the model produces also additional peaks at typical Gleissberg frequencies, which might be interpreted as beat periods of the Schwabe cycle with the Jupiter-Uranus (13.81-year) or the Jupiter-Neptune (12.78-year) synodes.

  • Invited lecture (Conferences)
    4th Dynamo Thinkshop, 25.-26.11.2019, Rome, Italy

Permalink: https://www.hzdr.de/publications/Publ-30333
Publ.-Id: 30333


Sustaining turbulence in spectrally stable shear flows – interplay of linear transient growth and nonlinear transverse cascade

Gogichaishvili, D.; Mamatsashvili, G.; Horton, W.; Chagelishvili, G.

We analyze the sustaining mechanism of nonlinear perturbations/turbulence in spectrally stable smooth shear flows. The essence of the sustenance is a subtle interplay of linear transient growth of Fourier harmonics and nonlinear processes. In spectrally stable shear flows, the transient growth of perturbations is strongly anisotropic in spectral (k-)space. This, in turn, leads to anisotropy of nonlinear processes in k-space and, as a result, the main (new) nonlinear process appears to be not a direct/inverse, but rather a transverse/angular redistribution of harmonics in Fourier space referred to as the nonlinear transverse cascade. It is demonstrated that nonlinear state is sustained owing to the interplay of the linear nonmodal growth and the transverse cascade. The possibility of such course of events has been described in k-space by G. Chagelishvili, J.-P. Zahn, A. Tevzadze and J. Lominadze, A&A, 402, 401 (2003) that reliably exemplifies the well-known bypass scenario of subcritical turbulence in spectrally stable shear flows. We present selected results of the simulations performed in different (HD and MHD; 2D and 3D; plane and Keplerian) shear flows to demonstrate the transverse cascade in action.

Keywords: nonmodal growth; turbulence; magnetorotational instability; MHD; self-sustaining process; transverse cascade

  • Contribution to proceedings
    Astro Fluid: An International Conference in Memory of Professor Jean-Paul Zahn's Great Scientific Achievements, 27.06.2016, Paris, Frankreich
    EAS Publications Series, volume 82, 2019, pp.423 - 434
    DOI: 10.1051/eas/1982037

Permalink: https://www.hzdr.de/publications/Publ-30332
Publ.-Id: 30332


Nonlinear transverse cascade – a key factor of sustenance of subcritical turbulence in shear flows

Gogichaishvili, D.; Mamatsashvili, G.; Chagelishvili, G.; Horton, W.

We analyze the essence of nonlinear processes that underlie turbulence sustenance in spectrally stable shear flows. In these flows, the strong anisotropy of velocity shear-induced nonmodal growth phenomenon in spectral (k-)space, in turn, entails the anisotropy of nonlinear processes in this space. Consequently, the main novel nonlinear process is transverse, or angular redistribution of modes in Fourier space referred to as the nonlinear transverse cascade rather than a mere direct/inverse cascade. It is demonstrated that nonlinear coherent as well as turbulent states are sustained via a subtle interplay of the linear nonmodal growth (that has transient nature) and the nonlinear transverse cascade. This course of events exemplifies the well-known bypass scenario of subcritical turbulence in spectrally stable shear flows. In this proceedings paper, we present selected results of our simulations of hydrodynamic and MHD 2D plane shear flows to demonstrate the transverse cascade in action.

Keywords: nonmodal growth; instabilities; turbulence; MHD; transverse cascade; self-sustaining process

  • Contribution to proceedings
    Turbulent Cascades II, 05.12.2017, Lyon, Frankreich
    Turbulent Cascades II -- Proceedings of the Euromech-ERCOFTAC Colloquium 589
    DOI: 10.1007/978-3-030-12547-9_12

Permalink: https://www.hzdr.de/publications/Publ-30331
Publ.-Id: 30331


MHD turbulence in Keplerian disks – specific anisotropy of nonlinear processes, active modes, dynamical balances and sustenance

Mamatsashvili, G.

We investigate MHD turbulence in Keplerian disk flows threaded by a non-zero net azimuthal magnetic flux. In order to gain a deeper insight into the underlying dynamical balances and sustaining mechanism, we performed a set of numerical simulations in the shearing box model and based on the simulation data, analyzed in detail the turbulence dynamics in Fourier/wavenumber space. In the case of a net azimuthal field, classical exponential/modal instabilities are absent in the disk flow and linear growth of perturbations (shearing waves) is transient, also referred to as nonmodal growth. Namely, in the presence of disk rotation, radial shear and azimuthal field, the magnetorotational instability (MRI), being only available source of energy for turbulence, takes on transient character and, therefore, by itself, cannot ensure a long-term sustenance of the perturbations, i.e., it is “imperfect” in this sense. A necessary positive nonlinear feedback is required to regenerate nonmodally growing modes. In other words, the role of nonlinearity becomes crucial in this case: it lies at the heart of the sustenance of turbulence. The detailed analysis of the dynamics in Fourier space, allows us to demonstrate existence of the positive feedback. Specifically, the main novelties of our findings are the following:
1. The nonmodal MRI growth process is strongly anisotropic in Fourier space that, in turn, leads to anisotropy of nonlinear processes in this space. As a result, the main nonlinear process appears to be not a usual and well-known direct/inverse, but rather a new type of transverse/angular redistribution of perturbation modes in Fourier space, when their wavevector changes mostly its orientation (and not its magnitude) during nonlinear interactions. We refer to this angular transfer as the nonlinear transverse cascade.
2. Both the linear nonmodal growth of MRI and nonlinear transverse cascade mainly operate/dominate at large length scales, comparable to the box/system size. Consequently, the corresponding central, small wavenumber area of Fourier space is crucial in the turbulence sustenance process and is thus called the vital area.
3. We demonstrate that the turbulence in disks with net azimuthal field is sustained by a subtle interplay of the linear nonmodal growth of MRI and the nonlinear transverse cascade. Analyzing this interplay, we revealed the basic subcycle of the sustenance scheme that clearly shows synergy of the linear and nonlinear processes in the self-organization of the magnetized flow system.

Keywords: nonmodal growth; magnetorotational instability; turbulence; MHD

  • Open Access Logo Lecture (Conference)
    Turbulence & magnetic fields - from the early universe to late-type stars, 01.04.2019, Tuusula, Finland

Permalink: https://www.hzdr.de/publications/Publ-30330
Publ.-Id: 30330


A new type of double-diffusive helical magnetorotational instability in rotational flows with positive shear

Mamatsashvili, G.; Stefani, F.; Hollerbach, R.; Rüdiger, G.

We revealed a novel type of linear axisymmetric helical magnetorotational instability in viscous and resistive rotating flows with radially increasing angular velocity, or positive shear, exposed to a helical magnetic field. It operates for a broad range of positive shear, provided that magnetic Prandtl number is not unity. This instability can play an important role in the magnetic activity of the equatorial parts of the solar tachocline, where the shear of differential rotation is positive.

Keywords: magnetorotational instability; liquid metals; MHD; solar tachocline

  • Open Access Logo Lecture (Conference)
    11th Pamir International Conference on Fundamental and Applied MHD, 01.07.2019, Reims, France
  • Open Access Logo Lecture (Conference)
    8-th International Symposium on Bifurcations and Instabilities in Fluid Dynamics, 16.07.2019, Limerick, Ireland

Downloads:

Permalink: https://www.hzdr.de/publications/Publ-30329
Publ.-Id: 30329


233U/236U signature allows to distinguish environmental emissions of civil nuclear industry from weapons fallout

Hain, K.; Steier, P.; Froehlich, M. B.; Golser, R.; Hou, X.; Lachner, J.; Nomura, T.; Qiao, J.; Quinto, F.; Sakaguchi, A.

Isotopic ratios of radioactive releases into the environment are useful signatures for contamination source assessment. Uranium is known to behave conservatively in sea water so that a ratio of uranium trace isotopes may serve as a superior oceanographic tracer. Here we present data on the atomic 233U/236U ratio analyzed in representative environmental samples finding ratios of (0.1–3.7)⋅10−2. The ratios detected in compartments of the environment affected by releases of nuclear power production or by weapons fallout differ by one order of magnitude. Significant amounts of 233U were only released in nuclear weapons fallout, either produced by fast neutron reactions or directly by 233U-fueled devices. This makes the 233U/236U ratio a promising new fingerprint for radioactive emissions. Our findings indicate a higher release of 233U by nuclear weapons tests before the maximum of global fallout in 1963, setting constraints on the design of the nuclear weapons employed.

Permalink: https://www.hzdr.de/publications/Publ-30328
Publ.-Id: 30328


Multi-method dating of ancient permafrost of the Batagay megaslump, East Siberia

Wetterich, S.; Murton, J. B.; Toms, P.; Blinov, A.; Opel, T.; Fuchs, M.; Merchel, S.; Rugel, G.; Gärtner, A.; Savvinov, G.

Dating of ancient permafrost is essential for understanding permafrost stability and interpreting past climate and environmental conditions over Pleistocene timescales but faces substantial challenges to geochronology.
Here, we date permafrost from the world’s largest retrogressive thaw slump at Batagay in the Yana Upland, East Siberia (67.58 °N, 134.77 °E). The slump headwall exposes four generations of ice and sand-ice (composite) wedges that formed synchronously with permafrost aggradation. The stratigraphy differentiates into a Lower Ice Complex (IC) overlain by a Lower Sand Unit, an Upper IC and an Upper Sand Unit. Two woody beds below and above the Lower Sand Unit represent the remains of two episodes of taiga forest development prior to the Holocene forest. Thus, the ancient permafrost at Batagay potentially provides one of the longest terrestrial records of Pleistocene environments in western Beringia.
We apply four dating methods to the permafrost deposits to disentangle the chronology of the Batagay permafrost archive – optically-stimulated luminescence (OSL) dating of quartz and post-infrared-stimulated luminescence (pIR-IRSL) dating of feldspar as well as accelerator mass spectrometry-based Cl-36/Cl dating of wedge ice and radiocarbon dating of organic material.
The age information obtained so far indicates that the Batagay permafrost sequence is discontinuous and that the Lower IC developed well before MIS 7, the overlying Lower Sand Unit formed during MIS 6, and the Upper IC and the Upper Sand Unit formed both during MIS 3-2.
Additional sampling for all dating approaches presented here took place in spring 2019, and is part of ongoing research to enhance the geochronology of the exceptional palaeoenvironmental archive of the Batagay megaslump.

Keywords: dating; chronology; AMS; permafrost; luminescence; ce

  • Poster (Online presentation)
    European Geosciences Union (EGU) General Assembly, 03.-08.05.2020, Online, Online

Downloads:

Permalink: https://www.hzdr.de/publications/Publ-30327
Publ.-Id: 30327


Implantation experiments to check the Plasma Immersion Ion Implantation quality

Yankov, R.; Julin, J. A.; Munnik, F.; Skorupa, W.

Projekttreffen-relevanter Vortrag zur ERDA-Untersuchung von Fluor in Nickel-basierten Legierungen nach Plasma-Immersions-Implantation

Keywords: ERDA-Untersuchung; Fluor; Nickel-basierte Legierungen; Plasma-Immersions-Implantation

  • Lecture (others)
    Projektausschußsitzung "Nickelbasierte Legierungen", 04.06.2019, Braunschweig, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-30326
Publ.-Id: 30326


Hochtemperaturoxidationsschutz für Nickelwerkstoffe durch Fluorimplantation

Donchev, A.; Yankov, R.; Skorupa, W.; Galetz, M.

Projekttreffen-relevanter Vortrag zur Korrosions- und mikrostrukturellen Untersuchung von Nickel-basierten Legierungen nach Plasma-Immersions-Implantation mit Fluor

Keywords: Fluor; Nickel-basierte Legierungen; Plasma-Immersions-Implantation; Korrosionsunterdrückung; Mikrostruktur

  • Lecture (others)
    Projektausschußsitzung "Nickelbasierte Legierungen", 04.06.2019, Braunschweig, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-30325
Publ.-Id: 30325


Hochtemperaturoxidationsschutz für Nickelwerkstoffe durch Fluorimplantation

Donchev, A.; Yankov, R.; Skorupa, W.; Galetz, M.

Projekttreffen-relevanter Vortrag zur Korrosions- und mikrostrukturellen Untersuchung von Nickel-basierten Legierungen nach Plasma-Immersions-Implantation mit Fluor

Keywords: Fluor; Nickel-basierte Legierungen; Plasma-Immersions-Implantation; Korrosionsunterdrückung; Mikrostruktur

  • Lecture (others)
    Projektausschußsitzung "Nickelbasierte Legierungen", 03.12.2019, Dresden, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-30324
Publ.-Id: 30324


ERDA for more Fluorine in Nickel-based alloys

Yankov, R.; Julin, J. A.; Munnik, F.; Skorupa, W.

Projekttreffen-relevanter Vortrag zur ERDA-Untersuchung von Fluor in Nickel-basierten Legierungen nach Plasma-Immersions-Implantation

Keywords: ERDA-Untersuchung; Fluor; Nickel-basierte Legierungen; Plasma-Immersions-Implantation

  • Lecture (others)
    Projektausschußsitzung "Nickelbasierte Legierungen", 03.12.2019, Dresden, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-30323
Publ.-Id: 30323


The Nam Xe REE-Project in Vietnam - From Mineralogy to Possible Processing Routes

Möckel, R.; Heinig, T.; Cardenas Vera, A. F.; Merker, G.; Quang, V. P.; Gutzmer, J.

The Nam Xe deposit in northern Vietnam is a promising REE prospect. A German-Vietnamese cooperative project included massive pre-mining environmental monitoring, detailled mineralogical investigation and processing experiments. Outcomes were detailled mapping results of radioactive elements and a first suggestion for a processing route of the REE ore, including sensor sorting and a two stage flotation scheme.

Keywords: Nam Xe; rare earth elements; flotation; sensor sorting

  • Lecture (Conference)
    HiTech AlkCarb and SoS RARE celebratory and results launch event, 26.-27.11.2019, London, UK

Permalink: https://www.hzdr.de/publications/Publ-30322
Publ.-Id: 30322


The Image Biomarker Standardization Initiative: standardized quantitative radiomics for highthroughput image-based phenotyping

Zwanenburg, A.; Vallières, M.; Abdalah, M. A.; Aerts, H. J. W. L.; Andrearczyk, V.; Apte, A.; Ashrafinia, S.; Bakas, S.; Beukinga, R. J.; Boellaard, R.; Bogowicz, M.; Boldrini, L.; Buvat, I.; Cook, G. J. R.; Davatzikos, C.; Depeursinge, A.; Desseroit, M.-C.; Dinapoli, N.; Viet Dinh, C.; Echegaray, S.; El Naqa, I.; Fedorov, A. Y.; Gatta, R.; Gillies, R. J.; Goh, V.; Guckenberger, M.; Götz, M.; Min Ha, S.; Hatt, M.; Isensee, F.; Lambin, P.; Leger, S.; Leijenaar, R. T. H.; Lenkowicz, J.; Lippert, F.; Losnegård, A.; Maier-Hein, K. H.; Morin, O.; Müller, H.; Napel, S.; Nioche, C.; Orlhac, F.; Pati, S.; Pfaehler, E. A. G.; Rahmim, A.; Rao, A. U. K.; Scherer, J.; Musib Siddique, M.; Sijtsema, N. M.; Socarras Fernandez, J.; Spezi, E.; Steenbakkers, R. J. H. M.; Tanadini-Lang, S.; Thorwarth, D.; Troost, E. G. C.; Upadhaya, T.; Valentini, V.; V. Van Dijk, L.; van Griethuysen, J.; van Velden, F. H. P.; Whybra, P.; Richter, C.; Löck, S.

Background: Radiomic features may quantify characteristics present in medical imaging. However, the lack of standardized definitions and validated reference values have hampered clinical usage.

Purpose: To standardize a set of 174 radiomic features. Materials and Methods: Radiomic features were assessed in three phases. In phase I, 487
features were derived from the basic set of 174 features. Twenty-five research teams with unique radiomics software implementations computed feature values directly from a digital phantom, without any additional image processing. In phase II, fifteen teams computed values for 1347 derived features using a CT image of a patient with lung cancer and predefined image processing configurations. In both phases, consensus among the teams on the validity of tentative reference values was measured through the frequency of the modal value: <3 matches: weak; 3-5: moderate; 6-9: strong; ≥10 very strong. In the final phase (III), a public dataset of multi-modality imaging (CT, 18F-FDG-PET and T1-weighted MR) from 51 patients with soft-tissue sarcoma was used to prospectively assess reproducibility of standardized features..

Results: Consensus on reference values was initially weak for 232/302 (76.8%; phase I) and 703/1075 (65.4%; phase II) features. At the final iteration, weak consensus remained for only 2/487 (0.4%; phase I) and 19/1347 (1.4%; phase II) features, and strong or better consensus was achieved for 463/487 (95.1%; phase I) and 1220/1347 (90.6%; phase II). Overall, 169/174 features were standardized in the first two phases. In the final validation phase (III), almost all standardized features could be excellently reproduced: CT:166/169 features; PET:164/169 and MRI: 164/169.

Conclusion: A set of 169 radiomics features was standardized, which enables verification and calibration of different radiomics software.

Keywords: Radiomics; standardization; software quality assurance; quantitative image analysis; reporting guidelines

Downloads:

Permalink: https://www.hzdr.de/publications/Publ-30321
Publ.-Id: 30321


Antikorrosive Wirkung nanoskaliger Schichten auf metallischen Legierungen im Orgelbau

Skorupa, W.; Quade, A.; Schäfer, J.; Schumann, T.; Eule, D.

Der Vortrag beschäftigt sich mit den Ergebnissen von zwei durch die Sächsische Aufbaubank in Kombination zu EU-EFRE geförderten Projekten, an denen der Hermann Eule Orgelbau, das Helmholtz-Zentrum Dresden-Rossendorf (HZDR) und das Leibniz-Institut INP Greifswald beteiligt waren bzw. noch sind. Im Mittelpunkt des Interesses standen die Erzeugung von nanoskaligen Schichten (30-100 nm Schichtdicke) durch plasma-gestützte Abscheideverfahren unter Vakuum sowie bei Atmosphärendruck auf Blei- und Messing-Materialien. Diese Schichten wurden hinsichtlich ihrer antikorrosiven Wirkung gegenüber essigsäurehaltiger Atmosphäre untersucht.

Keywords: Plasma-gestützte Abscheideverfahren; Plasmaimmersions-Ionenimplantation; atmosphärische Plasma-CVD; antikorrosive Behandlung; Messing; Blei-Zinn-Legierung; Korrosion; Essigsäure

  • Invited lecture (Conferences)
    BDO-Workshop Bleikorrosion (BDO-Bund Deutscher Orgelbaumeister e.V.), 24.-25.10.2019, Ludwigsburg, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-30320
Publ.-Id: 30320


Using deep learning for object recognition on hyperspectral data

Sudharshan, V.

Benefitting from the rapid expansion of consumer electronics (CE), plenty of new electronic products are introduced into the market annually. At the same time, due to the short life span of such products and the rapid emergence of new generations, large quantities of electronic waste are produced. The objective of this thesis is obtaining information on printed circuit boards (PCB) composition through non-invasive analysis using RGB (red, green and blue) and hyperspectral data to aid in recycling precious metals from recycled PCBs. The obtained information will be useful in more efficient processing of E-waste by harnessing deep learning networks. The goal of the thesis is to identify the surface mounted devices of a PCB such as the integrated circuits, connectors, capacitors, resistors etc. through the spatial information available in RGB images. The information obtained will be used in conjunction with HSI (Hyperspectral Images) to localise the detection area to recognise the composition of the PCB. We utilize spectral signatures of materials derived from HSI's and combining the spectral and spatial information to obtain a more precise recognition of the composition of a PCB. While hyperspectral data finds its use mostly in the remote sensing community to aid geological exploration, the application of this technology in the area of PCB recycling shows promise. The RGB images and HSI are collected by the multi-sensor system at the Helmholtz Institute Freiberg for Resource Technology (HIF) and supplements the training of the neural networks with the public data sets available from analogous research to localize the area of analysis for HSI based recognition. The neural network chosen for the application is the Faster Regional Convolutional Networks (Faster-RCNN) and we propose a guided anchoring method that utilizes Hyperspectral data to further improve the detection accuracy of the RGB based Faster RCNN, thereby including both spatial and spectral information of the PCBs. The results are then shown in comparison to demonstrate that the cross modal guided anchoring has a pronounced effect on the detection accuracy of the object detection network.

  • Master thesis
    TU Chemnitz, 2019

Permalink: https://www.hzdr.de/publications/Publ-30319
Publ.-Id: 30319


Antikorrosive Behandlungen metallischer Legierungen für den Orgelbau mittels Nanotechnologie

Quade, A.; Schumann, T.; Schäfer, J.; Kumpe, C.; Eule, D.; Skorupa, W.

Neben dem Problem des Schimmelpilzbefalls in Orgel-Instrumenten existiert das Problem der Korrosion von metallischen Orgelbestandteilen aus Blei/Zinn- sowie Kupfer/Zink (Messing)-Legierungen. Dabei werden die labialen Orgelpfeifen aus den Blei/Zinn-Legierungen gefertigt, während Messingteile für die Tonerzeugung in Zungenpfeifen verwendet werden. Die Korrosion erfolgt vor allem durch Ausdiffusion von Gerb-bzw. Ameisensäure aus dem in Orgeln verbauten Holz, wobei die Luftfeuchtigkeit der Umgebung eine katalytisch verstärkende Wirkung hat. Legierungen mit hohem Bleigehalt (>95%) sind dabei besonders gefährdet. Unsere Experimente konzentrierten sich auf Laborexperimente zur Korrosion entsprechender Legierungsproben aus dem Orgelbau mittels verdünnter Essigsäure (2–5 v/v%). Zuvor waren die Proben mit zwei verschiedenen Verfahren zur Erzeugung einer nanoskaligen Schutzschicht behandelt worden: (1) Gepulste Laserabscheidung bzw. Sputtern von Al2O3 -oder Al-Schichten gefolgt von Stickstoffbestrahlung mittels Plasmaimmersion, und (2) plasma-gestützte chemische Dampfphasenabscheidung (CVD) von SiOx. Während das erstere Verfahren ein Vakuumprozess ist, erfolgt das zweitgenannte Verfahren bei Atmosphärendruck. Die Barriere-Schichten wurden erfolgreich im Labor erprobt. Messing-Proben, beschichtet nach Verfahren 1, wurden in einem Feldexperiment in einer Mecklenburger Kirche mit besonders hohem Korrosionspotential für 15 Monate nach Einbau in reale Pfeifen ebenso erfolgreich getestet.

Keywords: pipe organ; atmospheric corrosion; acetic acid; volatile organic compounds; CuZn-alloy; brass; PbSn-alloy; plasma immersion ion implantation

  • Invited lecture (Conferences)
    5. Mykologisches Kolloquium „Technische Maßnahmen zur Vermeidung von Schimmelpilzbefall in Kirchenorgeln“, 09.-10.05.2019, Dresden, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-30318
Publ.-Id: 30318


Kreuz + Quer – Denken: …erlaubt? (…oder: Ist Innovation lehrbar?)

Skorupa, W.

Vortrag anläßlich der Inauguration von Prof. Thoralf Gebel an der Hochschule Mittweida - (University of Applied Science), Fakultät Wirtschaftsingenieurwesen, Lehrstuhl Industrial Management mit den Schwerpunkten Innovationsmanagement und Consulting

Keywords: Inauguration; Hochschule Mittweida; Prof. Thoralf Gebel

  • Invited lecture (Conferences)
    Vortrag zur Inauguration, Prof. Thoralf Gebel, Hochschule Mittweida, 10.04.2019, Mittweida, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-30317
Publ.-Id: 30317


Nanoscale anticorrosive protection of pipe organ metallic materials

Quade, A.; Schumann, T.; Schäfer, J.; Kumpe, C.; Eule, D.; Skorupa, W.

Pipe organs with their unique musical sound are important objects of the cultural heritage. Such instruments consist of a number of pipes (flute and reed), which are prone to heavy corrosion attack, getting finally voiceless. The atmospheric corrosion of reed (CuZn alloys) and flute pipes (PbSn alloys) is strongly enhanced by traces of volatile organic compounds (VOCs) and the alloy’s instability. Moreover, there is a strong impact of humidity in the corrosion process. Experiments have been undertaken to explore the suppression of an aqueous corrosion with acetic acid concentration (2–5 v/v%) of CuZn and PbSn alloys, by deposition of nanocoating using two different methods: (i) Pulsed laser- or Magnetron sputtering deposition of Al2O3 or Al followed by plasma immersion ion implantation of nitrogen as a vacuum technology, and (ii) Plasma enhanced CVD of SiOx films at atmospheric pressure. The nanocoating is then able to withstand acoustic vibrations of organ pipes, and it produces a barrier to VOCs and water vapor. The laboratory corrosion tests were combined with field studies to approach environmental conditions. Some of the samples were exposed for 15 months to harmful indoor environment in North-German church. Surface modification of metallic alloys based on ion-solid interactions as well as plasma-based processing creates new paths in restoration and conservation technologies to protect our historical and modern cultural heritage against environmental attacks.

Keywords: pipe organ; atmospheric corrosion; acetic acid; volatile organic compounds; CuZn-alloy; brass; PbSn-alloy; plasma immersion ion implantation

  • Lecture (Conference)
    EMRS Spring Mtg., Symposium.BB „Cultural heritage – science, materials and technologies“, Nizza – May 27-31, 2019, 27.-31.05.2019, Strasbourg, Frankreich

Permalink: https://www.hzdr.de/publications/Publ-30316
Publ.-Id: 30316


Fractional Abundance Estimation of Mixed and Compound Materials by Hyperspectral Imaging

Koirala, B.; Zahiri, Z.; Khodadadzadeh, M.; Scheunders, P.

The mechanical and chemical properties of a compound material are determined by the fractional abundances of its components. In this work, we present a spectral unmixing technique to estimate the fractional abundances of the components of mixed and compound materials from hyperspectral images. The estimation of fractional abundances in mixed materials faces the main challenge of intimate mixing. In compound materials, the mixing with water causes changes in chemical properties resulting in spectral variability and non-linearity. To address these challenges, a supervised method is proposed that learns a mapping from the hyperspectral data to spectra that follow the linear mixing model. Then, a linear unmixing technique is applied on the mapped spectra to estimate the fractional abundances. To demonstrate the potential of the proposed method, experiments are conducted on hyperspectral images from mixtures of red and yellow clay powders and hardened mortar samples with varying water to cement ratios.

  • Contribution to proceedings
    2019 10th Workshop on Hyperspectral Imaging and Signal Processing: Evolution in Remote Sensing (WHISPERS), 24.-26.09.2019, Amsterdam, Netherlands

Permalink: https://www.hzdr.de/publications/Publ-30315
Publ.-Id: 30315


Abundance-Indicated Subspace for Hyperspectral Classification With Limited Training Samples

Xu, S.; Li, J.; Khodadadzadeh, M.; Marinoni, A.; Gamba, P.; Li, B.

The imbalance between the (often limited) number of available training samples and the high data dimensionality, together with the presence of mixed pixels, often complicates the classification of remotely sensed hyperspectral data. In this paper, we tackle these problems by developing a new method that combines spectral unmixing and classification techniques in a subspace-based approach. The proposed method is developed under the assumption that the spectral signature of a land cover class is associated with a given set of pure spectral signatures (called endmembers in spectral unmixing terminology), which define a low-dimensional subspace with clear physical meaning. We aim to exploit this relationship to learn the class-dependent subspaces and integrate them with a multinomial logistic regression procedure. Experiments on synthetic datasets and real hyperspectral images show that our method is able to obtain competitive performances in comparison with other approaches, particularly when very limited training sets are available.

Keywords: Hyperspectral image classification; mixed pixels; mutinomial logistic regression (MLR); spectral unmixing; subspace learning

  • IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 12(2019)4, 1265-1278
    DOI: 10.1109/JSTARS.2019.2903940

Permalink: https://www.hzdr.de/publications/Publ-30314
Publ.-Id: 30314


Cationic Porphyrin-Graphene Oxide Hybrid: Donor-Acceptor Composite for Efficient Photoinduced Electron Transfer

Larowska, D.; Lindner, A. A.; Mazurkiewicz-Pawlicka, M.; Malolepszy, A.; Stobiński, L.; Marciniak, B.; Lewandowska-Andralojc, A.

Non-covalent nanohybrids composed of cationic 5,10,15,20-tetra(4-trimethylammoniophenyl)porphyrintetra(p-toluenesul-fonate) (TMAP) and the graphene oxide sheets were prepared under two pH values (6.2 vs. 1.8).The TMAP molecule was positively charged, regardless of the pH value during preparation. However, protonation of the iminonitrogens increased the overall charge of the porphyrin molecule from +4 to +6 (TMAP4+ and TMAP6+). It was found that at acidic pH,interaction of TMAP6+ with GO was largely suppressed. On the other hand,results of FTIR, Raman spectroscopy, thermogravimetric analysis, atomic force microscopy (AFM) and elemental analysis confirmed effective non-covalent functionalization of graphene oxide with cationic porphyrinat pH 6.2. The TMAP4+-GO hybrids exhibited well defined structure with a monolayer of TMAP4+ on the GO sheets as confirmed by AFM.Formation of the ground-stateTMAP4+-GO complex in solution was monitored by the red-shift of the porphyrin Soret absorption band.This ground-state interaction between TMAP4+ and GO is responsible for the static quenching of the porphyrin emission.Fluorescence was not detected for the nanohybrid which indicated that a very fast deactivation process had to take place.Ultrafast time-resolved transient absorption spectroscopy clearly demonstrated the occurrence of electron transfer from the photoexcited TMAP4+ singlet state to GO sheets,as proven by the formation of a porphyrin radical cation.

Keywords: Porphyrin; graphene oxide; hybrid; photoinduced electron transfer

Downloads:

Permalink: https://www.hzdr.de/publications/Publ-30313
Publ.-Id: 30313


Self-created and self-creating dynamos: Some inspirations drawn from Axel Brandenburg’s works

Stefani, F.; Gerbeth, G.; Giesecke, A.; Gundrum, T.; Seilmayer, M.; Vogt, T.; Weier, T.

A theoretician of the first water, Axel Brandenburg has always been interested in experimental MHD as well. Anecdotal evidence has it that he is the only person who witnessed in operation the three successful dynamo experiments in Riga, Karlsruhe and Cadarache. Axel’s theoretical work, in turn, has inspired experimentalists more often than not. One case in point is his early work on nonlinear and highly supercritical dynamos which has motivated investigations into the common mechanism underlying the field reversals of the geodynamo and the VKS dynamo. These efforts lead to the complementary explanations of reversals in terms of spectral exceptional points of non-selfadjoint dynamo operators, or via saddle-node bifurcations. In this context, we shortly report the construction progress of the DRESDYN precession driven dynamo, the set-up of which was partly motivated by the signature of Milankovic cycles in the reversal statistics of the geodynamo.
The second part of the talk refers to Axel’s work on massively non-linear, “self-creating” dynamos, such as the MRI dynamo or the Tayler-Spruit dynamo. Here we summarize some previous experiments on the magnetorotational instability (MRI) and the Tayler instability (TI), and present some recent results on double-diffusive instabilities for rotating flows with positive shear. The talk will close with a highly speculative idea which connects the oscillatory behaviour of the TI-related alpha-effect to the persistent synchronization of the solar dynamo with the 11.07 years periodic alignments of the tidally dominant planets Venus, Earth and Jupiter.

  • Lecture (Conference)
    Turbulence and magnetic fields - from the early universe to late-type stars, 01.-05.04.2019, Tuusula, Finland

Permalink: https://www.hzdr.de/publications/Publ-30312
Publ.-Id: 30312


A Supervised Method for Nonlinear Hyperspectral Unmixing

Koirala, B.; Khodadadzadeh, M.; Contreras Acosta, I. C.; Zahiri, Z.; Gloaguen, R.; Scheunders, P.

Due to the complex interaction of light with the Earth’s surface, reflectance spectra can be described as highly nonlinear mixtures of the reflectances of the material constituents occurring in a given resolution cell of hyperspectral data. Our aim is to estimate the fractional abundance maps of the materials from the nonlinear hyperspectral data. The main disadvantage of using nonlinear mixing models is that the model parameters are not properly interpretable in terms of fractional abundances. Moreover, not all spectra of a hyperspectral dataset necessarily follow the same particular mixing model. In this work, we present a supervised method for nonlinear spectral unmixing. The method learns a mapping from a true hyperspectral dataset to corresponding linear spectra, composed of the same fractional abundances. A simple linear unmixing then reveals the fractional abundances. To learn this mapping, ground truth information is required, in the form of actual spectra and corresponding fractional abundances, along with spectra of the pure materials, obtained from a spectral library or available in the dataset. Three methods are presented for learning nonlinear mapping, based on Gaussian processes, kernel ridge regression, and feedforward neural networks. Experimental results conducted on an artificial dataset, a data set obtained by ray tracing, and a drill core hyperspectral dataset shows that this novel methodology is very promising.

Keywords: hyperspectral unmixing; spectral mixing models; machine learning algorithms

Downloads:

Permalink: https://www.hzdr.de/publications/Publ-30310
Publ.-Id: 30310


Noncovalent Porphyrin–Graphene Oxide Nanohybrids: The pH-Dependent Behavior

Gacka, E.; Lindner, A. A.; Mazurkiewicz-Pawlicka, M.; Malolepszy, A.; Stobiński, L.; Kubas, A.; Hug, G. L.; Marciniak, B.; Lewandowska-Andralojc, A.

Noncovalent nanohybrids between meso-(p-hydroxyphenyl)porphyrin (TPPH) and graphene oxide (GO)sheets were studied as a function of pH. The overall charge of theTPPH molecule changes between negative (−4), neutral, and positive (+2) depending on the pH of the solution. Results of Fourier transform infrared spectroscopy, thermogravimetricanalysis, and elemental analysis confirm successful noncovalent functionalization of GO sheets with TPPH. We applied a numberof methods to probe the ground-state as well as the excited-state interaction between the components of the new material. The experimental results were additionally supported by theoretical calculations that included optimizations of the ground-state structures of TPPH and TPPH2+and their complexes with amolecular model of GO. It was demonstrated that both TPPHand TPPH2+molecules can be assembled onto the surface of GO, but it was clearly shown that the stronger interaction with GO occurs for TPPH2+. The stronger interaction in the acidic environment can be rationalized by the electrostatic attraction between positively charged TPPH2+ and negatively charged GO, whereas the interaction between TPPH4−and GO at basic pH was largely suppressed. Our comprehensive analysis of the emission quenching led to the conclusion that it was solely attributed to static quenching of the porphyrin by GO. Surprisingly,fluorescence was not detected for the nanohybrid, which indicates thata very fast deactivation process must take place. Ultrafast time-resolved transient absorption spectroscopy demonstrated that although the singlet excited-state lifetime of TPPH2+adsorbed on the GO sheets was decreased in the presence of GO from 1.4ns to 12 ps, no electron-transfer products were detected. It is highly plausible that electron transfer takes place and is followed by fast back electron transfer.

Keywords: graphene oxide; porphyrin; nanohybrid

Downloads:

Permalink: https://www.hzdr.de/publications/Publ-30309
Publ.-Id: 30309


Dense storage of alkali metals between graphene and MoS2 bilayers: a computational study

Ghorbani Asl, M.; Chepkasov, I.; Krasheninnikov, A.

We study the intercalation of alkali metals, namely lithium and sodium, between graphene and MoS2 sheets using density functional theory calculations with the van der Waals correction. The structures and energetics of a different number of alkali layers with closed packed structures have been investigated for various stacking sequences of bilayer graphene. The intercalation energies suggested that the AA stacking is more favorable for the single-layer intercalation but it has no considerable effect on multilayer storage. Our calculations showed that there is a clear correlation between the intercalation energy and the electron transfer between alkali atoms and layered material. While the higher values of charge transfer observed for the single-layer intercalation, the charge transfer is noticeable only for the outer alkali layers in the multi-layer case. As a result, the intercalation energy reduces with increasing the number of the lithium and sodium layers but reduces for potassium. In the case of lithium intercalation between MoS2 bilayers, a 2H-1T phase transition was observed due to the
significant charge transfer. The present study can shed light on the design of high storage alkali batteries using two-dimensional layered materials as reported recently.

Keywords: Alkali metals; graphene; intercalation

  • Lecture (Conference)
    Atomic structure of nanosystems from first-principles simulations and microscopy experiments (AS-SIMEX 2019), 28.-30.05.2019, Helsinki, Finland

Permalink: https://www.hzdr.de/publications/Publ-30308
Publ.-Id: 30308


Ion beam modification of single-layer transition metal dichalcogenides

Ghorbani Asl, M.; Kretschmer, S.; Krasheninnikov, A.

Ion irradiation techniques have been extensively used for material modification, post-synthesis engineering and imaging purposes. Although the response of bulk targets to ion irradiation has been studied at length, including simulations, much less is known about the effects of ion bombardment on two-dimensional (2D) materials. 2D transition metal dichalcogenides (TMDs) have shown outstanding physical properties which make them intriguing candidates for various nanoelectronic and optoelectronic applications. We have studied the effects of ion irradiation on freestanding and supported 2D TMDs by using analytical potential molecular dynamics combined with Monte Carlo simulations. We characterized the types and assess the abundance of point defects in our structures as a function of ion energy, mass and incident angle. Furthermore, we studied the irradiation with highly charged ions (HCIs) for the fabrication of well-defined pores in MoS2 monolayer. The simulations indicated a dependence of the pore size on the potential energy of the projectile and suggested enrichment in molybdenum in the vicinity of the pore edges. These findings help to understand the fundamental physical mechanisms underlying ion irradiation of low-dimensional materials and finding optimum parameters for defect engineering of 2D TMDs with optimized properties

Keywords: Ion irradiation; transition metal dichalcogenides; monolayer

  • Lecture (Conference)
    Towards Reality in Nanoscale Materials X, 12.-14.02.2019, Levi, Finland

Permalink: https://www.hzdr.de/publications/Publ-30307
Publ.-Id: 30307


Calculation of defect- and interface-induced electronic states in 2D materials

Wagner, C.; Gemming, S.

Two-dimensional (2D) materials feature exceptional electronic and optoelectronic properties controlled by the strong confinement in the third dimension. Here, we present calculations within the framework of density functional theory (DFT) to assess the change of 2D materials and their properties under the influence of deviations from the purely 2D nature.
Significant changes to the electronic and optical properties have been monitored already in free-standing 2D layers when comparing structurally perfect monolayers and slightly thicker multilayer structures of the same material, although the multilayer still obeys the same ideal 2D periodicity as the monolayer does. This effect becomes more pronounced once the in-plane symmetry is reduced by rotational stacking faults between the layers of a single 2D material, in van-der-Waals bound heterostructures with other 2D materials, or in the proximity of the substrate. If the adjacent 2D crystal lattices are (nearly) commensurate, such structures still obey periodic boundary conditions in-plane, but with larger superlattice vectors. In that case, the electronic structure undergoes additional modulations within the supercell, which are then periodically repeated in 2D. From a symmetry point of view, the decoration of 2D materials with two-dimensionally periodic assembled organic films may lead to very similar lateral superlattice features, although the interaction of the 2D layer and the individual molecules of the film is local. That provides the possibility to use molecular functionalization for enhancing or suppressing such superlattice features in a predefined way. Finally, decoration can also be employed to heal local structural and electronic defects, which occur depending on the synthesis conditions and break the ideal 2D periodicity of realistic samples. Electronic confinements along 1D boundary lines or localized states at intrinsic defects on the faces cause rather strong local and non-periodic changes of the 2D properties. Calculations suggest that in the limit of low defect density, i.e., below the percolation threshold, the long-range properties of such systems still maintain their 2D nature, but additional effects, such as scattering may result from the interaction with the defects.
Molybdenum sulfide is a well-studied binary 2D material, which exhibits all those effects without the need to add additional elements, e.g. hydrogen, to saturate dangling bonds at termination sites. The implications for other, electronically more complex materials such as graphene will be discussed.

Keywords: 2D materials; DFT; Bethe-Salpeter; Density-functional perturbation theory; MoS2; GaSe; bilayer; van-der-Waals heterostructure; interlayer exciton

  • Invited lecture (Conferences)
    International Symposium on Epi-Graphene, 25.-28.08.2019, Chemnitz, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-30306
Publ.-Id: 30306


In-situ GISAXS for morphological characterization of ion-induced nanopatterning on the crystalline Ge(001) surface

Erb, D.; Myint, P.; Evans-Lutterodt, K.; Ludwig, K.; Facsko, S.

Grazing Incidence Small Angle X-ray Scattering (GISAXS) has been established as a versatile tool for comprehensive morphological characterization of surfaces on the nanometer scale. As a contact-less technique it lends itself especially to in-situ monitoring of surface nanopattern development or the growth of supported nanostructures under various conditions such as reactive atmospheres, high temperatures, applied fields, or ion irradiation. A GISAXS intensity pattern is a representation of the shapes, sizes, as well as lateral and vertical arrangements of three-dimensional structures in reciprocal space, in dependence of the direction of the incident X-ray beam. Complementary to local imaging techniques such as atomic force microscopy (AFM), it provides information on the average surface morphology of the extended area covered by the footprint of the X-ray beam. We implemented an in-situ ultra-high vacuum setup at the ISR beamline of the NSLS-II synchrotron combining GISAXS with low-energy broad-beam ion irradiation, providing sample rotation as well as heating to several hundred degrees Celsius. This setup allows us to observe the nanoscale pattern formation kinetics on crystalline semiconductors in-situ under ion irradiation. We studied the pattern formation on Ge(001) surfaces, where the crystallinity of the surface under ion irradiation is ensured by heating the sample above its recrystallization temperature. The Ge(001) surface is known to develop a pit-and-mound pattern of faceted pyramidal structures under irradiation with 1 keV Ar+ ions. The edges of the pyramidal structures are aligned along the <100> and <010> direction, while their sidewall facets have a uniform polar tilt from the <001> direction. Such a regular surface morphology results in a distinct GISAXS intensity pattern. From the development of the GISAXS pattern features with ion fluence, we can conclude on the corresponding development of the surface morphology. Using this technique, we monitor the lateral correlation length as well as the polar facet angle and the azimuthal pattern orientation as indicators of the kinetics of this ion-induced self-assembly process.

  • Lecture (Conference)
    IISC23, 17.-22.11.2019, Matsue, Japan

Permalink: https://www.hzdr.de/publications/Publ-30305
Publ.-Id: 30305


Acquisition and Processing Report of the MULSEDRO EIT RM Project from the Otanmäki Fe–Ti–V Deposit, Finland – UAS and Ground-Based Magnetic and Hyperspectral Investigations in 2018

Jackisch, R.; Pirttijärvi, M.; Salmirinne, H.; Kärenlampi, K.; Heincke, B.; Jylänki, J.; Zimmermann, R.; Vest-Sørensen, E.; Middleton, M.; Madriz Diaz, Y. C.; Gloaguen, R.

MULSEDRO is an EIT RawMaterials project of a consortium of Finnish, German, Danish and Swedish institutions and companies that aims to develop multi-sensor drone systems for mineral exploration. In September 2018, a field campaign was performed to test the newly designed UAS systems at the Otanmäki Fe–Ti–V deposit in central Finland. In this report, the acquisition and processing of UAS-based magnetic, multi- and hyperspectral datasets in Otanmäki are described. In order to validate the drone-borne data, a ground magnetic survey was acquired and in situ measurements with hhXRF and VNIR-SWIR spectrometers, as well as magnetic susceptibility meter measurements, were performed. A strategy for integrating all the data is introduced, aiming to improve the mapping and evaluation of the near-surface oxide ore distributions.
The survey area was covered with four magnetic UAS surveys using both multi- copter and fixed-wing drones equipped with fluxgate magnetometers. The drones op- erated at different altitude levels (15, 40 and 65 m a.g.l.) and line spacings (7, 20, 35 and 40 m), resulting in magnetic information with very different scales of resolution. An equivalent layer modelling (ELM) procedure was jointly applied to all the magnetic datasets to present the magnetic surveys with very different acquisition parameters in one consistent total magnetic intensity plot and to evaluate the consistency of data from the different magnetic surveys. Multi- and hyperspectral data were acquired at a high resolution and geolocated with precisely spatially surveyed control points. Although the lichen and vegetation coverage reduced the total number of visible bare ground pixels by roughly 30%, the application of different band ratios and classification algorithms made it generally possible to adequately map iron-bearing alteration minerals such as hematite and goethite from the UAS-based datasets.
The combination of lightweight UAS technologies and ground truthing measurements was demonstrated to be advantageous in rapidly mapping ore-rich outcrops and created a multi-parameter and multi-scale dataset well suited to data integration. The magnetic maps correlated well with both susceptibility values from profiling and ore occurrences visible at the surface, and the iron-bearing phases could be successfully mapped by UAS-borne multi- and hyperspectral sensors in the VNIR. The acquired datasets partly complement each other, e.g. UAS-borne magnetic anomalies can be associated with ore lenses in areas where spectral features are hidden by lichen or vegetation.

Keywords: unmanned aerial vehicles; remote sensing; geophysics; magnetic methods; hyperspectral analysis; multispectral analysis; mineral exploration

Permalink: https://www.hzdr.de/publications/Publ-30304
Publ.-Id: 30304


Interlayer excitons in van-der-Waals heterostructures from ab initio perspective - the case of MoS2 on GaSe

Wagner, C.; Rahaman, M.; Zahn, D. R. T.; Gemming, S.

The talk investigates the formation of interlayer excitons as a function of heterostack composition for MoS2 and GaSe.
The composition of the stack has a large influence of the exciton binding energy.
As experimentally fabricated stacks are large, theoretical data need to be extrapolated slightly.
This finally results in a theoretical prediction closer to experimental observations of the interlayer excitons.

Keywords: 2D materials; DFT; Bethe-Salpeter; Density-functional perturbation theory; MoS2; GaSe; bilayer; van-der-Waals heterostructure; interlayer exciton; heterostack

  • Invited lecture (Conferences)
    Holzhau-2019 meeting, 25.-27.09.2019, Holzhau, Tschechei

Permalink: https://www.hzdr.de/publications/Publ-30303
Publ.-Id: 30303


Morphology, density, and temporal evolution of topological defects in reverse epitaxy

Erb, D.; Malsch, G.; Facsko, S.

Low-energy ion-irradiation of semiconductors above their recrystallization temperature has been shown to induce regular nanoscale patterning of the crystalline surface. The mechanism is called reverse epitaxy in analogy to epitaxy in growth: ion-induced mobile vacancies and ad-atoms on the crystalline surface encounter the Ehrlich-Schwoebel energy barrier for crossing terrace steps and exhibit preferential diffusion along specific in-plane directions. This can lead to the formation of well-defined faceted surface structures with morphologies strongly dependent on crystalline structure and surface orientation. For instance, GaAs(001) and InAs(001) develop periodic ripple structures with a saw tooth profile.
We have studied the topological defects in ion-induced patterns on GaAs(001) and InAs(001), i.e. ripple junctions, and present results from both experiments and simulations on the following aspects:
-- defect morphology and the influence of polar and azimuthal ion incidence angles thereon
-- dependence of the defect density on sample temperature and ion energy
-- temporal evolution of the defect density
-- defect motion and annihilation processes
We find strong dependencies on the easily controllable external process parameters, which is crucial information when preparing ion-induced surface patterns for specific applications.

  • Poster
    Nanopatterning Workshop 2019, 07.-10.07.2019, Surrey, England

Permalink: https://www.hzdr.de/publications/Publ-30302
Publ.-Id: 30302


Modeling of Nuclear Waste Forms: State-of-the-Art and Perspectives

Kowalski, P. M.; Lange, S.; Deissmann, G.; Sun, M.; Kvashnina, K.; Baker, R.; Kegler, P.; Murphy, G.; Bosbach, D.

Computational modeling is an important aspect of the research on nuclear waste materials. In particular, atomistic simulations, when used complementary to experimental efforts, contribute to the scientific basis of safety case for nuclear waste repositories.
Here we discuss the state-of-the-art and perspectives of atomistic modeling for nuclear waste management on a few cases of successful synergy of atomistic simulations and experiments. In particular, we discuss here: (1) the potential of atomistic simulations to investigate the uranium oxidation state in mixedvalence uranium oxides and (2) the ability of cementitious barrier materials to retain radionuclides such as 226Ra and 90Sr, and of studtite/metastudtite secondary peroxide phases to incorporate actinides such as Np and Am. The new contribution we make here is the computation of the incorporation of Sr by C-S-H (calcium silicate hydrate) phases

Downloads:

Permalink: https://www.hzdr.de/publications/Publ-30301
Publ.-Id: 30301


High field Terahertz user facility TELBE: extremely efficient nonlinear THz light control in Dirac materials

Kovalev, S.; Hafez, H.; Chen, M.; Green, B. W.; Bawatna, M.; Germanskiy, S.; Awari, N.; Wang, Z.; Deinert, J.-C.; Ilyakov, I.; Turchinovich, D.; Gensch, M.

Terahertz (THz) frequency range contains wave-lengths between 3 mm to 30 µm that corresponds to the energies between 0.4 meV to 40 meV. Spectroscopy in this range plays very important role in an understanding the solid state physics as there are multiple low energy excitations (phonons, magnons, Higgs mode etc.) that determine numerous physical parameters of the matter. Not only to perform THz spectroscopy but to coherently manipulate the phase of matter through these excitations it is required to develop high field narrow band THz radi-ation sources with very sensitive probing techniques.
THz user facility TELBE at Helmholtz-Zentrum Dresden-Rossendorf provides quasi CW SRF accelerator based narrowband THz radiation at high repetition rates. The source is based on superradiant principle that ena-bles high degree of CEP stability, operation in deep THz frequencies tunable between 100 GHz to 3 THz and rep-etition rates up to MHz range [1]. The bandwidth of radi-ation is 10-15 % with pulse energies up to 2-3 µJ in a fundamental band (up to 100 µJ as design parameter) that results in few 100 kV/cm peak field strength. Using pulse-resolved technique we can reach few femto-second synchronization with ultra-fast laser system that is crucial for studying ultrafast dynamics [2]. The listed above parameters outperform state of the art high repeti-tion rates laser based THz sources and are important for observing novel high field THz phenomena. In this con-tribution we present concept of superradiant THz sources and our recent results on observing novel high field te-rahertz phenomena making use of such sources. Among the experimental results we will present THz high har-monic generation in Dirac materials, Higgs spectroscopy of high TC superconductors and spintronic based THz oscillators.

  • Invited lecture (Conferences)
    VII International Conference “Frontiers of Nonlinear Physics”, 28.06.-04.07.2019, Nizhny Novgorod, Russia

Permalink: https://www.hzdr.de/publications/Publ-30300
Publ.-Id: 30300


Role of contacts in carbon nanotube giant piezoresistive sensors

Böttger, S.; Wagner, C.; Lorkowski, F.; Hartmann, M.; Heldt, G.; Reuter, D.; Schuster, J.; Hermann, S.

From the perspective of wafer-level integration technologies, this work presents theoretical and experimental insights on fundamental device properties of single-walled carbon nanotubes (SWCNTs) based giant piezoresistive transducers. The role of contacts in such devices and their contribution to a significant tunneling-related sensitivity enhancement is demonstrated. The origin of this phenomenon is the strain dependence of the effective Schottky barrier (SB) width which is modulated by a drain-source voltage (VDS) dependent large built-in electric field F at the Schottky-barrier (SB), which defines the effective SB width and can be controlled via VDS. Moreover, perspectives for forthcoming sensor generations exposing operation regimes beyond intrinsic sensitivity are revealed.

Keywords: carbon nanotube; SWCNT sensor; giant piezoresistivity; sensitivity enhancement; transport modeling; contact tunneling; Schottky barrier

  • Poster
    TRANSDUCERS 2019, 23.-26.06.2019, Berlin, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-30299
Publ.-Id: 30299


Engineering and coherent control of defect qubits in SiC at room temperature

Astakhov, G.

Quantum bit or qubit is a two-level system, which builds the foundation for quantum computation, simulation, communication and sensing. Quantum states of higher dimension, i.e., qutrits (D = 3) and especially qudits (D = 4 or higher), offer significant advantages. Particularly, they can provide noise-resistant quantum cryptography, simplify quantum logic and improve quantum metrology. Flying and solid-state qudits have been implemented on the basis of photonic chips and superconducting circuits, respectively. However, there is still a lack of room-temperature qudits with long coherence time and high spectral resolution. The silicon vacancy centers in silicon carbide (SiC) with spin S = 3/2 are quite promising in this respect. Here, we report a two-frequency protocol to excite and image multiple qudit modes in a SiC spin ensemble under ambient conditions. Strikingly, their spectral width is about one order of magnitude narrower than the inhomogeneous broadening of the corresponding spin resonance. By applying Ramsey interferometry to these spin qudits, a spectral selectivity of 600 kHz and a spectral resolution of 30 kHz are achieved. As a practical consequence, we demonstrate absolute DC magnetometry insensitive to thermal noise and strain fluctuations.

  • Invited lecture (Conferences)
    1st Sino-German Symposium: Defect Engineering in SiC Device Manufacturing, 14.11.2019, Beijing, China

Permalink: https://www.hzdr.de/publications/Publ-30298
Publ.-Id: 30298


Room temperature coherent control of spin qudit modes in SiC

Astakhov, G.

One of the challenges in the field of quantum sensing and information processing is to selectively address and coherently manipulate highly homogeneous qubits subject to external perturbations. Here, we present room-temperature coherent control of high-dimensional quantum bits, the so-called qudits, associated with vacancy-related spins in silicon carbide enriched with nuclear spin-free isotopes. In addition to the excitation of a spectrally narrow qudit mode at the pump frequency, several other modes are excited in the electron spin resonance spectra. We demonstrate selective quantum control of homogeneous spin packets with sub-MHz spectral resolution. Furthermore, we perform two-frequency Ramsey interferometry to demonstrate absolute DC magnetometry, which is immune to thermal noise and strain inhomogeneity.

  • Invited lecture (Conferences)
    Colloquium on Quantum Technology: Quantum Sensing, Quantum-IT, Quantum Computing, Simulation, Industrialization., 09.10.2019, Esslingen, Germany

Permalink: https://www.hzdr.de/publications/Publ-30297
Publ.-Id: 30297


Iron adsorption on clays inferred from atomistic simulations and XAS spectroscopy

Kéri, A.; Dähn, R.; Marques Fernandes, M.; Scheinost, A.; Krack, M.; Churakov, S. V.

The atomistic-level understanding of iron speciation and the probable oxidative behavior of iron (Feaq 2+→Fesurf 3+ ) in clay minerals is fundamental for environmental geochemistry of redox reactions. Thermodynamics analysis of wet chemistry data suggests that iron adsorbs on the edge surfaces of clay minerals at distinct structural sites commonly referred as strong- and weak-sites (with high and low affinity, respectively). In this study, we applied ab initio molecular dynamics simulation to investigate the structure and stability of edge surfaces of trans- and cis-vacant montmorillonites. These structures were further used to evaluate the surface complexation energy and to calculate reference ab initio X-ray absorption spectra (XAS) for distinct inner-sphere complexes of Fe. The combination of ab initio simulations and XAS allowed us to reveal the Fe-complexation mechanism and to quantify the Fe partitioning between the high and low affinity sites as function of the oxidation state and loadings.
Although, iron is mostly present in Fe3+ form, Fe2+ increasingly co-adsorb with increasing loadings. Ab initio structure relaxations of several different clay structures with substituted Fe2+/Fe3+ in the bulk or at the surface site showed that the oxidative sorption of ferrous iron is an energetically favored process at several edge surfaces of Fe-bearing montmorillonite.

Keywords: Montmorillonite; Fe sorption; XAFS; DFT

Downloads:

Permalink: https://www.hzdr.de/publications/Publ-30296
Publ.-Id: 30296


Electron-doped SiGe Quantum Well Terahertz Emitters pumped by FEL pulses

Ciano, C.; Montanari, M.; Persichetti, L.; Di Gaspare, L.; Virgilio, M.; Bagolini, L.; Capellini, G.; Zoellner, M.; Skibitzki, O.; Stark4, D.; Scalari, G.; Faist, J.; Rew, K.; Paul, D. J.; Grange, T.; Birner, S.; Pashkin, O.; Helm, M.; Baldassarre, L.; Ortolani, M.; de Seta, M.

We explore saturable absorption and terahertz photoluminescence emission in a set of n-doped Ge/SiGe asymmetric coupled quantum wells, designed as three-level systems (i.e., quantum fountain emitter). We generate a non-equilibrium population by optical pumping at the 1→3 transition energy using picosecond pulses from a free-electron laser and characterize this effect by measuring absorption as a function of the pump intensity. In the emission experiment we observe weak emission peaks in the 14-25 meV range (3-6 THz) corresponding to the two intermediate intersubband transition energies. The results represent a step towards silicon-based integrated terahertz emitters.

Keywords: Quantum cascade lasers; Mathematical model; Silicon; Optical pumping; Photonics

  • Open Access Logo Contribution to proceedings
    44th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), 01.-06.09.2019, Paris, France
    2019 44th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), IEEE Xplore: IEEE
    DOI: 10.1109/IRMMW-THz.2019.8873894

Permalink: https://www.hzdr.de/publications/Publ-30295
Publ.-Id: 30295


Cavity enhanced third-harmonic generation in Si:B pumped with intense terahertz pulses

Meng, F.; Thomson, M. D.; Klug, B.; Ul-Islam, Q.; Pashkin, O.; Schneider, H.; Roskos, H. G.

We report third-harmonic generation (THG) of terahertz free-electron laser (FEL) pulses in Si:B at cryogenic temperatures. The physical mechanism of THG is attributed to the free-carrier χ(3) nonlinearity due to the non-parabolicity of the valence band. The value of χ(3) increases as a function of the carrier density, which are generated via impact ionization of the boron dopants under irradiation by the FEL pulses. By positioning the Si:B in a one-dimensional photonic crystal (1D PC) cavity, the measured THG intensity increases by a factor of about 200.

Keywords: Cavity resonators; Impact ionization; Semiconductor device measurement; Power harmonic filters; Silicon; Harmonic analysis

  • Open Access Logo Contribution to proceedings
    44th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), 01.-06.09.2019, Paris, France
    2019 44th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), IEEE Xplore
    DOI: 10.1109/IRMMW-THz.2019.8874582

Permalink: https://www.hzdr.de/publications/Publ-30294
Publ.-Id: 30294


Transmission of highly charged xenon ions through a monolayer of molybdenum disulfide

Creutzburg, S.; Schwestka, J.; Grande, P. L.; Inani, H.; Tripathi, M. K.; Heller, R.; Niggas, A.; Kozubek, R.; Madauß, L.; Facsko, S.; Kotakoski, J.; Schleberger, M.; Aumayr, F.; Wilhelm, R. A.

The modification of solids by ion irradiation is a longstanding research objective driven by the urge for controlled defect engineering. By incorporating defects in a host material, the electronic, optical and magnetic properties of a solid can be modified. Especially in low-dimensional materials, like 2D layers, the presence of defects may significantly change their performance in applications. Highly charged ions (HCIs) are an effective tool for nanostructure formation on surfaces [1,2]. For HCI impact on a surface, nanostructure formation is driven by the deposition of the potential energy in very shallow depths in the order of nanometers. Recently, pore formation in 2D materials, like carbon nanomembranes [1] or MoS₂ [2], was observed by HCI impact despite the fact that their atomic thickness is limiting the amount of energy, which can be deposited. By measuring the charge exchange of HCIs transmitted through a monolayer of MoS₂, we can provide an upper estimate for the energy transferred to the layer available for pore formation in MoS₂. Additionally, we can gain insights into non equilibrium charge state effects, i.e. the neutralization behavior of the projectile and the charge state dependent kinetic energy loss.
The exit charge state of the ions transmitted through a suspended monolayer of MoS₂ placed on a TEM grid is measured simultaneously with their time-of-flight (TOF) [3].
A two-dimensional charge state and scattering angle resolved spectrum is measured. Two distinct exit charge state distributions at high and low charge states are observed. The distribution at high charge states is accompanied by small scattering angles, which indicates collision events taking place at large impact parameters. On the contrary, the distribution at low charge states is characterized by larger scattering angles pointing to collisions occurring at small impact parameters. We can associate both exit charge state distributions with two well separated peaks in the TOF signal corresponding to slow and fast transmitted ions, i.e. high and low energy loss, respectively. The low exit charge state distribution was already observed for HCI interaction with graphene. Neutralization times of a few femtoseconds were determined previously [4], which could only be explained by ion de-excitation via an Interatomic Coulombic Decay process. This common neutralization behavior for graphene and MoS₂ implies a common de-excitation mechanism for HCI interaction for both target materials. The additional high exit charge state distribution for MoS₂ is interpreted as a feature related to the different crystalline structure of the material in contrast to graphene. Our experimental results are supported by computer simulations using the Monte-Carlo code TDPot [5], which also reveals two distinct interaction regimes of the incident ions within the unit cell of MoS₂.
[1] R. A. Wilhelm et al., 2D Mater. 2, 035009 (2015).
[2] R. Kozubek et al., J. Phys. Chem. Lett. 10, 904-910 (2019).
[3] J. Schwestka et al., Rev. Sci Instrum. 89, 085101 (2018).
[4] R. A. Wilhelm et al., Phys. Rev. Lett. 119, 103401 (2017).
[5] R. A. Wilhelm and P. L. Grande, Commun. Phys. 2, 89 (2019).

  • Lecture (Conference)
    23rd International Workshop on Inelastic Ion-Surface Collisions (IISC-23), 18.11.2019, Matsue, Japan

Permalink: https://www.hzdr.de/publications/Publ-30293
Publ.-Id: 30293


Energy deposition of highly charged ions transmitted through single layer MoS₂

Creutzburg, S.; Schwestka, J.; Inani, H.; Tripathi, M. K.; Grande, P. L.; Heller, R.; Klingner, N.; Niggas, A.; Kozubek, R.; Madauss, L.; Facsko, S.; Kotakoski, J.; Schleberger, M.; Aumayr, F.; Wilhelm, R. A.

Highly charged ions (HCIs) are an efficient tool for the perforation of suspended 2D materials. Only a fraction of their potential energy is transferred to the atomically thin target during the very short interaction time and is available for pore formation. Charge exchange spectra were measured for highly charged xenon ions transmitted through suspended, single layer MoS₂ in order to determine the deposited potential energy available for pore formation. Additionally, charge exchange dependent ion stopping responsible for kinetic sputtering was measured simultaneously.

  • Poster
    XXXI International Conference on Photonic, Electronic, and Atomic Collisions, 29.07.2019, Deauville, République française

Permalink: https://www.hzdr.de/publications/Publ-30292
Publ.-Id: 30292


High energy ion beams as a powerful tool for the surface analysis of the elemental composition of almost any sample

Munnik, F.; Heller, R.

High energy ion beams as a powerful tool for the surface analysis of the elemental composition of almost any sample.

Keywords: Ion Beam Analysis

  • Lecture (others)
    Vortrag am Helmholtz-Zentrum für Umweltforschung GmbH - UFZ, 17.12.2019, Leipzig, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-30291
Publ.-Id: 30291


Charge exchange of heavy ions transmitted through a single layer of molybdenum disulfide

Creutzburg, S.; Schwestka, J.; Grande, P. L.; Inani, H.; Tripathi, M. K.; Heller, R.; Niggas, A.; Kozubek, R.; Madauß, L.; Facsko, S.; Kotakoski, J.; Schleberger, M.; Aumayr, F.; Wilhelm, R. A.

2D materials offer extraordinary optical, electronic and mechanical properties, which make them interesting for future applications. Modification techniques, like ion irradiation, allow to alter their properties to specific applications. However, because of their atomic thickness applied techniques have to address mainly the surface region. Highly charged ions are a novel tool for nanostructure formation. They carry potential energies up to tens of keV, which trigger the process of nanostructure formation due to the energy deposition in shallow depths in close vicinity of the surface region. Recently, HCI impact induced nanoholes in carbon nanomembranes [1] and in suspended monolayer MoS₂ [2] have been observed despite their atomic thickness limiting the amount of potential energy to be transferred. Here, we investigate the charge exchange of highly charged xenon ions passing a monolayer of MoS₂, from which we can obtain an upper estimate of the deposited energy. The exit charge states of transmitted ions are measured simultaneously with their scattering angle as well as with their time-of-flights [3]. Two distinct distributions at high and low charge states are visible. The different scattering angles indicate the existence of two impact parameter regimes leading to two (exit charge state) distributions. Our experimental results are supported by computer simulations using the Monte-Carlo code TDPot [4].
[1] R. A. Wilhelm et al., 2D Mater. 2, 035009 (2015).
[2] R. Kozubek et al., J. Phys. Chem. Lett. 10, 904-910 (2019).
[3] J. Schwestka et al., Rev. Sci Instrum. 89, 085101 (2018).
[4] R. A. Wilhelm and P. L. Grande, Commun. Phys. 2, 89 (2019).

  • Poster
    1st Symposium on electron, photon, and ion collisions on molecular & atomic nanostructures, 22.07.2019, Caen, République française

Permalink: https://www.hzdr.de/publications/Publ-30290
Publ.-Id: 30290


Free-fall velocities and heat transport enhancement in liquid metal magneto-convection

Vogt, T.; Yang, J.; Schindler, F.; Eckert, S.

We investigate the effect of a static, horizontal magnetic field on a liquid metal Rayleigh-Bénard convection by means of laboratory experiments. Although a static magnetic field acts as a stabilizing force on the fluid, we find that self organized convective flow structures reach an optimal state where the heat transport significantly increases and convective velocities perpendicular to the magnetic field reach the theoretical free-fall limit. Our measurements show that the application of the magnetic field leads to an anisotropic, highly ordered flow structure and a decrease of the turbulent fluctuations. When the magnetic field strength is increased beyond the optimum, Hartmann braking becomes dominant and leads to a reduction of the heat and momentum transport. The results are relevant for the understanding of magneto-hydrodynamic convective flows in planetary cores and stellar interiors in regions with strong toroidal magnetic fields oriented perpendicular to the temperature gradient.

Keywords: Magnetoconvection; Rayleigh-Bénard convection; Liquid metal convection; Magnetohydrodynamic

Permalink: https://www.hzdr.de/publications/Publ-30289
Publ.-Id: 30289


Energy deposition of heavy ions in freestanding 2D materials

Creutzburg, S.; Schwestka, J.; Inani, H.; Tripathi, M. K.; Heller, R.; Klingner, N.; Niggas, A.; Lehnert, T.; Leiter, R.; Kozubek, R.; Facsko, S.; Kaiser, U.; Kotakoski, J.; Schleberger, M.; Aumayr, F.; Wilhelm, R. A.

2D materials are promising candidates for electronic and photonic applications in future devices. Their properties can be tailored by surface sensitive modification techniques, like ion irradiation. Usually single charged ions are used, which deposit the main part of their kinetic energy in depths well below the surface. Only a tiny fraction is converted into the sputtering of target atoms. In contrast, highly charged ions (HCIs) carry additional potential energy in the keV regime, which may even exceed their kinetic energy. The deposition of the potential energy causes intense excitation and ionization of the electronic system of the target atoms in a shallow surface region. The high density of electronic excitations may lead to local temperatures above the sublimation point and finally to the creation of nanostructures. Even for freestanding 2D materials, like carbon nanomembranes, which consist of only a few atomic layers, pore formation induced by HCIs was observed. The small thickness of 2D materials enables spectroscopic measurements of the HCIs after transmission with respect to their charge state and kinetic energy. From our data we can estimate the amount of energy deposited in the material and therefore available for pore formation. In the present study, the influence of target properties on the charge exchange and on the neutralization dynamics is investigated. Spectroscopic measurements of the charge state of transmitted ions were performed using monolayers consisting of graphene, MoS₂ and hBN, which show different band gap energies between 0 and 6 eV, conductance properties (semi-metallic, semi-conducting and insulating) and layer structures.

  • Poster
    ECAMP13, 13th European Conference on Atoms, Molecules and Photons, 11.04.2019, Firenze, Italia

Permalink: https://www.hzdr.de/publications/Publ-30287
Publ.-Id: 30287


Charge exchange between highly charged ions and 2D materials

Creutzburg, S.; Schwestka, J.; Tripathi, M. K.; Inani, H.; Heller, R.; Klingner, N.; Niggas, A.; Lehnert, T.; Leiter, R.; Kozubek, R.; Facsko, S.; Kaiser, U.; Kotakoski, J.; Schleberger, M.; Aumayr, F.; Wilhelm, R. A.

The neutralisation of ions due to their interaction with matter deals with fundamental aspects of ion-solid interaction, e.g.: How does the kinetic energy loss depend on the charge exchange? In order to investigate the neutralisation behaviour, classical ion beam foil experiments were performed using ultimately thin 2D materials as target. Because of their low thickness, an ion with a sufficiently high incident charge state does not reach charge equilibrium, which enables the measurement of the non-equilibrium exit charge state distribution. The influence of target material properties on the charge exchange is investigated for 2D materials consisting of graphene, MoS₂ and hBN, which show different band gap energies between 0 and 6 eV, conductance properties (metallic, semi-conducting and insulating) and layer structures.

  • Lecture (Conference)
    Verhandlungen der Deutschen Physikalischen Gesellschaft, Regensburg 2019, 03.04.2019, Regensburg, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-30286
Publ.-Id: 30286


Experimental Observation of Exchange-Driven Chiral Effects in Curvilinear Magnetism

Volkov, O.; Kakay, A.; Florian, K.; Mönch, J. I.; Mohamad-Assaad, M.; Faßbender, J.; Makarov, D.

The main origin of the chiral symmetry breaking and, thus, for the magnetochiral effects in magnetic materials is associated with an antisymmetric exchange interaction, the intrinsic Dzyaloshinskii-Moriya interaction (DMI). Recently, numerous inspiring theoretical works predict that the bending of a thin film to a curved surface is often sufficient to induce similar chiral effects. However, these originate from the exchange or magnetostatic interactions and can stabilize noncollinear magnetic structures or influence spin-wave propagation. Here, we demonstrate that curvature-induced chiral effects are experimentally observable rather than theoretical abstraction and are present even in conventional soft ferromagnetic materials. We show that, by measuring the depinning field of domain walls in the simplest possible curve, a flat parabolic stripe, the effective exchange-driven DMI interaction constant can be quantified. Remarkably, its value can be as high as the interfacial DMI constant for thin films and can be tuned by the parabola’s curvature.

Keywords: Domain walls; Exchange interaction; Ferromagnetism; Magnetiyation switching

Downloads:

Permalink: https://www.hzdr.de/publications/Publ-30285
Publ.-Id: 30285


Untethered and Ultrafast Soft-bodied Robots

Wang, X.; Mao, G.; Ge, J.; Michael, D.; Canon Bermudez, G. S.; Wirthl, D.; Illing, R.; Kosub, T.; Bischoff, L.; Wang, C.; Faßbender, J.; Kaltenbrunner, M.; Makarov, D.

Acting at high speed enables creatures to survive in their harsh natural environments. They developed strategies for fast actuation that inspire technological embodiments like soft robots. Here, we demonstrate a series of simulation-guided lightweight, durable, and untethered soft-bodied robots performing large-degree deformations at unprecedentedly high frequencies of up to 200 Hz, driven at very low magnetic fields down to 0.5 mT, and exhibit a record high specific energy density of 10.8 kJ/m3/mT. Unforeseen nonlinear behavior of our robots is observed in experiments and analyzed by simulation, guiding future designs of soft-bodied robots. Our robots walk, swim, levitate, transport cargo, and can even catch a living fly unharmed. Such ultrafast soft robots with high-frequency oscillations can rapidly adapt to varying environmental conditions, inspire biomedical applications in confined environment, and serve as model systems to develop complex movements inspired by nature.

Keywords: soft robot; soft actuator; magnetic field; nonlinear actuation

Permalink: https://www.hzdr.de/publications/Publ-30284
Publ.-Id: 30284


Current status of PSMA-radiotracers for prostate cancer: data analysis of prospective trials listed on ClinicalTrials.gov

Zippel, C.; Ronski, S. C.; Bohnet-Joschko, S.; Giesel, F. L.; Kopka, K.

The recent development of dedicated prostate-specific membrane antigen (PSMA) targeted radioligands shows the potential to change and improve the diagnosis and therapy of prostate cancer. There is an increasing number of prospective trials to further establish these tracers in the clinical setting. We analyzed data from the ClinicalTrials.gov registry including all listed prospective trials with PSMA-ligands for prostate cancer as of October 2019 concerning the different tracers and study characteristics. We found n = 104 eligible studies with a total of n = 25 different tracers in use: most frequently [68Ga] Ga-PSMA-11 (32%), followed by [18F] DCFPyL (24%) and [177Lu] Lu-PSMA-617 (10%). 85% are single-center, 15% multi-center studies. 95% national and 5% international studies. 34% are phase-II, 24% phase-I, 13% phase-I/-II, 12% phase-II/-III and phase-III and 7% early-phase-I. The primary purpose was classified as diagnostic in 72% of cases and therapeutic in 23% of cases. Most studies were executed in the USA (70%), followed by Canada (13%) and France (6%). This quantitative descriptive registry analysis indicates the rapid and global clinical developments and current status of PSMA-radioligands with emphasis on radiopharmaceutical and organizational aspects. It will be very interesting to see which tracers will prevail in the clinical setting.

Keywords: prostate cancer; PSMA tracer; registry data analysis; clinicaltrials.gov; theranostics

Permalink: https://www.hzdr.de/publications/Publ-30280
Publ.-Id: 30280


Thermodynamics and determination of the exchange stiffness of asymmetrically sandwiched ultrathin ferromagnetic films with perpendicular anisotropy

Iastremskyi, I.; Volkov, O.; Kopte, M.; Kosub, T.; Stienen, S.; Lenz, K.; Lindner, J.; Faßbender, J.; Ivanov, B. A.; Makarov, D.

Thermodynamic properties, in particular, the temperature dependencies of magnetization of asymmetrically sandwiched ultrathin cobalt films with perpendicular anisotropy are investigated. The experimental results are described theoretically in the frame of magnon thermodynamics consistently accounting for the finite thickness of the films. The analysis includes both three-dimensional (Bloch’s T3/2 law) and two-dimensional (the 2D Bloch law) theories as limiting cases. By fitting the experimental temperature dependencies of magnetization to the theoretical model, the exchange stiffness parameter is extracted. This approach provides access to the exchange stiffness without the need to know the strength of the Dzyaloshinskii-Moriya interaction in the stack. The exchange stiffness of sub-nm-thick Co films is found to be about three times smaller compared to the case of bulk cobalt. In the temperature range T<170±30 K the temperature dependencies of magnetization follow the 2D Bloch law. The applicability of Bloch’s T3/2 law and analysis of the Curie temperature (two-dimensional and three-dimensional pictures) to extract the exchange stiffness for sub-nm-thick Co films are tested as well. The closest value of the exchange stiffness to the magnon thermodynamics turned out to be within the analysis of the Curie temperature in the three-dimensional picture.

Keywords: Exchange interaction; Ferromagnetism; Magnetic anisotropy; Micromagnetism; Skyrmions; Spintronics; Thermodynamics; Magnetic multilayers

Downloads:

Permalink: https://www.hzdr.de/publications/Publ-30278
Publ.-Id: 30278


Non-local symmetry breaking effects, induced by magnetostatics in curvilinear ferromagnetic shells

Sheka, D.; Pylypovskyi, O.; Landeros, P.; Gaididei, Y.; Kakay, A.; Makarov, D.

We present a micromagnetic theory of curvilinear ferromagnetic shells. We show the appearance of new chiral effects, originating from the magnetostatic interaction. They manifest themselves even in statics and are essentially nonlocal. This is in contrast to conventional Dzyaloshinskii--Moriya interaction (material intrinsic or curvature-induced, stemming from the exchange). The physical origin is in a non-zero mean curvature of a shell and non-equivalence between the top and bottom surfaces of the shell. To describe the new effects, we split a conventional volume magnetostatic charge into two terms: (i) magnetostatic charge, governed by the tangent to the sample's surface, and (ii) geometrical charge, given by the normal component of magnetization and the mean curvature. We classify the interplay between the symmetry of the shell, its local curvature and magnetic textures and apply the proposed formalism to analyse magnetic textures in corrugated shells with perpendicular anisotropy.

Keywords: magnetism; curvilinear shells; magnetostatics

  • Lecture (Conference)
    DPG Spring Meeting of the Condensed Matter Section (Conference is cancelled due to COVID-19), 15.-20.03.2020, Dresden, Germany

Permalink: https://www.hzdr.de/publications/Publ-30277
Publ.-Id: 30277


Radioimmunotherapy in Combination with Reduced-Intensity Conditioning for Allogeneic Hematopoietic Cell Transplantation in Patients with Advanced Multiple Myeloma

Fasslrinner, F.; Stölzel, F.; Kramer, M.; Teipel, R.; Brogsitter, C.; Morgner, A.; Arndt, C.; Bachmann, M.; Hänel, M.; Röllig, C.; Kotzerke, J.; Schetelig, J.; Bornhäuser, M.

Radioimmunotherapy (RIT) has the potential to reduce the incidence of relapse after allogeneic hematopoietic cell transplantation (allo-HCT) in patients with advanced-stage multiple myeloma (MM). In this study, we evaluated the efficacy of RIT in combination with chemotherapy-based reduced-intensity conditioning (RIC). RIT was based on the coupling of an anti-CD66 antibody to the beta emitter 188-rhenium (188-re) for targeted bone marrow irradiation. Between 2012 and 2018, 30 patients with MM, most of them heavily pretreated with various therapies including proteasome inhibitors, immunomodulatory drugs, anti-CD38 antibodies, and autologous hematopoietic cell transplantation (auto-HCT), were treated with a RIT-RIC combination before allo-HCT. In addition to a fludarabine plus melphalan- or treosulfan-based RIC, a median dose of 18.1 Gy (interquartile range [IQR], 14.6 to 24.1 Gy) was applied to the bone marrow. After a median duration of follow-up for surviving patients of 2.1 years (IQR, 1.3 to 3.0 years), the 2-year progression-free survival and overall survival rates were 43% (95% confidence interval [CI], 26% to 73%) and 55% (95% CI, 38% to 79%), respectively. The 2-year nonrelapse mortality and cumulative incidence of progression were 17% (95% CI, 3% to 30%) and 46% (95% CI, 25% to 67%), respectively. Renal toxicity and mucositis were the most frequent extramedullary side effects. In conclusion, the addition of RIT to RIC was safe and feasible and resulted in promising outcomes compared with those previously reported for RIC-based allo-HCT without the addition of RIT in patients with relapsed/refractory MM. Nevertheless, despite the addition of RIT, relapse after allo-HCT remained a major determinant of therapeutic failure. Therefore, the development of novel RIT strategies (eg, dual targeting strategies or combinations with adapter chimeric antigen receptor T cell-based therapies) is needed.

Permalink: https://www.hzdr.de/publications/Publ-30276
Publ.-Id: 30276


Unidirectionally tilted domain walls in chiral biaxial stripes

Pylypovskyi, O.; Kravchuk, V. P.; Volkov, O.; Faßbender, J.; Sheka, D.; Makarov, D.

The orientation of a chiral magnetic domain wall in a racetrack determines its dynamical properties. In equilibrium, magnetic domain walls are expected to be oriented perpendicular to the stripe axis. We demonstrate the appearance of a unidirectional domain wall tilt in an out-of-plane magnetized stripes with biaxial anisotropy (the firsrt easy axis is perpendicular to the plane and the second one is tilted with respect to the stripe axis) and interfacial Dzyaloshinskii--Moriya interaction (DMI). The tilt is a result of the interplay between the in-plane easy-axis anisotropy and DMI. We show that the additional anisotropy and DMI prefer different domain wall structure: anisotropy links the magnetization azimuthal angle inside the domain wall with the stripe main axis in contrast to DMI, which prefers the magnetization perpendicular to the domain wall plane. Their balance with the energy gain due to domain wall extension defines the equilibrium magnetization and domain wall tilt angles. We demonstrate that the Walker field and the corresponding Walker velocity of the domain wall can be enhanced in the system supporting tilted walls.

Keywords: magnetism; domain walls; Walker limit; Dzyaloshinskii-Moriya interaction

  • Lecture (Conference)
    DPG Spring Meeting of the Condensed Matter Section (Conference is cancelled due to COVID-19), 15.-20.03.2020, Dresden, Germany

Permalink: https://www.hzdr.de/publications/Publ-30275
Publ.-Id: 30275


Geometry-induced effects in antiferromagnetic spin chains

Kononenko, D. Y.; Pylypovskyi, O.; Roessler, U. K.; Yershov, K.; van den Brink, J.; Gaididei, Y.; Makarov, D.; Sheka, D.

Antiferromagnetic nanostructures as objects with ultrahigh eigenfrequencies and low sensitivity to demagnetizing fields are promising candidates for applications in data storage and information processing. Three-dimensional architectures enable new ways for tuning magnetic responses and extend ideas of spintronic devices. Here, we analyze anitferromagnetically ordered curvilinear spin chains and derive a Lagrangian taking into account the exchange interaction and effective anisotropy arising from the dipolar interaction. The static and dynamic properties of the spin system are influenced by emergent geometry-induced anisotropies and Dzyaloshinskii--Moriya interaction, which are illustrated by ring and helix geometries as case studies. Ground states and coupling of spin wave modes due to curvilinear geometry are described.

Keywords: magnetism; anitferromagnets; curvilinear magnetism; spin chains

  • Lecture (Conference)
    DPG Spring Meeting of the Condensed Matter Section (Conference is cancelled due to COVID-19), 15.-20.03.2020, Dresden, Germany

Permalink: https://www.hzdr.de/publications/Publ-30274
Publ.-Id: 30274


Combination of short-lived and extended half-life target modules for optimized UniCAR T cell therapy

Arndt, C.; Loureiro, L.; Feldmann, A.; Koristka, S.; Mitwasi, N.; Jureczek, J.; Hoffmann, A.; Berndt, N.; Bergmann, R.; Bachmann, M.

Background: Chimeric antigen receptor (CAR) T cells are powerful living drugs to fight against cancer. However, they also possess the capacity to elicit moderate to severe toxicities that might be even fatal. Thus, one major issue of CAR T cell engineering is to reduce the risk for side effects while maintaining high anti-tumor activity. In order to improve the safety profile of CAR, we developed the so-called UniCAR system. In this modular platform technology, soluble, tumor-specific target modules (TM) act as molecular switches of per se inactive universal (Uni)CAR T cells. TM consist of tumor-specific binding domains fused to the E5B9 peptide epitope that is recognized by the UniCAR. All so far developed TMs have a low molecular weight and are therefore rapidly eliminated. This allows to specifically and repeatedly turn on/off UniCAR T cell activity via TM dosing.
Aims: Tumor patients with bulky disease present the highest risk for CAR T cell-related toxicities. At this stage, a high level of safety and therefore controllability of (Uni)CAR T cells is required. However, for convenient treatment of patients with lower tumor burden, we intended to develop extended half-life TM to foster anti-tumor responses and to ease the clinical TM administration at later stages of tumor therapy.
Methods: Based on the human IgG4 Fc-domain, we engineered a set of novel extended half-life TM each consisting of tumor-specific single-chain fragments variable (scFv), the IgG4 hinge and Fc domain as well as the E5B9 peptide epitope. Functionality of these IgG4-based TMs was analyzed in vitro and in vivo in comparison to originally developed scFv-based TM. Pharmacokinetic properties were studied in experimental mice.
Results: In presence of extended half-life TM, UniCAR T cells are able to efficiently mediate tumor cell lysis in vitro and in vivo. Anti-tumor responses are comparable or even improved in comparison to smaller TM, whereas bioavailability and plasma half-life are prolonged.
Summary: Overall, combination of both short-lived and longer lasting (IgG4-based) TM is a highly promising approach for redirection of UniCAR T cells to various cancer cells. At the beginning of tumor treatment, rapidly eliminated TM should be chosen to provide a fast safety switch. After significant reduction in tumor burden, IgG4-based TM with increased serum half-lives could be administered to avoid continuous TM infusions and to improve the elimination of residual tumor cells. This strategy might allow a more convenient, individualized and safe treatment of cancer patients.

  • Invited lecture (Conferences)
    34th Annunal Meeting and Pre-Conference Programs of the Society for Immunotherapy of Cancer (SITC) / World Immunotherapy Council´s 3rd Young Investigator Symposium, 06.-10.11.2019, National Habor, MD, USA

Permalink: https://www.hzdr.de/publications/Publ-30273
Publ.-Id: 30273


Nonlocal chiral symmetry breaking in curvilinear magnetic shells

Sheka, D. D.; Pylypovskyi, O.; Landeros, P.; Gaididei, Y.; Kakay, A.; Makarov, D.

The concept of curvature and chirality in space and time are foundational for the understanding of the organic life and formation of matter in the Universe. Chiral interactions but also curvature effects are tacitly accepted to be local. A prototypical condensed matter example is a local spin-orbit- or curvature-induced Rashba or Dzyaloshinskii-Moriya interactions. Here, we introduce a chiral effect, which is essentially non-local and resembles itself even in static spin textures living in curvilinear magnetic nanoshells. Its physical origin is the non-local magnetostatic interaction. To identify this interaction, we put forth a self-consistent micromagnetic framework of curvilinear magnetism. Understanding of the non-local physics of curved magnetic shells requires a curvature-induced geometrical charge, which couples the magnetic sub-system with the curvilinear geometry. The chiral interaction brings about a non-local chiral symmetry breaking effect: it introduces handedness in an intrinsically achiral material and enables the design of magnetolectric and ferrotoroidic responses.

Keywords: magnetism; curvilinear shells; magnetostatics

Permalink: https://www.hzdr.de/publications/Publ-30272
Publ.-Id: 30272


Engaging UniCAR T cells via short-lived and longer lasting target modules

Arndt, C.; Loureiro, L.; Feldmann, A.; Koristka, S.; Mitwasi, N.; Jureczek, J.; Hoffmann, A.; Berndt, N.; Bergmann, R.; Bachmann, M.

Background: Chimeric antigen receptor (CAR) T cell therapy has demonstrated impressive clinical efficiency, but can also cause moderate to severe adverse effects that might be even fatal. Thus, preventing or managing CAR T cell toxicity is still an important issue for successful treatment of tumor patients. In order to provide a novel CAR technology platform with an improved safety profile, we established the switchable UniCAR system. This platform consists of (I) universal CAR (UniCAR) T cells that are per se inactive. Their anti-tumor activity can be specifically and repeatedly turned on/off in dependence of soluble tumor-binding target modules (TM).e.g.1-4 TMs are constructed by fusing an antigen-specific binding moiety with the E5B9 peptide epitope recognized by UniCARs. As these molecules are rapidly eliminated, UniCAR T cells can be easily controlled by TM dosing.
Aims: As the risk for CAR T cell-related toxicities will also decrease with reduction of tumor burden, we intended to develop TMs with prolonged half-life that might ease clinical application and improve elimination of residual tumor cells in late phase of tumor therapy.
Methods: We constructed a set of novel, longer lasting TMs by fusion of different tumor-specific single-chain fragment variables (scFv) and the E5B9 peptide epitope to the Fc domain of human IgG4 antibodies. The resulting IgG4-based TMs were functionally compared with smaller, scFv-based TMs in vitro and characterized for their pharmacokinetic properties in experimental mice.
Results: The novel IgG4-based TMs are able to efficiently activate UniCAR T cells for killing of various tumor cell lines. In comparison to short-lived TMs, they are characterized by a comparable or increased efficiency at low TM concentrations. Pharmacokinetic studies in tumor-bearing mice further revealed that IgG4-based TM have a prolonged plasma half-life and enhanced bioavailability.
Summary: Our data demonstrate that IgG4-based TMs in combination with smaller TMs are highly promising tools for redirection of UniCAR T cells to various cancer cells. Once the tumor burden is reduced, UniCAR T cells can be combined with IgG4-based TMs instead of small TMs. This is more convenient for patients as IgG4-based TM have not to be continuously infused due to their prolonged serum half-lives. Overall, the combination of UniCAR T cells with TMs of different size and specificity should allow a more convenient, individualized and safe treatment regimen of cancer patients.

  • Open Access Logo Lecture (Conference)
    Tumorimmunology meets Oncology (TIMO) XV, 25.-27.04.2019, Halle, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-30271
Publ.-Id: 30271


What we can learn from the ’f’ in f-elements

Drobot, B.; Steudtner, R.; Raff, J.; Brendler, V.; Bauer, A.; Bok, F.; Patzschke, M.; Tsushima, S.

An introduction of spectroscopy with f-elements (actinides/lanthanides)

  • Invited lecture (Conferences)
    14. PhD seminar Kompetenzverbundes für Kerntechnik Ost, 05.12.2019, Dresden, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-30270
Publ.-Id: 30270


Magnetoelectronics and nanomagnetism of magnetoelectric antiferromagnetic thin films

Makarov, D.

Thin film antiferromagnets (AF) have potential to revolutionize spintronics due to their inherently magnetic-field stable magnetic order and high-frequency operation. To explore their application potential, it is necessary to understand modifications of the magnetic properties and magnetoelectric responses of AF thin films with respect to their bulk counterparts. Considering grainy morphology of thin films, questions regarding the change of the intergranular exchange, criticality behavior and switching of the order parameter need to be addressed.
Our approach is based on the electron transport characterization of magnetic responses of thin film antiferromagnets [1-3]. This task is difficult as minute uncompensated surface magnetization of antiferromagnets needs to be detected, which imposes strict requirements to the sensitivity of the method. I will outline our developments of zero-offset anomalous Hall magnetometry [2] applied to study the physics of conventional metallic IrMn and insulating magnetoelectric Cr2O3 antiferromagnets. To build a reliable description of the material properties, the analysis of the transport data is backed up by structural characterization and real space imaging of AF domain patterns using NV microscopy [1,4].
The fundamental understanding of the magnetic microstructure of magnetoelectric α-Cr2O3 thin films and the possibility to read-out its antiferromagnetic order parameter all-electrically enabled the entirely new recording concept where a magnetoelectric memory cell can be addressed without using a ferromagnet. With this approach, we opened an appealing topic of purely antiferromagnetic magnetoelectric random access memory (AF-MERAM) [1].

[1] T. Kosub, D. Makarov et al., Nat. Commun. 8, 13985 (2017).
[2] T. Kosub, D. Makarov et al., Phys. Rev. Lett. 115, 097201 (2015).
[3] R. Schlitz, D. Makarov et al., Appl. Phys. Lett. 112, 132401 (2018).
[4] P. Appel, D. Makarov et al., Nano Lett. 19, 1682 (2019).

Keywords: magnetoelectric effect; Cr2O3

  • Lecture (others)
    Seminar at the department of Physics and Astronomy, University of California, Riverside, 21.02.2020, Riverside, USA

Permalink: https://www.hzdr.de/publications/Publ-30268
Publ.-Id: 30268


From shapeable magnetoelectronics to soft robotics with embedded magnetic cognition

Makarov, D.

Extending 2D structures into 3D space has become a general trend in multiple disciplines, including electronics, photonics, plasmonics and magnetics. This approach provides means to modify conventional or to launch novel functionalities by tailoring curvature and 3D shape. We explore the potential of these 3D magnetic architectures for the realization of mechanically shapeable magnetoelectronics [Makarov et al., Appl. Phys. Rev. 3, 011101 (2016)] for automotive applications [Melzer et al., Adv. Mater. 27, 1274 (2015)], point-of-care diagnostics [Lin et al, Lab Chip 14, 4050 (2014)], virtual and augmented reality appliances [Canon et al., Nature Electronics 1, 589 (2018) & Science Advances 4, eaao2623 (2018); Granell et al., npj Flexible Electronics 3, 3 (2019)]. Combining compliant magnetic field sensors with soft (magnetic) actuators allows realizing ultrafast soft robots with embedded cognition and feedback. These developments pave the way towards intelligent soft robots, autonomous and responsive soft devices, and novel human-machine interfaces.

Keywords: magnetic soft robots; shapeable magnetic field sensors

  • Invited lecture (Conferences)
    2020 TMS Annual Meeting & Exhibition, Symposium: Advanced Magnetic Materials for Energy and Power Conversion Applications, 24.02.2020, San Diego, USA

Permalink: https://www.hzdr.de/publications/Publ-30267
Publ.-Id: 30267


From curvilinear magnetism to shapeable magnetoelectronics

Makarov, D.

Extending 2D structures into 3D space has become a general trend in multiple disciplines including electronics, photonics, and magnetics. This approach provides means to enrich conventional or to launch novel functionalities by tailoring curvature and 3D shape. We study 3D curved magnetic thin films and nanowires where new fundamental effects emerge from the interplay of the geometry of an object and topology of a magnetic sub-system [1-3]. On the other hand, we explore the application potential of 3D magnetic architectures for the realization of mechanically shapeable magnetoelectronics [4] for automotive but also virtual and augmented reality appliances [5-7]. To advance in this research field, we develop novel theoretical methods and fabrication/characterization techniques [8-10]. In this talk, recent fundamental and technological advancements in this research field will be reviewed.

[1] R. Streubel, DM et al., Magnetism in curved geometries. J. Phys. D: Appl. Phys. (Review) 49, 363001 (2016).
[2] D. Sander, DM et al., The 2017 magnetism roadmap. J. Phys. D: Appl. Phys. (Review) 50, 363001 (2017).
[3] O. M. Volkov, DM et al., Experimental observation of exchange-driven chiral effects in curvilinear magnetism. Phys. Rev. Lett. 123, 077201 (2019).
[4] D. Makarov et al., Shapeable magnetoelectronics. Appl. Phys. Rev. (Review) 3, 011101 (2016).
[5] G. S. Cañón Bermúdez, DM et al., Magnetosensitive e-skins with directional perception for augmented reality. Science Advances 4, eaao2623 (2018).
[6] G. S. Cañón Bermúdez, DM et al., Electronic-skin compasses for geomagnetic field driven artificial magnetoception and interactive electronics. Nature Electronics 1, 589 (2018).
[7] J. Ge, DM et al., A bimodal soft electronic skin for tactile and touchless interaction in real time. Nature Communications 10, 4405 (2019).
[8] R. Streubel, DM et al., Retrieving spin textures on curved magnetic thin films with full-field soft X-ray microscopies. Nature Communications 6, 7612 (2015).
[9] T. Kosub, DM et al., All-electric access to the magnetic-field-invariant magnetization of antiferromagnets. Phys. Rev. Lett. 115, 097201 (2015).
[10] T. Kosub, DM et al., Purely antiferromagnetic magnetoelectric random access memory. Nature Communications 8, 13985 (2017).

Keywords: curvilinear magnetism; shapeable magnetoelectronics

  • Lecture (others)
    Seminar of the Department of Physics, University of Bielefeld, 03.02.2020, Bielefeld, Germany

Permalink: https://www.hzdr.de/publications/Publ-30266
Publ.-Id: 30266


Synergistic Electroreduction of Carbon Dioxide to Carbon Monoxide on Bimetallic Layered Conjugated Metal-Organic Frameworks

Zhong, H.; Ghorbani-Asl, M.; Ly, K. H.; Ge, J.; Zhang, J.; Wang, M.; Liao, Z.; Makarov, D.; Zschech, E.; Brunner, E.; Weidinger, I. M.; Zhang, J.; Krasheninnikov, A.; Kaskel, S.; Dong, R.; Feng, X.

The development of highly selective and active electrocatalysts promoting the CO2 reduction reaction (CO2RR) is highly desirable to address current environmental challenges and to produce value-added chemicals and carbon-based fuels. Herein, we develop a layer-stacked, bimetallic two-dimensional conjugated metal-organic framework (2D c-MOF) with copper-phthalocyanine as ligand (CuN4) and zinc-bis(dihydroxy) complex (ZnO4) as linkage, named as PcCu-O8-Zn. The PcCu-O8-Zn exhibits high CO selectivity of 88%, a TOF of 1408 h1 and long-term durability (> 10 h), which surpasses thus by far the reported MOF-based electrocatalysts. The molar H2/CO ratio can be tuned by varying the metal centers and the applied potential rendering the 2D c-MOFs highly relevant for syngas industry applications. The contrast experiments combined with operando surface-enhanced IR-absorption spectroelectrochemistry and theoretical calculation unveil a synergistic catalytic mechanism; the ZnO4 complexes act as catalytic sites for the CO2 conversion while the CuN4 centers promote the protonation of adsorbed CO2 during the CO2RR. This work offers a strategy on developing bimetallic MOF electrocatalysts for synergistically catalyzing CO2RR toward syngas synthesis.

Keywords: CO2 reduction; metal-organic framework

Permalink: https://www.hzdr.de/publications/Publ-30265
Publ.-Id: 30265


Gilbert damping in NiFeGd compounds: Ferromagnetic resonance versus time-resolved spectroscopy

Salikhov, R.; Alekhin, A.; Parpiiev, T.; Pezeril, T.; Makarov, D.; Abrudan, R.; Meckenstock, R.; Radu, F.; Farle, M.; Zabel, H.; Temnov, V. V.

Engineering the magnetic properties (Gilbert damping, saturation magnetization, exchange stiffness, and
magnetic anisotropy) of multicomponent magnetic compounds plays a key role in fundamental magnetism
and its applications. Here, we perform a systematic study of (Ni81Fe19 )100−xGdx films with x = 0%, 5%, 9%,
and 13% using ferromagnetic resonance (FMR), element-specific time-resolved x-ray magnetic resonance, and
femtosecond time-resolved magneto-optical pump-probe techniques. The comparative analysis of field and
time domain FMR methods, with complimentary information extracted from the dynamics of high-frequency
exchange magnons in ferromagnetic thin films, is used to investigate the dependence of Gilbert damping on the
Gd concentration.

Keywords: Gilbert damping; Ferromagnetic resonance

Permalink: https://www.hzdr.de/publications/Publ-30263
Publ.-Id: 30263


A review on stretchable magnetic field sensorics

Melzer, M.; Makarov, D.; Schmidt, O. G.

The current establishment of stretchable electronics to form a seamless link between soft or
even living materials and the digital world is at the forefront of multidisciplinary research
efforts, bridging physics, engineering and materials science. Magnetic functionalities can
provide a sense of displacement, orientation or proximity to this novel formulation of
electronics. This work reviews the recent development of stretchable magnetic field sensorics
relying on the combination of metallic thin films revealing a giant magnetoresistance effect
with elastomeric materials. Stretchability of the magnetic nanomembranes is achieved
by specific morphologic features (e.g. wrinkles or microcracks), which accommodate the
applied tensile deformation while maintaining the electrical and magnetic integrity of the
sensor device. The entire development, from the demonstration of the world’s first elastically
stretchable magnetic sensor to the realization of a technology platform for robust, ready-touse
elastic magnetosensorics is described. Soft giant magnetoresistive elements exhibiting the
same sensing performance as on conventional rigid supports, but with fully strain invariant
properties up to 270% stretching have been demonstrated. With their unique mechanical
properties, these sensor elements readily conform to ubiquitous objects of arbitrary shapes
including the human skin. Stretchable magnetoelectronic sensors can equip soft and epidermal
electronic systems with navigation, orientation, motion tracking and touchless control
capabilities. A variety of novel technologies, like electronic skins, smart textiles, soft robotics
and actuators, active medical implants and soft consumer electronics will benefit from these
new magnetic functionalities.

Keywords: shapeable magnetic field sensors; stretchable electronics

Permalink: https://www.hzdr.de/publications/Publ-30262
Publ.-Id: 30262


Neutron Fluence Calculations for the Dismantling and Decommissioning of a German PWR

Rachamin, R.; Konheiser, J.; Barkleit, A.; Marcus, S.

Presentation at AAA Workshop 02.12.2019

Keywords: Decommissioning studies; Neutron fluence; Monte-Carlo

  • Lecture (Conference)
    AAA Workshop, GRS GmbH, 02.12.2019, Garching, Germany

Permalink: https://www.hzdr.de/publications/Publ-30261
Publ.-Id: 30261


Curvilinear magnetic nanomembranes: fundamentals and technologies

Makarov, D.

Extending 2D structures into 3D space has become a general trend in multiple disciplines, including electronics, photonics, plasmonics and magnetics. This approach provides means to modify conventional or to launch novel functionalities by tailoring curvature and 3D shape. We study 3D curved magnetic thin films and nanowires where new fundamental effects emerge from the interplay of the geometry of an object and topology of a magnetic sub-system [1-3]. On the other hand, we explore the application potential of these 3D magnetic architectures for the realization of mechanically shapeable magnetoelectronics [4] for automotive but also virtual and augmented reality appliances [5-8]. The balance between the fundamental and applied inputs stimulates even further the development of new theoretical methods and novel fabrication/characterization techniques [9-11].
In this talk, recent fundamental and technological advancements in this exciting research field will be reviewed.

[1] R. Streubel et al., Magnetism in curved geometries. J. Phys. D: Appl. Phys. (Review) 49, 363001 (2016).
[2] D. Sander et al., The 2017 magnetism roadmap. J. Phys. D: Appl. Phys. (Review) 50, 363001 (2017).
[3] O. M. Volkov et al., Experimental observation of exchange-driven chiral effects in curvilinear magnetism. Phys. Rev. Lett. 123, 077201 (2019).
[4] D. Makarov et al., Shapeable Magnetoelectronics. Appl. Phys. Rev. (Review) 3, 011101 (2016).
[5] G. S. Cañón Bermúdez et al., Magnetosensitive e-skins with directional perception for augmented reality. Science Advances 4, eaao2623 (2018).
[6] G. S. Cañón Bermúdez et al., Electronic-skin compasses for geomagnetic field driven artificial magnetoception and interactive electronics. Nature Electronics 1, 589 (2018).
[7] P. N. Granell et al., Highly compliant planar Hall effect sensor with sub 200 nT sensitivity. npj Flexible Electronics 3, 3 (2019).
[8] J. Ge et al., A bimodal soft electronic skin for tactile and touchless interaction in real time. Nature Communications 10, 4405 (2019).
[9] R. Streubel et al., Retrieving spin textures on curved magnetic thin films with full-field soft X-ray microscopies. Nature Communications 6, 7612 (2015).
[10] T. Kosub et al., All-electric access to the magnetic-field-invariant magnetization of antiferromagnets. Phys. Rev. Lett. 115, 097201 (2015).
[11] T. Kosub et al., Purely antiferromagnetic magnetoelectric random access memory. Nature Communications 8, 13985 (2017).

Keywords: shapeable magnetoelectronics; curved magnetic nanomembranes

  • Lecture (others)
    Seminar at the Key Lab of Magnetic Materials and Devices, 01.11.2019, Ningbo, China

Permalink: https://www.hzdr.de/publications/Publ-30260
Publ.-Id: 30260


Fundamentals and applications of curved magnetic thin films

Makarov, D.

Extending 2D structures into 3D space has become a general trend in multiple disciplines, including electronics, photonics, plasmonics and magnetics. This approach provides means to modify conventional or to launch novel functionalities by tailoring curvature and 3D shape. We study 3D curved magnetic thin films and nanowires where new fundamental effects emerge from the interplay of the geometry of an object and topology of a magnetic sub-system [1-3]. On the other hand, we explore the application potential of these 3D magnetic architectures for the realization of mechanically shapeable magnetoelectronics [4] for automotive but also virtual and augmented reality appliances [5-8]. The balance between the fundamental and applied inputs stimulates even further the development of new theoretical methods and novel fabrication/characterization techniques [9-11].
In this talk, recent fundamental and technological advancements in this exciting research field will be reviewed.

[1] R. Streubel et al., Magnetism in curved geometries. J. Phys. D: Appl. Phys. (Review) 49, 363001 (2016).
[2] D. Sander et al., The 2017 magnetism roadmap. J. Phys. D: Appl. Phys. (Review) 50, 363001 (2017).
[3] O. M. Volkov et al., Experimental observation of exchange-driven chiral effects in curvilinear magnetism. Phys. Rev. Lett. 123, 077201 (2019).
[4] D. Makarov et al., Shapeable Magnetoelectronics. Appl. Phys. Rev. (Review) 3, 011101 (2016).
[5] G. S. Cañón Bermúdez et al., Magnetosensitive e-skins with directional perception for augmented reality. Science Advances 4, eaao2623 (2018).
[6] G. S. Cañón Bermúdez et al., Electronic-skin compasses for geomagnetic field driven artificial magnetoception and interactive electronics. Nature Electronics 1, 589 (2018).
[7] P. N. Granell et al., Highly compliant planar Hall effect sensor with sub 200 nT sensitivity. npj Flexible Electronics 3, 3 (2019).
[8] J. Ge et al., A bimodal soft electronic skin for tactile and touchless interaction in real time. Nature Communications 10, 4405 (2019).
[9] R. Streubel et al., Retrieving spin textures on curved magnetic thin films with full-field soft X-ray microscopies. Nature Communications 6, 7612 (2015).
[10] T. Kosub et al., All-electric access to the magnetic-field-invariant magnetization of antiferromagnets. Phys. Rev. Lett. 115, 097201 (2015).
[11] T. Kosub et al., Purely antiferromagnetic magnetoelectric random access memory. Nature Communications 8, 13985 (2017).

Keywords: curvilinear magentism; magnetic field sensors; shapeable magnetoelectronics

  • Lecture (others)
    Seminar at the Department of Materials Science, 11.11.2019, Shanghai, China

Permalink: https://www.hzdr.de/publications/Publ-30259
Publ.-Id: 30259


Flexible electronics: from interactive on-skin devices to bio/medical applications

Makarov, D.

Extending 2D structures into 3D space has become a general trend in multiple disciplines, including electronics, photonics, plasmonics and magnetics. This approach provides means to modify conventional or to launch novel functionalities by tailoring curvature and 3D shape. We study fundamentals of 3D curved magnetic thin films [1] and explore their application potential for flexible electronics, eMobility and health. We put forth the concept of shapeable magnetoelectronics [2] for various applications ranging from automotive [3] through consumer electronics to virtual and augmented reality [4-7] applications. These activities impact several emerging research fields of smart skins, soft robotics and human-machine interfaces.
Highly compliant functional elements are exceptionally suited for bio/medical applications. Very recently we realized an implantable, multifunctional and highly compliant device for targeted thermal treatment of cancer [8]. We fabricated a flexible light weight diagnostic platform based on highly sensitive Si nanowire field effect transistors revealing remarkable limit of detection at 40 pM for Avian Influenza Virus (AIV) subtype H1N1 DNA sequences [9].
For the emerging field of biosensing technologies, we developed droplet-based magnetofluidic platforms encompassing integrated novel functionalities [10] including analytics in a flow cytometry format [11], magnetic barcoding and sorting of magnetically encoded emulsion droplets using flexible microfluidic devices [12]. These features are crucial to address the needs of modern medical research, e.g. drug discovery.

[1] R. Streubel et al., J. Phys. D: Appl. Phys. (Review) 49, 363001 (2016)
[2] D. Makarov et al., Appl. Phys. Rev. (Review) 3, 011101 (2016).
[3] M. Melzer et al., Adv. Mater. 27, 1274 (2015).
[4] G. S. Cañón Bermúdez et al., Science Advances 4, eaao2623 (2018).
[5] G. S. Cañón Bermúdez et al., Nature Electronics 1, 589 (2018).
[6] P. N. Granell et al., npj Flexible Electronics 3, 3 (2019).
[7] J. Ge et al., Nature Communications 10, 4405 (2019).
[8] G. S. Cañón Bermúdez et al., Adv. Eng. Mater. 21, 1900407 (2019).
[9] D. Karnaushenko et al., Adv. Healthcare Mater. 4, 1517 (2015).
[10] G. Lin, D. Makarov et al., Lab Chip (Review) 17, 1884 (2017).
[11] G. Lin, D. Makarov et al., Small 12, 4553 (2016).
[12] G. Lin, D. Makarov et al., Lab Chip 14, 4050 (2014).

Keywords: flexible electronics; magentic field sensors

  • Invited lecture (Conferences)
    Workshop on Active and Passive Materials for Tissue Engineering and Biomedical Applications, 30.10.2019, Shanghai, China

Permalink: https://www.hzdr.de/publications/Publ-30258
Publ.-Id: 30258


Thermal Stability of Defect-Enhanced Ge on Si Quantum Dot Luminescence upon Millisecond Flash Lamp Annealing

Spindlberger, L.; Prucnal, S.; Aberl, J.; Brehm, M.

The intentional merging of epitaxial Ge on Si(001) quantum dots with optically active defect sites promises low-cost applications such as room temperature (RT)light emitters in Si photonics. Despite recent progress in this field, important benchmarks, for example, the thermal stability of such a combination of low-dimensional nanosystems, as well as the curing of parasitic charge-carrier recombination channels, have been barely investigated thus far. Herein, the structural robustness of defect-enhanced quantum dots (DEQDs) is examined under millisecond flash lamp annealing (FLA), carried out at sample temperatures up to 800oC. Changes in the optical DEQD properties are investigated using photoluminescence spectroscopy performed in a sample temperature range from10 to 300 K. It is demonstrated that FLA—in contrast to in situ thermal annealing—leads to only negligible modifications of the electronic band alignment. Moreover, upon proper conditions of FLA, the RT emission intensity of DEQDs is improved by almost 50% with respect to untreated reference samples.

Keywords: Ge QDs; MBE; FLA; PL

Downloads:

Permalink: https://www.hzdr.de/publications/Publ-30256
Publ.-Id: 30256


Modification of optical, electrical and structural properties of two-dimensional materials using millisecond range flash lamp annealing

Prucnal, S.; Juanmei, D.; Tsai, H.-S.; Chia-Nung, K.; Chin, S. L.; Zhou, S.

The two-dimensional materials with direct band gap are attractive for optoelectronics operated in the visible and near infrared spectral range. The number of new van der Waals crystals increases systematically but the doping and the modification of their optoelectronic properties remain challenging. Here we present the tuning of the fundamental properties of different 2D mono- and dichalcogenides using millisecond range flash lamp annealing (FLA) in the controlled atmosphere. Those investigated 2D flakes are made by mechanical exfoliation onto the SiN/Si substrates. The change of internal properties of 2D chalcogenides is monitored by micro-Raman, photoluminescence and photoreflectance spectroscopies as well as conductive atomic force microscope (c-AFM). Using ms-range FLA in N2 ambient the transition metal dichalcogenides are stable up to the annealing at 1200 oC, while upon high temperature annealing the group IV-dichalcogenides can be reduced to monochalcogenides which opens new route for the fabrication of heterostructures. The formation of SnSe/SnSe2 heterostructures is proven by micro-Raman spectroscopy and current-voltage characteristic obtained by c-AFM measurements.

Keywords: 2D materials; MoSe2; MnPS3; FLA; ion implantation; Raman spectroscopy

  • Lecture (Conference)
    EMRS Fall Meeting 2019, 16.-19.09.2019, Warsaw, Poland

Permalink: https://www.hzdr.de/publications/Publ-30255
Publ.-Id: 30255


Tuning of the photocatalytic efficiency in anatase-TiO2 using millisecond range flash lamp annealing

Prucnal, S.; Gago, R.; Esteban-Mendoza, D.; Jiménez, I.; Aktas, O. C.; Faupel, F.; Zhou, S.

Semiconducting metal oxides often exhibit high photocatalytic efficiency (PE) and, among them, the anatase-TiO2 (A-TiO2) is the most promising material for the water splitting under sun light illumination. The PE of TiO2-based materials mainly depends on the surface state density, Fermi level position, band gap and crystalline structure (anatase, rutile, brookite). Here, we present the optical, electrical and structural properties of A-TiO2 thin films made by RT magnetron sputtering followed by ms-range flash lamp annealing (FLA) in N2 ambient. X-ray diffraction (XRD), X-ray absorption near-edge structure, and Raman spectroscopies reveal the transformation from amorphous to single-phase A-TiO2 during FLA for 20 ms. The FLA energy density was in the range of 65 to 110 Jcm-2, corresponding to peak temperatures in the range of 500oC to 1100 oC, respectively. XRD and scanning electron microscopy shows that with increasing FLA energy the average crystal size of the A-TiO2 increases from a few nm?s up to ~200 nm after annealing at energy density of 110 Jcm-2. On the other hand, the optical band-gap, as determined by spectroscopic ellipsometry, remains at ~3.4 eV. The bleaching of methylene blue under irradiation with a high-intensity light-emitting-diode (4.5 W/cm2) at 365 nm has been used to test the photoactivity of the samples after FLA. The PE of the samples is enhanced with increasing the annealing temperature, which we assign to the engineering of surface states and carrier lifetime upon FLA in N2 ambient.

Keywords: TiO2; doping; FLA

  • Poster
    EMRS Fall Meeting 2019, 16.-19.09.2019, Warsaw, Poland

Permalink: https://www.hzdr.de/publications/Publ-30254
Publ.-Id: 30254


Band gap renormalization in n-type Ge and GeSn alloys made by millisecond range flash lamp annealing

Prucnal, S.; Berencen, Y.; Wang, M.; Rebohle, L.; Kudrawiec, R.; Polak, M.; Zviagin, V.; Schmidt-Grund, R.; Grundmann, M.; Grenzer, J.; Turek, M.; Droździel, A.; Pyszniak, K.; Zuk, J.; Helm, M.; Skorupa, W.; Zhou, S.

The last missing piece of puzzle for the full functionalization of group IV optoelectronic devices is the direct band gap semiconductor made by CMOS compatible technology. Here we report on the fabrication of GeSn alloys with a Sn concentration of up to 6 % using ion implantation followed by ms-range explosive solid phase epitaxy. The n-type single crystalline GeSn alloys are made by co-doping of Sn and P into Ge. Both the activation of P and the formation of GeSn are performed during a single-step flash lamp annealing for 3 ms. The band gap engineering in ultra-doped n-type Ge and GeSn alloys is theoretically predicted by density functional theory and experimentally verified using ellipsometric spectroscopy. We demonstrate that both the diffusion and the segregation of Sn and P atoms in Ge are fully supressed by ms-range non-equilibrium thermal processing.

Keywords: Ge; GeSn; ion implantation; FLA; Raman

  • Poster
    EMRS Fall Meeting 2019, 16.-19.09.2019, Warsaw, Poland

Permalink: https://www.hzdr.de/publications/Publ-30253
Publ.-Id: 30253


Developing a solvent extraction process for recovery of chromium and vanadium from steel slags

O'Toole, N.; Mansel, A.; Kelly, N.; Scharf, C.

The demand for strategic metals such as chromium and vanadium is predicted to rise in the future. These metals can currently be found in the slag by-products of certain steel production processes. We are developing a solvent extraction process for the separation and purification of these valuable resources from alkaline oxidative leach feed streams. This process shows potential to be applicable to alternative feed streams in addition. The extractant phase used is commercially available Aliquat 336 with kerosene as diluent and long-chain alcohol or ketone as phase modifiers. The use of the radiotracer technique allows simple and precise measurement of the metal concentration at each step of the process. Chromium-51 and vanadium-48 radionuclides are produced in-house at the HZDR cyclotron facility. Early results have shown that this process effectively removes chromium and vanadium together from model feed streams, indicating the need for a further separation step of the two species. To this end, a chromate scrub step is suggested.

  • Lecture (Conference)
    Developing a solvent extraction process for recovery of chromium and vanadium from steel slags, 23.-26.06.2019, Düsseldorf, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-30252
Publ.-Id: 30252


Evolution of donor-vacancy clusters in Ge, GeSn and SiGeSn during ms-range FLA monitored by positron annihilation spectroscopy

Prucnal, S.; Liedke, M. O.; Wang, X.; Posselt, M.; Knoch, J.; Berencen, Y.; Rebohle, L.; Napolitani, E.; Frigerio, J.; Ballabio, A.; Isella, G.; Hübner, R.; Wagner, A.; Zuk, J.; Turek, M.; Helm, M.; Zhou, S.

The n-type doping of Ge and Ge-based alloys is a self-limiting process due to the formation of vacancy-donor complexes (DnV with n ≤ 4) that deactivate the donors. This work clearly demonstrates that the dissolution of the DnV clusters in a heavily n-doped Ge, GeSn and SiGeSn layers can be achieved by millisecond-flash lamp annealing. This DnV cluster dissolution results in a considerable increase of the electrical activation together with a suppression of donor diffusion. Using electrical measurements and positron annihilation lifetime spectroscopy, combined with theoretical calculations, it is possible to address, understand and solve the fundamental problem of achieving ultra-high doping level in Ge, that has hindered so far the full integration of Ge and Ge-based alloys with complementary-metal-oxide-semiconductor technology.

Keywords: Ge; GeSn alloy; defects; flash lamp annealing; ion implantation

  • Lecture (Conference)
    EMRS Fall Meeting 2019, 16.-19.09.2019, Warsaw, Poland

Permalink: https://www.hzdr.de/publications/Publ-30251
Publ.-Id: 30251


Separation and recovery of chromium and vanadium from alkaline leaching solutions of Cr-V-bearing slags

O'Toole, N.; Mansel, A.; Kelly, N.; Scharf, C.

To address the projected requirements of future technology and ecology, and move towards a circular economy, a comprehensive consideration of the sources, processing methods, and life cycles of natural resources is needed. Certain important metal resources, such as chromium and vanadium, are currently available but unexploited in the slag by-products of steel production processes. This represents a significant potential source of these elements for European enterprise. To help meet the rising demand, the CHROMIC project seeks to develop a hydrometallurgical process for the recovery and purification of these valuable resources. By utilising an oxidative, high-alkaline leaching method, the process aims to avoid the destruction of the saleable slag matrix, as well as the presence of Si or Fe in the leachate solution. Various methods are being investigated for separation of the metal value from the resulting alkaline leach feeds, including solvent extraction (SX) which is the focus of this work.
In developing this SX process, the radiotracer technique has been employed, utilising chromium-51 and vanadium-48 radionuclides produced in-house at the HZDR cyclotron facility. The use of this technique, in combination with more conventional methods such as ICP-OES, allows for precise and powerful analysis of the process with minimal workup after experiments.
Aliquat 336, a quaternary ammonium based IL, is suitable for the separation of oxoanions from such alkaline solutions due to the presence of the organic cation species, independently of pH. This extractant is mostly used in its commercially available chloride form, although experiments involving alternative anions (e.g. OCl⁻, OH⁻, S₂O₈²⁻, CO₃²⁻) are also necessary to investigate the influence of competing anions (arising from the leaching conditions) on the SX process. Scrubbing and back extraction of the loaded IL phase has been demonstrated, using solutions of sodium chromate and sodium chloride. Experiments have now begun on the real leaching solutions of steel slags relevant to the CHROMIC project.

  • Poster
    Separation and recovery of chromium and vanadium from alkaline leaching solutions obtained from Cr-V-bearing slags, 08.-11.09.2019, Sitges, Spanien

Permalink: https://www.hzdr.de/publications/Publ-30250
Publ.-Id: 30250


Dissolution of donor-vacancy clusters in heavily doped n-type germanium via millisecond annealing

Prucnal, S.; Liedke, M. O.; Butterling, M.; Posselt, M.; Wang, X.; Knoch, J.; Windgassen, H.; Hirschmann, E.; Berencén, Y.; Napolitani, E.; Frigerio, J.; Ballabio, A.; Isella, G.; Hübner, R.; Wagner, A.; Helm, M.; Zhou, S.

The n-type doping of Ge is self-limiting process due to formation of the vacancy-donor complexes (Dn V with n≤4). Here we report on experiments and density functional theory (DFT) calculations solving the basic problem of donor deactivation in heavily doped Ge. The self-healing process of heavily doped n-type Ge is achieved by rear-side flash lamp annealing (r-FLA) for 20 ms with the peak temperature of about 1050 K. The positron-annihilation lifetime spectroscopy (PALS) reveals that the P4V clusters are main defects in the as-grown Ge:P samples. Millisecond range high-temperature treatment dissociates the phosphorus-vacancy cluster (P4V) and, as shown by SIMS, fully supress the P diffusion. The electrochemical capacitance-voltage (ECV) profiling shows that the effective carrier concentration in P doped Ge (P concentration - 1×1020 cm-3) increases from about 3×1019 cm-3 in as-grown sample to above 8×1019 cm-3 after r-FLA. For the first time using structural (PALS, SIMS) and electrical (ECV) characterization combined with DFT calculations we were able to addressed, explained and solved the fundamental problem hindering the full integration of Ge with CMOS technology.

Keywords: ion implantation; germanium; FLA; defects

  • Lecture (Conference)
    Gettering and Defect Engineering in Semiconductor Technology, 22.-27.09.2019, Zeuthen, Germany

Permalink: https://www.hzdr.de/publications/Publ-30249
Publ.-Id: 30249


Range Verification in Particle Therapy – From Physics in the Lab Towards Clinical Applications

Kögler, T.

Reichweiteverifikation ist ein wesentlicher Baustein zur Reduzierung der Sicherheitssäume in der Partikeltherapie. Da eine direkte Messung der Reichweite schwerer geladener Teilchen im menschlichen Gewebe schwierig ist, ist man derzeit auf den Informationsgehalt von Sekundärstrahlung angewiesen, die bei der Abbremsung der primären Teilchen im Körper entstehen.
Die durch Kernwechselwirkungen entstehende prompte Gammastrahlung ist hierfür ein vielversprechende Sonde.
Mehrere Ansätze zur Verifikation der Reichweite von therapeutischen Protonen mittels prompter Gammastrahlung wurden in den vergangenen Jahren untersucht. Bisher wurde erst eine, das Prompt Gamma Ray Timing, erfolgreich am Patienten angewendet. Andere Methoden befinden sich kurz vor den ersten klinischen Anwendungen.
Auf dem Weg von der Idee eines Reichweiteverifikationsverfahrens bis hin zu dessen klinischer Implementierung ist es jedoch ein langer und schwieriger Weg. Dieser Beitrag zeigt welche Schwierigkeiten bei der erfolgreichen Einführung eines derartigen Systems in den klinischen Alltag existieren und geht dabei auf mehrere konkrete Beispiele ein.

Keywords: Range verification; proton therapy; prompt gamma rays

  • Invited lecture (Conferences)
    Young Investigator's Workshop on Photon Detection in Medicine and Medical Physics, 02.-03.12.2019, Siegen, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-30248
Publ.-Id: 30248


Nanodiamonds from Laser-induced Shock Compression of Polystyrene: Extraction Under Way

Schuster, A.; Hartley, N.; Voigt, K.; Zhang, M.; Lütgert, B. J.; Rack, A.; Vorberger, J.; Klemmed, B.; Benad, A.; Schumacher, D.; Tomut, M.; Molares, M. E. T.; Grenzer, J.; Christalle, E.; Hübner, R.; Merchel, S.; Turner, S. J.; Zettl, A.; Gericke, D. O.; Kraus, D.

In Uranus and Neptune methane and other hydrocarbons are highly abundant. Their planetary interior conditions can be mimicked using high intensity lasers in the laboratory on a nanosecond timescale. Nanodiamond formation from shock-compressed polystyrene (~150GPa, ~5000K) was demonstrated via in situ X-ray diffraction with a XFEL. The lower size estimate is 4nm. 60% of the carbon atoms in the plastic are
transferred to a diamond lattice. However, in total a maximum of ~16μg of nanodiamonds are expected from a 125nm CH foil and a 500μm focal spot. In order to understand the underlying hydrocarbon separation mechanism the physical recovery of nanodiamonds is pursued to learn from their shape, size, surface modifications and defects.

Keywords: nanodiamonds; recovery; laser-induced shock compression; icy planets

  • Open Access Logo Poster
    8th Joint Workshop on High Pressure, Planetary and Plasma Physics (HP4), 09.-11.10.2019, Dresden, Deutschland

Downloads:

Permalink: https://www.hzdr.de/publications/Publ-30247
Publ.-Id: 30247


The role of microlayer for bubble sliding in nucleate boiling: A new view point for heat transfer enhancement via surface engineering

Ding, W.; Zhang, J.; Sarker, D.; Hampel, U.

In an experimental study with a stainless steel heater (surface with maximum roughness Rt = 0.82 µm and contact angle hysteresis θhys = 53°), we investigated the bubble growth and motion during nucleation and departure. Complementary to that we analysed the formation of microlayer during the bubble growth and motion with computational fluid dynamics (CFD) simulation. From the simulations we found that the bubble motion leads to an expansion of the microlayer. From the experiments we obtained the drag coefficient on the bubble during bubble growth with an assumption of the absence of the wall surface tension force. From the comparison of this drag coefficient and the proposed values from the literature, we conclude that the vapour bubble does not directly contact the solid wall during the sliding. Using well-known mechanistic bubble growth models for further analysis of available microlayer area with the experimental data we conclude that a microlayer exists and the bubble must slide completely on this microlayer after leaving its originating cavity. From the change of microlayer size we can also explain the bubble regrowth after departure.

Keywords: Wall boiling; Bubble sliding; Microlayer; Nucleation

Downloads:

Permalink: https://www.hzdr.de/publications/Publ-30246
Publ.-Id: 30246


Cerebral Oxygen Metabolism in Adults with Sickle Cell Disease

Václavů, L.; Petr, J.; Petersen, E. T.; Mutsaerts, H. J. M. M.; Majoie, C. B. L.; Wood, J. C.; Vanbavel, E.; Nederveen, A. J.; Biemond, B. J.

In sickle cell disease (SCD), oxygen delivery is impaired due to anemia, especially during times of increased metabolic demand, and cerebral blood flow (CBF) must increase to meet changing physiologic needs. But hyperemia limits cerebrovascular reserve (CVR) and ischemic risk prevails despite elevated CBF. The cerebral metabolic rate of oxygen (CMRO 2 ) reflects oxygen supply and consumption so may be more insightful than flow-based CVR measures for ischemic risk in SCD. We hypothesized that adults with SCD have impaired CMRO 2 at rest and that a vasodilatory challenge with acetazolamide would improve CMRO 2 . CMRO 2 was calculated from CBF and oxygen extraction fraction (OEF), measured with arterial spin labeling and T 2 -prepared tissue relaxation with inversion recovery (T 2 -TRIR) MRI. We studied 36 adults with SCD without a clinical history of overt stroke and 9 healthy controls. As expected, CBF was higher in patients with SCD versus controls (mean ± standard deviation: 74±16 vs 46±5 mL/100g/min, P<.001), resulting in similar oxygen delivery (SCD: 377±67 vs controls: 368±42 μmol O 2 /100g/min, P=.69). OEF was lower in patients versus controls (27±4 vs 35±4 %, P<.001), resulting in lower CMRO 2 in patients versus controls (102±24 vs 127±20 μmol O 2 /100g/min, P=.002). After acetazolamide, CMRO 2 declined further in patients (P<.01) and did not decline significantly in controls (P=.78), indicating that forcing higher CBF worsened oxygen utilization in SCD patients. This lower CMRO 2 could reflect variation between healthy and unhealthy vascular beds in terms of dilatory capacity and resistance whereby dysfunctional vessels become more oxygen-deprived, hence increasing the risk of localized ischemia.

  • Open Access Logo American Journal of Hematology 95(2020), 401-412
    Online First (2020) DOI: 10.1002/ajh.25727

Permalink: https://www.hzdr.de/publications/Publ-30245
Publ.-Id: 30245


Ferromagnetic writing on B2 Fe50Rh50 thin films using ultra-short laser pulses

Schmeink, A. H.; Eggert, B.; Ehrler, J.; Mawass, M.; Hübner, R.; Potzger, K.; Lindner, J.; Fassbender, J.; Kronast, F.; Wende, H.; Bali, R.

The chemically ordered B2 Fe50Rh50 alloy is antiferromagnetic. By inducing chemical disorder its structure can be changed to the ferromagnetic A2 structure. Following the laser writing method published here [1] we used a pulsed laser to induce ferromagnetism locally in Fe50Rh50 thin films of 10, 20, and 30nm thickness. XMCD measurements on the laser-treated region revealed the formation of an annulus of FM contrast and a non-FM center. Transmission electron microscopy (TEM) on a section through the annulus found the FM region to be A2 and the enclosed non-contrast region of the fcc A1 structure. The surrounding untreated region remained in the B2 structure.

  • Poster
    DPG Frühjahrstagung Regensburg, 31.03.-05.04.2019, Regensburg, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-30244
Publ.-Id: 30244


Supervised machine learning for the quantification of mineral phases in drill-core hyperspectral data

Tusa, L.; Khodadadzadeh, M.; Contreras Acosta, I. C.; Fuchs, M.; Gloaguen, R.; Gutzmer, J.

Discovery and delineation of new ore deposits require substantial investment into diamond-drilling. Traditionally, the extracted drill-cores are visually analysed by site geologists and subjected to geochemical analyses for metal grade evaluation. Frequently, the geochemical information is insufficient for the evaluation of the mineralization and system morphology, mineralogical information being therefore required. Traditional mineralogical analyses such as optical microscopy, scanning electron microscopy, and X-ray diffraction are time consuming, require extensive sample preparation and deliver non-continuous point information. Due to its fast acquisition time, low sample handling requirements, and non-invasive character hyperspectral drill-core scanning has recently become an efficient tool for lithological / alteration drill core logging. Most commonly used for drill core scanning are visible to near-infrared (VNIR) and short-wave infrared (SWIR) hyperspectral sensors. These sensors allow the identification of mineral groups that show a specific signature as they absorb parts of the incoming light between 400 and 2500 nm. Many of the spectrally active minerals such as white micas, chlorites, epidotes or gypsum play an important role in exploration mapping as they have specific associations with the ore minerals and strong zonality in their distribution within the deposit. They can, therefore, be used as proxies for exploration vectoring and ore deposit modelling. Their compositional analysis and quantification has thus become an important tool for exploration. Commonly used methods for mineral abundance estimation from hyperspectral data consist in unmixing algorithms, which strongly rely on endmember extraction techniques. However, the obtained endmembers in hyperspectral drill-core data using conventional tools usually consist of mineral mixtures due to the spatial resolution of most hyperspectral sensors; the unmixing results will thus only define abundances of mixed compositions.
We propose a supervised machine learning-based methodology that uses the abundance of SWIR active mineral groups in selected representative known areas of the drill-core samples for predicting the content of these groups at the drill-core scale.
The training data consists of high-resolution scanning electron microscopy-based mineral maps resampled to the resolution of the hyperspectral image. As a result, the resampled image contains in each pixel the abundance of each selected mineral or mineral group. An artificial neural network-based regression is used in order to upscale the mineral abundances from the training set to the entire drill-core sample. Preliminary results show a great potential for automation and allow for the evaluation of the individual abundance of each mineral or mineral group.

  • Contribution to proceedings
    EGU General Assembly, 07.-12.04.2019, Vienna, Austria
    Proceedings of the EGU General Assembly
  • Poster
    EGU General Assembly, 07.-12.04.2019, Vienna, Austria

Permalink: https://www.hzdr.de/publications/Publ-30243
Publ.-Id: 30243


Evaluating the performance of hyperspectral short-wave infrared sensors for the pre-sorting of complex ores using machine learning methods

Tusa, L.; Kern, M.; Khodadadzadeh, M.; Blannin, R.; Gloaguen, R.; Gutzmer, J.

Sensor-based sorting is increasingly used for the concentration of ores. To assess the sorting performance for a specific ore type, the raw materials industry currently conducts trial-and-error batch tests. In this study, a new methodology to assess the potential of hyperspectral visible to near-infrared (VNIR) and short-wave infrared (SWIR) sensors, combined with machine-learning routines to improve the sorting potential evaluation, is pre- sented. The methodology is tested on two complex ores. The first is a tin ore in which cassiterite—the target mineral—is variable in grain size, heterogeneously distributed and has no diagnostic response in the VNIR-SWIR range of the electromagnetic spectrum. However, cassiterite is intimately associated with SWIR active minerals, such as chlorite and fluorite, which can be used as proxies for its presence. The second case study consists of a copper-gold porphyry, where copper occurs mainly in chalcopyrite, bornite, covellite and chalcocite, while gold is present as inclusions in the copper minerals and in pyrite. Machine-learning techniques such as Random Forest and Support Vector Machine applied to the hyperspectral data predict excellent sorting results in terms of grade and recovery. The approach can be adjusted to optimize sorting for a variety of ore types and thus could increase the attractivity of VNIR-SWIR sensor sorting in the minerals industry.

Keywords: Sensor-based sorting; Hyperspectral imaging; SWIR; Machine learning; Complex ores

  • Minerals Engineering 146(2020), 106150
    Online First (2019) DOI: 10.1016/j.mineng.2019.106150
  • Contribution to proceedings
    MEI Physical Separation, 13.-14.06.2019, Fallmouth, United Kingdom
  • Lecture (Conference)
    MEI Physical Separation, 13.-14.06.2019, Fallmouth, United Kingdom

Downloads:

  • Secondary publication expected

Permalink: https://www.hzdr.de/publications/Publ-30242
Publ.-Id: 30242


Mineral Mapping and Vein Detection in Hyperspectral Drill-Core Scans: Application to Porphyry-Type Mineralization

Tusa, L.; Andreani, L.; Khodadadzadeh, M.; Contreras Acosta, I. C.; Ivascanu, P.; Gloaguen, R.; Gutzmer, J.

The rapid mapping and characterization of specific porphyry vein types in geological samples represent a challenge for the mineral exploration and mining industry. In this paper, a methodology to integrate mineralogical and structural data extracted from hyperspectral drill-core scans is proposed. The workflow allows for the identification of vein types based on minerals having significant absorption features in the short-wave infrared. The method not only targets alteration halos of known compositions but also allows for the identification of any vein-like structure. The results consist of vein distribution maps, quantified vein abundances, and their azimuths. Three drill-cores from the Bolcana porphyry system hosting veins of variable density, composition, orientation, and thickness are analysed for this purpose. The results are validated using high-resolution scanning electron microscopy-based mineral mapping techniques. We demonstrate that the use of hyperspectral scanning allows for faster, non-invasive and more efficient drill-core mapping, providing a useful tool for complementing core-logging performed by on-site geologists.

Keywords: hyperspectral imaging; drill-core; mineral mapping; short-wave infrared; porphyry-type veins

Permalink: https://www.hzdr.de/publications/Publ-30241
Publ.-Id: 30241


Pages: [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48] [49] [50] [51] [52] [53] [54] [55] [56] [57] [58] [59] [60] [61] [62] [63] [64] [65] [66] [67] [68] [69] [70] [71] [72] [73] [74] [75] [76] [77] [78] [79] [80] [81] [82] [83] [84] [85] [86] [87] [88] [89] [90] [91] [92] [93] [94] [95] [96] [97] [98] [99] [100] [101] [102] [103] [104] [105] [106] [107] [108] [109] [110] [111] [112] [113] [114] [115] [116] [117] [118] [119] [120] [121] [122] [123] [124] [125] [126] [127] [128] [129] [130] [131] [132] [133] [134] [135] [136] [137] [138] [139] [140] [141] [142] [143] [144] [145] [146] [147] [148] [149] [150] [151] [152] [153] [154] [155] [156] [157] [158] [159] [160] [161] [162] [163] [164] [165] [166] [167] [168] [169] [170] [171] [172] [173] [174] [175] [176] [177] [178] [179] [180] [181] [182] [183] [184] [185] [186] [187] [188] [189] [190] [191] [192] [193] [194] [195] [196] [197] [198] [199] [200] [201] [202] [203] [204] [205] [206] [207] [208] [209] [210] [211] [212] [213] [214] [215] [216] [217] [218] [219] [220] [221] [222] [223] [224] [225] [226] [227] [228] [229] [230] [231] [232] [233] [234] [235] [236] [237] [238] [239] [240] [241] [242] [243] [244] [245] [246] [247] [248] [249] [250] [251] [252] [253] [254] [255] [256] [257] [258] [259] [260] [261] [262] [263] [264] [265] [266] [267] [268] [269] [270] [271] [272] [273] [274] [275] [276] [277] [278] [279] [280] [281] [282] [283] [284] [285] [286] [287] [288] [289] [290] [291] [292] [293] [294] [295] [296] [297] [298] [299]