Publications Repository - Helmholtz-Zentrum Dresden-Rossendorf

1 Publication

The application of the Monte Carlo code FLUKA in radiation protection studies for the Large Hadron Collider

Battistoni, G.; Broggi, F.; Brugger, M.; Campanella, M.; Carboni, M.; Empl, A.; Fassò, A.; Gadioli, E.; Cerutti, F.; Ferrari, A.; Ferrari, A.; Garzelli, M.; Lantz, M.; Mairani, A.; Margiotta, A.; Morone, C.; Muraro, S.; Parodi, K.; Patera, V.; Pelliccioni, M.; Pinsky, L.; Ranft, J.; Roesler, S.; Rollet, S.; Sala, P. R.; Santana, M.; Sarchiapone, L.; Sioli, M.; Smirnov, G.; Sommerer, F.; Theis, C.; Trovati, S.; Villari, R.; Vincke, H.; Vincke, H.; Vlachoudis, V.; Vollaire, J.; Zapp, N.


The multi-purpose particle interaction and transport code FLUKA is integral part of all radiation protection studies for the design and operation of the Large Hadron Collider (LHC) at CERN. It is one of the very few codes available for this type of calculations which is capable to calculate in one and the same simulation proton-proton and heavy ion collisions at LHC energies as well as the entire hadronic and electromagnetic particle cascade initiated by secondary particles in detectors and beam-line components from TeV energies down to energies of thermal neutrons. The present paper reviews these capabilities of FLUKA in giving details of relevant physics models along with examples of radiation protection studies for the LHC such as shielding studies for underground areas occupied by personnel during LHC operation and the simulation of induced radioactivity around beam loss points. Integral part of the FLUKA development is a careful benchmarking of specific models as well as the code performance in complex, real life applications which is demonstrated with examples of studies relevant to radiation protection at the LHC.

Keywords: radiation protection; shielding calculations; activation; FLUKA

  • Contribution to proceedings
    Joint International Conference on Supercomputing in Nuclear Applications and Monte Carlo 2010 (SNA + MC2010), 17.-21.10.2010, Tokyo, Japan
    Progress in Nuclear Science and Technology 2(2011), 358-364


Years: 2023 2022 2021 2020 2019 2018 2017 2016 2015