Publications Repository - Helmholtz-Zentrum Dresden-Rossendorf

1 Publication

Single particle resuspension experiments in turbulent channel flows

Barth, T.; Preuß, J.; Müller, G.; Hampel, U.

The resuspension of a monolayer of spherical glass and polypropylene particles from a channel floor by a dry and turbulent airflow was investigated. Special attention was given to the influence of the particle size, the particle and wall material, the wall surface roughness and the critical friction velocity. The experiments were performed in an air-driven small-scale test facility and the channel floor was made of interchangeable glass and steel wall segments. The turbulent channel flow was recorded using a planar Particle Image Velocimetry system. Prior to the experiments the spherical particles were classified using Scanning Electron Microscopy techniques. The particles on the channel floor were detected and classified by means of an optical microscope combined with a digital camera. A statistically sufficient particle monolayer was generated on the channel floor by dispersing the particles into the flow during a pure deposition regime. Afterwards, particle resuspension was induced by stepwise increase of the fluid velocity. The resuspension was quantified by the fraction of remaining particles against the friction velocity for a particle diameter range between 3 µm and 45 µm. It was found that particles instantly resuspend once a critical friction velocity is exceeded. Larger particles require lower fluid velocities for the removal than smaller particles. The wall surface roughness seems to scatter the resuspension process with respect to the friction velocity.

Keywords: aerosol particle; turbulent flow; resuspension