Publications Repository - Helmholtz-Zentrum Dresden-Rossendorf

1 Publication

High temperature stable transparent conductive oxides for solar thermal applications

Lungwitz, F.; Schumann, E.; Guillen, E.; Escobar, R.; Krause, M.; Gemming, S.

Abstract

In solar thermal energy conversion systems, receivers containing the heat transfer fluid are coated by a solar selective coating which must exhibit high absorption in the solar region and low thermal emittance. Additionally, the coating materials have to be structurally, optically, and mechanically stable at high temperatures. Nowadays, temperatures of up to 450 °C and up to 550°C are reached using parabolic trough arrays and solar tower absorbers, respectively, whereas temperatures up to 800 °C could be reached if the receiver materials were stable enough. Solar selective coatings can be formed by a transparent conductive oxide (TCOs) film deposited on a black body absorber to have both, high absorption in the ultraviolet, visible and near infrared spectral range (300 nm – 2500 nm) as well as high reflectivity in the infrared (> 2500 nm). The former is to absorb as much sunlight as possible, the latter for preventing thermal radiation losses from the system to the environment. In this work Ta:TiO2 and Ta:SnO2 TCOs thin films are reactively magnetron sputtered from tantalum doped metallic targets. The oxygen flow during deposition is precisely controlled by a plasma emission unit which is crucial to obtain optimal electrical and therefore also optical properties by maintaining high sputtering rates. While the as-deposited films are amorphous and non-conductive, they are crystallized and therefore electrically activated upon a subsequent thermal treatment at 425 °C for 1 hour. The correlation between structural, optical, and electrical properties is shown by Rutherford Backscattering Spectroscopy (RBS), X-ray Diffraction (XRD), Raman Spectroscopy, Spectroscopic Ellipsometry (SE) (both at room- and high- temperatures), UV-VIS spectrometry, and Hall Effect measurements. Preliminary tests show that optical constants of Ta:TiO2 films are maintained after annealing at 700ºC.

Keywords: TCO; transparent conductive oxide; solar thermal; magnetron sputtering; TiO2; Cluster Tool; solar selectivity; high temperature

Involved research facilities

Related publications

  • Lecture (Conference)
    ICMAT 2015 & IUMRS - ICA 2015, 28.06.-03.07.2015, Singapore, Singapore

Permalink: https://www.hzdr.de/publications/Publ-22203