Publications Repository - Helmholtz-Zentrum Dresden-Rossendorf

1 Publication

Membrane Lateral Pressure Controls Hydration and Water Mobility at the Copper-Binding Site of the P1B-type Copper ATPase CopA from Legionella Pneumophila

Fahmy, K.; Fischermeier, E.; Sayed, A.

Abstract

P-type ATPases couple ATP hydrolysis to ion transport. We have reconstituted the copper-transporting P1B-type ATPase LpCopA from Legionella pneumophila into lipid nanodiscs in order to study the influence of membrane lateral pressure on the functionally relevant intra-membrane protein hydration at the ion-binding site. Using site-directed mutagenesis, the solvatochromic fluorophore BADAN was covalently linked to the cysteine residues at the conserved copper-binding CPC motif on transmembrane helix 4. The decomposition of the fluorescence spectra of labeled LpCopA in the micellar and the lipid-inserted state shows that membrane lateral pressure reduces hydration and water mobility in the environment of the more buried Cys-382 with a concomitant change of the local dielectric constant by −9. In contrast, the environment of Cys-384 which is located closer to the putative membrane surface, resembles a “hydrophobic gate” with low water mobility that is little affected by insertion into a bilayer (change of local dielectric constant by −3). The asymmetric hydration and water mobility around the CPC motif provides Cys-382 with a highly dynamic hydration. The data show that membrane lateral pressure may provide a restoring force in hydration / dehydration cycles around Cys-382 in the transmembrane domain during catalytic activity. The lower hydration and mobility in the Cys-384 environment, on the other hand, would favor the dehydration of copper and hinder its re-solvation from the intracellular side.

Keywords: fluorescence; BADAN; nanodisc

  • Poster
    Annual Meeting of the Biophysical Society, 27.02.-03.03.2016, Los Angeles, U S A

Permalink: https://www.hzdr.de/publications/Publ-23735