Publications Repository - Helmholtz-Zentrum Dresden-Rossendorf

1 Publication

Structural Properties of Al–O Monolayers in SiO₂ on Silicon and the Maximization of their Negative Fixed Charge Density

Hiller, D.; Göttlicher, J.; Steininger, R.; Huthwelker, T.; Julin, J.; Munnik, F.; Wahl, M.; Bock, W.; Schoenaers, B.; Stesmans, A.; König, D.


Al₂O₃ on Si is known to form an ultra-thin interfacial SiO₂ during deposition and subsequent annealing, which creates a negative fixed charge (Qfᵢₓ) that enables field-effect passivation and low surface recombination velocities in Si solar cells. Various concepts were suggested to explain the origin of this negative Qfᵢₓ. In this study we investigate Al–O monolayers (MLs) from atomic layer deposition (ALD) sandwiched between deliberately grown/deposited SiO₂ films. We show that the Al-atoms have an ultra-low diffusion coefficient (~4×10⁻¹⁸ cm²/s at 1000°C), are deposited at a constant rate of ~5×10¹⁴ Al-atoms/cm²/cycle from the first ALD-cycle on, and are tetrahedral O-coordinated, since the adjacent SiO₂ imprints its tetrahedral near-order and bond length into the Al–O MLs. By variation of the tunnel-SiO₂ thickness and the number of Al–O MLs, we demonstrate that the tetrahedral coordination alone is not sufficient for the formation of Qfᵢₓ but that a SiO₂ /Al₂O₃ interface within a tunneling distance from the substrate must be present. The Al-induced acceptor states at these interfaces have energy levels slightly below the Si valence band edge and require charging by electrons from either the Si substrate or from Si/SiO₂ dangling bonds to create the negative Qfᵢₓ. Hence, tunneling imposes limitations for the SiO₂ and Al₂O₃ layer thicknesses. In addition, Coulomb repulsion between the charged acceptor states results in an optimum number of Al–O MLs, i.e., separation of both interfaces. We achieve maximum negative Qfᵢₓ of ~5×10¹² cm⁻² (comparable to thick ALD-Al₂O₃ on Si) with ~1.7 nm tunnel-SiO₂ and just 7 ALD-Al₂O₃ cycles (~8 Å) after optimized annealing at 850°C for 30 s. The findings are discussed in the context of a passivating, hole-selective tunnel contact for high-efficiency Si solar cells.

Keywords: atomic layer deposition; aluminum oxide; silicon oxide; negative fixed charge; silicon surface passivation; hole-selective contact

Involved research facilities

Related publications


Years: 2023 2022 2021 2020 2019 2018 2017 2016 2015