Publications Repository - Helmholtz-Zentrum Dresden-Rossendorf

1 Publication

Low-energy Se ion implantation in MoS₂ monolayers

Bui, M. N.; Rost, S.; Auge, M.; Tu, J.-S.; Zhou, L.; Aguilera, I.; Blügel, S.; Ghorbani Asl, M.; Krasheninnikov, A.; Hashemi, A.; Komsa, H.-P.; Jin, L.; Kibkalo, L.; O’Connell, E. N.; Ramasse, Q. M.; Bangert, U.; Hofsäss, H. C.; Grützmacher, D.; Kardynal, B. E.


In this work, we study ultra-low energy implantation into MoS₂ monolayers to evaluate the potential of the technique in two-dimensional materials technology. We use 80 Se⁺ ions at the energy of 20 eV and with fluences up to 5.0 · 10¹⁴ cm⁻².
Raman spectra of the implanted films show that the implanted ions are predominantly incorporated at the sulfur sites and MoS₂₋₂ₓ Se₂ₓ alloys are formed, indicating high ion retention rates, in agreement with the predictions of molecular dynamics simulations of Se ion irradiation on MoS₂ monolayers. We found that the ion retention rate is improved when implantation is performed at an elevated temperature of the target monolayers. Photoluminescence spectra reveal the presence of defects, which are mostly removed by post-implantation annealing at 200 ˚C, suggesting that, in addition to the Se atoms in the substitutional positions, weakly bound Se adatoms are the most common defects introduced by implantation at this ion energy.

Keywords: transition metal dichalcogenide monolayer; dry viscoelasic transfer; ultralow energy ion implantation; MoS₂; defect healing; photoluminescence; Raman spectroscopy

Involved research facilities

Related publications


Years: 2023 2022 2021 2020 2019 2018 2017 2016 2015