Publications Repository - Helmholtz-Zentrum Dresden-Rossendorf

1 Publication

Pressure-transferable neural network models for density-functional theory

Callow, T. J.; Fiedler, L.; Modine, N.; Cangi, A.

Abstract

Density functional theory (DFT) is well-known as the workhorse of electronic structure calculations in materials science and quantum chemistry. However, its applications stretch beyond these traditionally-studied fields, such as to the warm-dense matter (WDM) regime. Under WDM conditions, there are different challenges to consider (compared to ambient conditions) when using DFT. Namely, the electronic structure problem must be solved (i) for large particle numbers, (ii) for a range of temperatures, and (iii) for a range of pressures. Promising solutions were demonstrated for problems (i) and (ii) [1,2] using a recently-developed workflow to machine-learn the local density of states (LDOS) [3]. In this talk, we discuss our progress in developing a solution for problem (iii). This problem presents additional challenges because the LDOS varies quite significantly with changes in the pressure, making it a difficult problem for neural network models.

[1] L Fiedler et al., npj Comput Mater 9, 115 (2023) [2] L Fiedler et al., Phys. Rev. B 108, 125146 (2023) [3] J. A. Ellis et al., Phys. Rev. B 104, 035120 (2021)

  • Lecture (Conference)
    87th Annual Conference of the DPG and DPG Spring Meeting, 17.-22.03.2024, Berlin, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-38892