Publications Repository - Helmholtz-Zentrum Dresden-Rossendorf

1 Publication

A priori procedure to establish spinodal decomposition in alloys

Divilov, S.; Eckert, H.; Toher, C.; Friedrich, R.; Zettel, A. C.; Brenner, D. W.; Fahrenholtz, W. G.; Wolfe, D. E.; Zurek, E.; Maria, J.-P.; Hotz, N.; Campilongo, X.; Curtarolo, S.


Spinodal decomposition can improve a number of essential properties in materials, especially hardness. Yet,
the theoretical prediction of the onset of this phenomenon (e.g., temperature) and its microstructure (e.g.,
wavelength) often requires input parameters coming from costly and time-consuming experimental efforts,
hindering rational materials optimization. Here, we present a procedure where such parameters are not derived
from experiments. First, we calculate the spinodal temperature by modeling nucleation in the solid solution
while approaching the spinode boundary. Then, we compute the spinodal wavelength self-consistently using
a few reasonable approximations. Our results show remarkable agreement with experiments and, for NiRh,
the calculated yield strength due to spinodal microstructures surpasses even those of Ni-based superalloys.
We believe that this procedure will accelerate the exploration of the complex materials experiencing spinodal
decomposition, critical for their macroscopic properties.



Years: 2023 2022 2021 2020 2019 2018 2017 2016 2015