Publications Repository - Helmholtz-Zentrum Dresden-Rossendorf

"Online First" included
Approved and published publications
Only approved publications

41396 Publications

Inductionless instabilities in rotational MHD flows: A comprehensive short-wavelength analysis

Kirillov, O.; Stefani, F.

We perform a local stability analysis of rotational ows in the presence of a constant vertical magnetic eld and an azimuthal magnetic eld with a general radial dependence characterized by an appropriate magnetic Rossby number. Employing the short-wavelength approximation we develop a unied framework for the investigation of the standard, the helical, and the azimuthal version of the magnetorotational instability, as well as of current-driven kink-type instabilities. Considering the viscous and resistive setup, our main focus is on the case of small magnetic Prandtl numbers which applies, e.g., to liquid metal experiments but also to the colder parts of accretion disks. We show in particular that the inductionless versions of MRI that were previously thought to be restricted to comparably steep rotation proles extend well to the Keplerian case if only the azimuthal eld slightly deviates from its current-free prole.

Keywords: Magnetorotational instability; asymptotic analysis; WKB; MHD

  • Invited lecture (Conferences)
    The Seventh International Conference on Differential and Functional Differential Equations, 22.-29.08.2014, Moscow, Russia
  • Invited lecture (Conferences)
    Workshop ISTROF-2014: Instabilities and Turbulence in Stratified Rotational Flows, 23.-25.06.2014, Le Havre, France

Permalink: https://www.hzdr.de/publications/Publ-21104
Publ.-Id: 21104


Chandrasekhar's equipartition solution, dissipation-induced instabilities and azimuthal magnetorotational instability (MRI)

Kirillov, O. N.

I present a WKB study of the azimuthal magnetorotational instability (MRI) of a viscous electrically conducting rotating fluid with arbitrary radial profiles of the angular velocity and azimuthal component of the magnetic field. In the ideal setting II recover the results of Ogilvie and Pringle of 1996, whereas in the non- ideal case the azimuthal MRI is treated as a dissipation- induced instability of a Chandrasekhar equipartition solution for which the fluid velocity is parallel to the direction of the magnetic fiield and magnetic and kinetic energies are finite and equal.

Keywords: magnetorotational instability; rotating flow; dissipation-induced instabilities; Chandrasekhar's equipartition solution; azimuthal field

  • Invited lecture (Conferences)
    XXXIV Dynamics Days Europe, Minisymposium on Nonlinear Phenomena in Plasma Astrophysics, 08.-12.09.2014, Bayreuth, Germany

Downloads

Permalink: https://www.hzdr.de/publications/Publ-21103
Publ.-Id: 21103


Particle deposition and resuspension in gas-cooled reactors – Activity overview of the two European research projects THINS and ARCHER

Barth, T.; Lecrivain, G.; Jayaraju, S. T.; Hampel, U.

The deposition and resuspension behaviour of radio-contaminated aerosol particles is a key issue for the safety assessment of depressurization accidents of gas-cooled high temperature reactors. Within the framework of two European research projects, namely Thermal Hydraulics of Innovative Nuclear Systems (THINS) and Advanced High-Temperature Reactors for Cogeneration of Heat and Electricity R&D (ARCHER), a series of investigations was performed to investigate the transport, the deposition and the resuspension of aerosol particles in turbulent flows. The experimental and numerical tests can be subdivided into four different parts: 1. Monolayer particle deposition, 2. Monolayer particle resuspension, 3. Multilayer particle deposition and 4. Multilayer particle resuspension. The experimental results provide a new insight into the formation and removal of aerosol particle deposits in turbulent flows and are used for the development and validation of numerical procedures in gas-cooled reactors. Good agreement was found between the numerical and the experimental results.

Keywords: aerosol particle; turbulent flow; deposition; resuspension; high temperature reactor

Permalink: https://www.hzdr.de/publications/Publ-21102
Publ.-Id: 21102


Uran im Wasser – ein alltägliches Thema ?

Geipel, G.; Osman, A. A. A.

In allen Wässern kann das Ca2UO2(CO3)3 nachgewiesen werden, allerdings unterscheiden sich die Gehalte. Diese steigen von 69% des Gesamturans für Adelholzener auf über 99% für die Extalerquelle. Das restliche Uran liegt in Form von UO2(CO3)22- und UO2(CO3)34- vor. Generell kann auch geschlussfolgert werden, dass in Mineralwässer vom Typ „Classic“ höhere Anteile an Uranylkarbonaten enthalten, während die Wässer vom Typ „Still“ höhere Anteile an Ca2UO2(CO3)3 aufweisen. Letztere weisen damit eine geringere Urantoxizität auf, obwohl alle genannten Mineralwässer Urangehalte aufweisen, die deutlich unter dem Grenzwert für Trinkwasser liegen.

Keywords: Uran; Trinkwasser; Spektroskopie

  • Communication & Media Relations
    Wochenschau Wasserchemische Gesellschaft 10.11.2014
    2 Seiten

Downloads

Permalink: https://www.hzdr.de/publications/Publ-21100
Publ.-Id: 21100


The angular distribution of neutrons scattered from deuterium below 2 MeV

Nankov, N.; Plompen, A. J. M.; Kopecky, S.; Kozier, K. S.; Roubtsov, D.; Rao, R.; Beyer, R.; Grosse, E.; Hannaske, R.; Junghans, A. R.; Massarczyk, R.; Schwengner, R.; Yakorev, D.; Wagner, A.; Stanoiu, M.; Canton, L.; Nolte, R.; Röttger, S.; Beyer, J.; Svenne, J.

Neutron elastic scattering measurements were carried out at the nELBE neutron time-of-flight facility at a 6 m fight path.
Energies below 2 MeV were studied using a setup consisting of eight 6Li-glass detectors placed at nominal angles of 15° and 165° with respect to the incident neutron beam. A deuterated polyethylene sample with 99.999% enrichment in deuterium was used. These angles were chosen since an earlier study showed that the ratio of the differential cross section at these angles is the most sensitive to differences in evaluated modes and model calculations. Accurate 165°/15° angle ratios were obtained. Above 1 MeV these are are somewhat larger than given by ENDF/B-VII. Simultaneously the early day experiments using a proportional counter to infer angular distributions from deuterium recoil pulse height distributions are being studied through a new experiment with such a device at the Physikalisch-Technische Bundesanstalt (PTB). At 500 keV this experiment favors ENDF/B-VII over JENDL-4.0, while at lower energies agreement with the data is similar.

Keywords: Neutron elastic scattering time-of-flight 6Li-glass deuterium cross section

Related publications

Permalink: https://www.hzdr.de/publications/Publ-21099
Publ.-Id: 21099


Dosimetrie und First-in-man Studie (+)[18F]Flubatine

Kranz, M.; Sattler, B.; Patt, M.; Schildan, A.; Patt, J.; Tiepolt, S.; Wilke, S.; Deuther-Conrad, W.; Smits, R.; Hoepping, A.; Steinbach, J.; Brust, P.; Sabri, O.

Ziel
(+)[18F]Flubatine ist ein neuer vielversprechender Radiotracer zur Bildgebung nikotinischer Acetylcholin-Rezeptoren (α4β2) mit PET. Zur Abschätzung des Strahlenrisikos am Menschen wurde die Biodistribution erhoben und inkorporationsdosimetrische Messungen an 3 gesunden Probanden vorgenommen. Die Organdosis (OD), sowie die Effektive Dosis (ED) wurden berechnet und mit dem (-)-Enantiomer des Liganden verglichen.

Methodik
3 gesunde Probanden (Alter 58,3 ± 5,8 a, Gewicht: 80,7 ± 5,5 kg) wurden nach i.v. Injektion von 28 6 ± 13MBq (+)[18F]Flubatine sequentiell bis zu 7 h an einem PET/CT (SIEMENS Biograph16) gemessen. Das Untersuchungsprotokoll umfasste 9 Bettpositionen (BP), 1,5 – 6 min/BP, CT-Schwächungskorrektur, und iterative Rekonstruktion (OSEM, 4 Iterationen, 8 Subsets). In den Scanpausen wurde der Urin gesammelt, in einem Gammacounter gemessen und in der Dosisberechnung berücksichtigt. Mit Hilfe von ROVER (ABX, Radeberg, Germany) wurden 13 den Tracer anreichernde Organe identifiziert und per VOI-Analyse die entsprechenden Aktivitäten/Organ ermittelt. Die Zeit-Aktivitäts Daten wurden durch exponentielle Kurven approximiert, die Anzahl der Zerfälle/Organ berechnet und die OD mit OLINDA (V.1.0) abgeschätzt. Die ED wurde unter Hinzuziehung der Gewebewichtungsfaktoren aus ICRP 103 ermittelt.

Ergebnisse
Die Harnblase erhält die höchste OD (µSv/MBq) mit 102,4, gefolgt von der Leber (53,1), Nieren (38,1), Colon transversum (32,4), Dünndarm (29,4) und Gehirn (28,6). Den größten Beitrag zur ED (µSv/MBq) leistet die Harnblase (4,1), gefolgt von den Lungen (3,24), Magen (2,4), Leber (2,1), Colon transversum (1,9) und rotem Knochenmark (1,8). Resultierend ergibt sich die ED am Menschen nach i.v. Injektion von (+)[18F]Flubatine zu 23,0 µSv/MBq.

Schlussfolgerung
Die ED, als Maß für das Gesamtstrahlenrisiko, nach Injektion von 300 MBq (+)[18F]Flubatine ergibt sich zu 6,9 mSv. Sie liegt in der Größenordnung von anderen 18F-markierten Tracern (z. B. FDG = 5,7 mSv) und ist mit der ED des (-) Enantiomers (6,7 mSv) nahezu identisch.

  • Lecture (Conference)
    Nuklearmedizin2015, 53. Jahrestagung der DGN, 22.-25.04.2015, Hannover, Deutschland
  • Abstract in refereed journal
    Nuklearmedizin 54(2015), A47
    ISSN: 0029-5566

Permalink: https://www.hzdr.de/publications/Publ-21098
Publ.-Id: 21098


Heavy-quark expansion for D and B mesons in nuclear matter

Buchheim, T.; Hilger, T.; Kämpfer, B.

The planned experiments at FAIR enable the study of medium modifications of D and B mesons in (dense) nuclear matter. Evaluating QCD sum rules as a theoretical prerequisite for such investigations encounters heavy-light four-quark condensates. We utilize an extended heavy-quark expansion to cope with the condensation of heavy quarks.

Permalink: https://www.hzdr.de/publications/Publ-21097
Publ.-Id: 21097


Polyoxometalates - potent and selective ecto-nucleotidase inhibitors

Lee, S.-Y.; Fiene, A.; Li, W.; Hank, T.; Brylev, K.; Fedovrov, V.; Lecka, J.; Haider, A.; Pietzsch, H.-J.; Zimmermann, H.; Sévigny, J.; Kortz, U.; Stephan, H.; Müller, C. E.

Polyoxometalates (POMs) are inorganic cluster metal complexes that possess versatile biological activities, including antibacterial, anticancer, antidiabetic, and antiviral effects. Their mechanisms of action at the molecular level are largely unknown. However, it has been suggested that the inhibition of several enzyme families (e.g., phosphatases, protein kinases or ecto-nucleotidases) by POMs may contribute to their pharmacological properties. Ecto-nucleotidases are cell membrane-bound or secreted glycoproteins involved in the hydrolysis of extracellular nucleotides thereby regulating purinergic (and pyrimidinergic) signaling. They comprise four distinct families: ecto-nucleoside triphosphate diphosphohydrolases (NTPDases), ecto-nucleotide pyrophosphatases / phosphodiesterases (NPPs), alkaline phosphatases (APs) and ecto-5’-nucleotidase (eN). In the present study, we evaluated the inhibitory potency of a series of polyoxometalates as well as rhenium sulfur/selenium cluster complexes at a broad range of ecto-nucleotidases. [Co4(H2O)2(PW9O34)2]10- (5, PSB-POM142) was discovered to be the most potent inhibitor for human NTPDase1 described so far (Ki: 3.88 nM). Other investigated POMs selectively inhibited human NPP1, [TiW11CoO40]8-(4, PSB-POM141, Ki: 1.46 nM) and [NaSb9W21O86]18-(6, PSB-POM143, Ki: 4.98 nM) representing the most potent and selective human NPP1 inhibitors described to date. [P5W30O110]15- (8, PSB-POM144) strongly inhibited NTPDase 1-3 and NPP1 and may therefore be used as a pan-inhibitor to block ATP hydrolysis. The polyoxoanionic compounds displayed a non-competitive mechanism of inhibition at NPPs and eN, but appeared to be competitive inhibitors of TNAP. Future in vivo studies with selected inhibitors identified in the current study are warranted.

Permalink: https://www.hzdr.de/publications/Publ-21095
Publ.-Id: 21095


Entwicklung eines nicht-peptidischen F-18-markierten Liganden mit dem Ziel der molekularen Bildgebung des Oxytocinrezeptors im Gehirn

Wenzel, B.; Mollitor, J.; Deuther-Conrad, W.; Kranz, M.; Günther, R.; Teodoro, R.; Fischer, S.; Ludwig, F.-A.; Smits, R.; Steinbach, J.; Hoepping, A.; Brust, P.

1. Ziel
Oxytocin ist ein zyklisches Nonapeptid, welches im Hypothalamus synthetisiert und in der Hypophyse gespeichert wird. Sein Rezeptor (OTR) ist in spezifischen Hirnarealen exprimiert und wird mit psychiatrischen Erkrankungen, wie Schizophrenie, Autismus und Depression in Zusammenhang gebracht.
Ziel unserer Arbeiten ist die Entwicklung eines nicht-peptidischen, F-18-markierten Radiotracers zur Untersuchung der Expressionsdichte des OTR im gesunden bzw. erkrankten Gehirn.

2. Methodik
Die Bindungsaffinitäten neuer Derivate zum humanen OTR wurden mittels Radioligand-Verdrängungsstudien bestimmt. Die Radiomarkierung von [18F]ABX163 erfolgte sowohl thermisch als auch mikrowellenunterstützt in einer Zwei-Schritt-Synthese ausgehend von einem MOM-geschützen Tosylatpräkursor. Metabolismus und Organverteilung wurden in Mäusen untersucht. Dynamische PET-Scans erfolgten in Mäusen und in einem Ferkel.

3. Ergebnisse
Gegenüber der thermischen Reaktionsführung führte die mikrowellenunterstützte F-18-Markierung und Entschützung von [18F]ABX163 (Ki=13,3 nM ) zu höheren radiochemischen Ausbeuten in kürzerer Zeit (RCA: 25,4 ± 3,1% (n = 5); SA: 35-160 GBq/µmol). Sowohl die Organverteilung als auch PET-Scans von [18F]ABX163 in der Maus zeigten eine Anreicherung in der Hypophyse (SUV60=0,85), jedoch wurde eine geringe Hirnaufnahme (SUV60=0,04) beobachtet. Im Ferkel lagen die SUV-Werte für das Gesamthirn bei 0,43 (120 Min.), mit einer höheren Aufnahme im Bulbus olfactorius (SUV120=0,73; OTR-reiche Hirnregion). In-vitro-Autoradiographien am Rattenhirn zeigten eine Anreicherung von [18F]ABX163 in OTR-typischen Regionen, die jedoch nur partiell durch Oxytocin blockiert werden konnte. Selektivitätsstudien deuten auf eine Bindung von ABX163 an den ebenfalls im Gehirn exprimierten Vasopressin-Rezeptor V2 hin.

4. Schlussfolgerung
Auf Grund der geringen Hirnaufnahme und der vermuteten unzureichenden Selektivität ist eine Weiterentwicklung dieses Radioliganden nicht vorgesehen.

  • Lecture (Conference)
    Nuklearmedizin2015, 53. Jahrestagung der DGN, 22.-25.04.2015, Hannover, Deutschland
  • Abstract in refereed journal
    Nuklearmedizin 54(2015), A66
    ISSN: 0029-5566

Permalink: https://www.hzdr.de/publications/Publ-21094
Publ.-Id: 21094


Silicon Nanoparticles for Bioapplications

Hsu, C.-W.; Licciardello, N.; Septiadi, D.; Hunoldt, S.; Viehweger, K.; Stephan, H.; de Cola, L.

Silicon based nanomaterials have been well studied and applied in bio-applications such as cell imaging, targeting, and drug delivery. The major interests for these nanoparticles (NPs), rely in their biocompatibility, intrinsic luminescence as well as photo- and electro- stability. Many in vitro and in vivo studies have indeed shown that Si NPs do not display any cytotoxicity and are good candidate for cancer labeling.
Here we report on the synthesis of Si NPs via wet chemistry methods either by reducing Si(OMe)4[2] in reverse micelle or oxidizing Mg2Si.[6] The Si NPs were fully characterized by HR-TEM, EDX, XPS, FT-IR, and their photophysical properties are discussed. Furthermore, we show that it is possible to control the surface functionalization of the NPs by covalently binding different functional groups for multimodal bio-imaging. The in vitro study, cellular localization, and cell viability test of Hela cells also give us a tool to understand these materials for further nanomedicine research.

  • Poster
    5th EuCheMS Chemistry Congress, 31.08.-04.09.2014, Istanbul, Turkey

Permalink: https://www.hzdr.de/publications/Publ-21093
Publ.-Id: 21093


Synthese und Anwendung eines F-18-markierten PDE10A Inhibitors zur Untersuchung adipöser Mäuse

Wagner, S.; Kranz, M.; Hankir, M.; Scheunemann, M.; Fischer, S.; Deuther-Conrad, W.; Teodoro, R.; Wenzel, B.; Egerland, U.; Fenske, W. K.; Hesse, S.; Höfgen, N.; Steinbach, J.; Brust, P.

Ziel: Phosphodiesterasen (PDEs) katalysieren die Spaltung zyklischer Mononukleotide und sind daher Schlüsselenzyme der intrazellulären Signalübertragung. Die PDE10A ist maßgeblich an der Kontrolle der dopaminergen Transmission beteiligt. Es wird vermutet, dass zur Adipositas führende Hyperphagie mit einer Dysregulation dieses Systems im Gehirn einhergeht. Aus einer Serie von PDE10-Inhibitoren wurde daher eine Verbindung (AQ-28a) mit hoher Affinität (IC50 = 2,95 nM) und Selektivität zur F-18-Markierung ausgewählt, charakterisiert und in einem Tiermodell adipöser Mäuse mittels TierPET/MR untersucht.

Methode: Auf Basis eines Brom- bzw. Nitropräkursors wurde das 2-fluorpyridylsubstituierte AQ-28a durch nukleophile aromatische Substitution in einer Einstufenreaktion radiomarkiert. Untersuchungen zur metabolischen Stabilität wurden in Mäuseplasma und -hirnhomogenat 30 min p.i. durchgeführt. 8 Wochen alte weibliche CD1-Mäuse wurden einer 2-monatigen fettreichen Diät unterzogen und die Aufnahme von [18F]AQ-28a im Striatum und braunen Fettgewebe (BAT) durch dynamische PET/MR-Studien vor und nach der Diät untersucht.

Results: [18F]AQ-28a wurde ausgehend vom Brompräkursor mit einer radiochemischen Ausbeute von 11,0±0,1% (n=2), einer spezifischen Aktivität von 40,2±3,5 GBq/μmol (n=2) sowie einer radiochemischen Reinheit von ≥ 98% synthetisiert. Die Markierungsausbeute betrug 35±9% (n=7). Der Nitropräkursor konnte in ersten Experimenten in besseren Ausbeuten 69±5% (n=2) markiert werden. [18F]AQ-28a ist in vitro stabil und wird in vivo nicht defluoriert. PET/MR-Studien an Mäusen zeigen eine hohe Hirnaufnahme insbesondere im Striatum (SUVmax=2,3±0,9), die durch MP-10 gehemmt wird. Bei einer noch geringen Fallzahl (n=3) wurde nach fettreicher Diät eine signifikant um ca 60% erhöhte Aufnahme im Striatum und eine um ca. 130% erhöhte Aufnahme im BAT festgestellt.

Schlussfolgerungen: Mit [18F]AQ-28a wurde ein neuer hochaffiner PET-Radioligand für die Bildgebung der PDE10A im Gehirn entwickelt. Die bisherigen Ergebnisse weisen darauf hin, dass [18F]AQ-28a geeignet ist, Veränderungen der dopaminergen Transmission bei Adipositas anzuzeigen.

  • Lecture (Conference)
    Nuklearmedizin2015, 53. Jahrestagung der DGN, 22.-25.04.2015, Hannover, Deutschland
  • Abstract in refereed journal
    Nuklearmedizin 54(2015), A68
    ISSN: 0029-5566

Permalink: https://www.hzdr.de/publications/Publ-21092
Publ.-Id: 21092


A multi-scale modelling approach for industrial multiphase flows

Lucas, D.

A new modelling approach for gas-liquid flows which involve a wide spectrum of typical length scales for the interfaces between the phases is presented. It aims on medium and large scale industrial applications and bases for that reason on the multi-fluid approach. In many flow situations dispersed and segregated morphologies of the phases occur not only simultaneously, but the flow is characterized by transitions between these morphologies. The recently developed GENTOP concept provided a modelling frame for such flow situations. Examples for application are bubble entrainment by jets impinging on a liquid pool, flashing flows, e.g. in the feed line of distillation columns, flows in column tray and many others. The inhomogeneous MUSIG approach is extended to include beside a number of bubble size classes also a continuous gas phase. Interfaces which are at least 4 times larger than the cell size of the numerical grid are resolved, while smaller structures are handled as dispersed phase as usual in Euler-Euler methods. The resolved interfaces are treated in a similar way as in the Algebraic Interfacial Area Density model (AIAD). Transitions between these different morphologies are considered as coalescence and breakup processes. In several demonstration cases the capabilities of the concept are shown.

Keywords: CFD; multiphase; multi-fluid

  • Contribution to proceedings
    13th International Conference Multiphase Flow in Industrial Plants, 17.-19.09.2014, Sestri Levante, Italy
  • Lecture (Conference)
    13th International Conference Multiphase Flow in Industrial Plants, 17.-19.09.2014, Sestri Levante, Italy

Permalink: https://www.hzdr.de/publications/Publ-21091
Publ.-Id: 21091


Numerical simulations for effects of pipe size on countercurrent flow limitation in slightly inclined pipes

Murase, M.; Utanohara, Y.; Kusunoki, T.; Lucas, D.; Tomiyama, A.

Under postulated accident conditions in a pressurized water reactor (PWR) such as loss-of-RHR (residual heat removal systems) during mid-loop operation, steam and condensate water form countercurrent flows in a hot leg and a pressurizer surge line, so that countercurrent flow limitation (CCFL) may occur. For CCFL in the hot leg, we measured CCFL characteristics in a 1/15-scale model using air and water [1], carried out numerical simulations for a full-scale hot leg using a volume of fluid method (VOF), and derived a CCFL correlation [2] using Wallis parameters [3]. For CCFL in the surge line (consisting of a vertical pipe, a vertical elbow, and a slightly inclined pipe with elbows), we measured CCFL characteristics in a 1/10-scale model using air and water [4]. However, the layout of the surge line is different in each PWR plant and a generalized method to predict CCFL characteristics in the inclined pipe with elbows is necessary. Therefore, we did one-dimensional (1D) computations [5] and three-dimensional (3D) numerical simulations [6] for the 1/10-scale air-water experiments [4] to validate the 1D computation and 3D simulation.
In this study, we did 1D computations and 3D simulations for the 1/10-scale and full scale models to confirm effects of the pipe size on CCFL characteristics. Working fluids in the computation were air and water at room pressure and temperature and these conditions allowed us to evaluate pure effects of the pipe size.

Keywords: counter-current flow limitation; inclined pipe

  • Contribution to proceedings
    ANS Annual Meeting, 07.-11.06.2015, San Antonio, TX, USA
    Transactions of the American Nuclear Society, Volume 112, 2015, 955-957

Permalink: https://www.hzdr.de/publications/Publ-21090
Publ.-Id: 21090


Effects of inclination angles on countercurrent flow limitation in slightly inclined pipes

Murase, M.; Utanohara, Y.; Kusunoki, T.; Lucas, D.; Tomiyama, A.

Under postulated accident conditions in a pressurized water reactor (PWR), steam and condensate water form countercurrent flows in a hot leg and a pressurizer surge line, so that countercurrent flow limitation (CCFL) may occur. There are many studies for CCFL in hot leg models, but there are only a few studies for CCFL in a pressurizer surge line (consisting of a vertical pipe, a vertical elbow, and a slightly inclined pipe with elbows). In our previous studies, we measured CCFL characteristics in a 1/10-scale model of a pressurizer surge line using air and water, developed a one-dimensional (1D) computation model, and also did three-dimensional (3D) simulations for the inclination angle of 0.6 deg (slope of 1/100) to validate simulation capability. 1D computations and 3D simulations gave good agreement with the 1/10-scale air-water data for the inclination angle of 0.6 deg. In the present study, we did 1D computations and 3D simulations for air-water countercurrent flows in the 1/10-scale model of the pressurizer surge line to validate them for effects of inclination angles on CCFL. Although 1D computations and 3D simulations gave good agreement with measured data for the inclination angle of 0.6 deg, they slightly underestimated effects of inclination angles on CCFL for the inclination angles of 0 deg and 1.0 deg.

Keywords: counter-current flow limitation; pressure surge line

  • Contribution to proceedings
    23rd International Conference on Nuclear Engineering - ICONE-23, 17.-20.05.2015, Chiba, Japan

Permalink: https://www.hzdr.de/publications/Publ-21089
Publ.-Id: 21089


Sensitivity analyses for countercurrent flow limitation in a pressurizer surge line

Murase, M.; Utanohara, Y.; Kusunoki, T.; Lucas, D.; Tomiyama, A.

Sensitivity analyses for countercurrent flow limitation (CCFL) in a pressurizer surge line were done to predict CCFL in an
actual surge line. The results showed that CCFL on the Wallis diagram was mitigated in a large diameter line.

Keywords: pressurizer surge line; countercurrent flow limitation; numerical simulation

  • Contribution to proceedings
    2015 Annual Meeeting of the Atomic Energy Society of Japan, 20.-22.03.2015, Hitachi, Japan

Permalink: https://www.hzdr.de/publications/Publ-21088
Publ.-Id: 21088


Partial Wave Analysis of the Reaction p(3.5GeV)+p→pK+Λ to Search for the "ppK−" Bound State

Agakishiev, G.; Arnold, O.; Belver, D.; Belyaev, A.; Berger-Chen, J. C.; Blanco, A.; Böhmer, M.; Boyard, J. L.; Cabanelas, P.; Chernenko, S.; Dybczak, A.; Epple, E.; Fabbietti, L.; Fateev, O.; Finocchiaro, P.; Fonte, P.; Friese, J.; Fröhlich, I.; Galatyuk, T.; Garzón, J. A.; Gernhäuser, R.; Göbel, K.; Golubeva, M.; González-Díaz, D.; Guber, F.; Gumberidze, M.; Heinz, T.; Hennino, T.; Holzmann, R.; Ierusalimov, A.; Iori, I.; Ivashkin, A.; Jurkovic, M.; Kämpfer, B.; Karavicheva, T.; Koenig, I.; Koenig, W.; Kolb, B. W.; Kornakov, G.; Kotte, R.; Krasa, A.; Krizek, F.; Krücken, R.; Kuc, H.; Kühn, W.; Kugler, A.; Kunz, T.; Kurepin, A.; Ladygin, V.; Lalik, R.; Lapidus, K.; Lebedev, A.; Lopes, L.; Lorenz, M.; Maier, L.; Mangiarotti, A.; Markert, J.; Metag, V.; Michel, J.; Müntz, C.; Münzer, R.; Naumann, L.; Pachmayer, Y. C.; Palka, M.; Parpottas, Y.; Pechenov, V.; Pechenova, O.; Pietraszko, J.; Przygoda, W.; Ramstein, B.; Reshetin, A.; Rustamov, A.; Sadovsky, A.; Salabura, P.; Schmah, A.; Schwab, E.; Siebenson, J.; Sobolev, Y. G.; Spataro, S.; Spruck, B.; Ströbele, H.; Stroth, J.; Sturm, C.; Tarantola, A.; Teilab, K.; Tlusty, P.; Traxler, M.; Tsertos, H.; Vasiliev, T.; Wagner, V.; Weber, M.; Wendisch, C.; Wüstenfeld, J.; Yurevich, S.; Zanevsky, Y.; Sarantsev, A. V.

mploying the Bonn-Gatchina partial wave analysis framework (PWA), we have analyzed HADES data of the reaction p(3.5GeV)+p→pK+Λ. This reaction might contain information about the kaonic cluster "ppK−" via its decay into pΛ. Due to interference effects in our coherent description of the data, a hypothetical KbarNN (or, specifically "ppK−") cluster signal must not necessarily show up as a pronounced feature (e.g. a peak) in an invariant mass spectra like pΛ. Our PWA analysis includes a variety of resonant and non-resonant intermediate states and delivers a good description of our data (various angular distributions and two-hadron invariant mass spectra) without a contribution of a KbarNN cluster. At a confidence level of CLs=95\% such a cluster can not contribute more than 2-12\% to the total cross section with a pK+Λ final state, which translates into a production cross-section between 0.7 μb and 4.2 μb, respectively. The range of the upper limit depends on the assumed cluster mass, width and production process.

Permalink: https://www.hzdr.de/publications/Publ-21087
Publ.-Id: 21087


FDG PET/MR for the Assessment of Lymph Node Involvement in Lymphoma: Initial Results and Role of Diffusion-Weighted MR

Platzek, I.; Beuthien-Baumann, B.; Ordemann, R.; Maus, J.; Schramm, G.; Kitzler, H. H.; Laniado, M.; Kotzerke, J.; van den Hoff, J.

Rationale and Objectives: The purpose of this study was to evaluate the sensitivity and specificity of positron emission tomography/magnetic resonance imaging (PET/MR) with 18F-fluorodeoxyglucose (FDG) for nodal involvement in malignant lymphoma.
Materials and Methods: Twenty-seven patients with malignant lymphoma (16 men and 11 women; mean age, 45 years) were included in this retrospective study. The patients underwent FDG PET/MR after intravenous injection of FDG (176-357 MBq FDG, 282 MBq on average). Follow-up imaging and histology served as the standard of reference.
Results: One-hundred and twenty-seven (18.1%) of 702 lymph node stations were rated as having lymphoma-involvement based on the standard of reference. One-hundred and twenty-four (17.7%) of 702 lymph node stations were rated as positive by FDG PET/MR. The sensitivity and specificity of FDG PET/MR for lymph node station involvement were 93.8% and 99.4%.
Conclusions: FDG PET/MR is feasible for lymphoma staging and has a high-sensitivity and specificity for nodal involvement in lymphoma. Comparison with PET/CT is necessary to determine whether FDG PET/MR can replace PET/CT for lymphoma staging.

Permalink: https://www.hzdr.de/publications/Publ-21084
Publ.-Id: 21084


Investigation of Feedback on Neutron Kinetics and Thermal Hydraulics from Detailed Online Fuel Behavior Modelling during a Boron Dilution Transient in a PWR with the Two-way Coupled Code System DYN3D-TRANSURANUS

Holt, L.; Rohde, U.; Kliem, S.; Baier, S.; Seidl, M.; Macían-Juan, R.

Recently the reactor dynamics code DYN3D (including an internal fuel behavior model) was coupled to the fuel performance code TRANSURANUS at assembly level. The coupled code system applies the new general TRANSURANUS coupling interface, hence it can be used for one-way or two-way coupling. In the coupling, DYN3D provides process time, time-dependent rod power and thermal hydraulics conditions to TRANSURANUS, which in case of the two-way coupling approach replaces completely the internal DYN3D fuel behavior model and transfers parameters like radial fuel temperature distribution and cladding temperature back to DYN3D. For the first time results of the coupled code system are presented for a post-critical-heat-flux heat transfer. The corresponding heat transfer regime is mostly film boiling, where the cladding temperature can rise several hundreds of degrees. The simulated boron dilution transient assumed an injection of a 36 m3 slug of under-borated coolant into a German PWR core initiated from a sub-critical reactor state (extreme RIA conditions). The feedback from detailed fuel behavior modelling was found negligible on the neutron kinetics and thermal hydraulics during the first power rise. In a later phase of the transient, the node injected energy can differ 25 J/g, even still around 20 J/g for nodes without film boiling. Furthermore the thermal hydraulics can be affected strongly even in fresh fuel assemblies, where film boiling appeared in one node in the two-way approach in spite of no onset of film boiling in the one-way approach. For nodes with film boiling in both coupling approaches the two-way approach determined always higher maximum node average fuel enthalpies by about 100 J/g and higher maximum node clad surface temperatures by about 230 °C for the corresponding fresh fuel assemblies. Since the numerical performance of DYN3D-TRANSURANUS was fast and stable for these extreme transient conditions, it is therefore concluded that the coupled code system can improve the assessment of safety criteria, at a reasonable computational cost.

Permalink: https://www.hzdr.de/publications/Publ-21083
Publ.-Id: 21083


Zero-field spin-transfer oscillators combining in-plane and out-of-plane magnetized layers

Fowley, C.; Sluka, V.; Bernert, K.; Lindner, J.; Fassbender, J.; Rippard, W. H.; Pufall, M. R.; Russek, S. E.; Deac, A. M.

Excited magnetization dynamics in a spin-valve device consisting of an in-plane polarizer and an out-of-plane free layer were studied numerically. Such devices hold promise for nanoscale wireless transmitters operating at gigahertz frequencies, compatible with current technologies [1]. We solve the Landau Lifschitz-Gilbert-Slonczewski equation taking into account the spin-transfer-torque asymmetry.
This asymmetry is directly responsible for the appearance of excited dynamics in this specific geometry as it leads to a net spin transfer torque over one precession cycle. Unfortunately, when the free layer lacks any in-plane anisotropy components, i.e. is circular in shape and posesses purely uni-axial perpendicular magnetic anisotropy, a finite external field is required to generate steady-state dynamics, in agreement with previous reports[2][3].
We demonstrate that this constraint can be removed and precession can be stabilized in zero applied field by introducing an additional in-plane anisotropy axis, in this case an elongation of the free layer in the direction of the injected spin polarized current. Moreover, the in-plane anisotropy offers an additional degree of freedom for tuning the frequency response of the device[4].
The shape anisotropy introduces a variable in-plane magnetic field whose direction is dependent on the exact location of the magnetisation of the free layer around the precession trajectory. The field induced by the shape anisotropy is sufficient to balance the action of the spin transfer torque and leads to steady state precession in suitably shaped devices. The frequency dependence, frequency spectra as well as a selected precession orbit for a 90nmx80nm free layer at zero applied field are shown in the figure to the right.
Our results show that the use of an intrinsic shape anisotropy is beneficial for spin transfer oscillators in order to achieve consistent high-power, zero-field, out-of plane precessional states without any initial magnetization direction dependence.
[1] S. I. Kiselev et al., Nature 425, 380 (2003).
[2] W. H. Rippard et al., Phys. Rev. B 81, 014426 (2010).
[3] S. M. Mohseni et al., Phys. Status Solidi: Rapid Res. Lett. 5, 432 (2011).
[4] C. Fowley et al., Applied Physics Express 7, 043001 (2014)

Keywords: Spin-transfer-torque; spin-transfer-oscillators; spin-valves; magnetoresistance; spin dynamics; microwave oscillators; zero-field spin-transfer-oscillators

  • Lecture (Conference)
    Moscow International Symposium on Magnetism MISM-2014, 29.06.-03.07.2014, Moscow, Russia
  • Poster
    International Colloquium on Magnetic Films and Surfaces (ICMFS), 12.-17.07.2015, Krakow, Poland
  • Poster
    International Magnetics Conference, 11.-15.05.2015, Beijing, China

Permalink: https://www.hzdr.de/publications/Publ-21082
Publ.-Id: 21082


Guided-wave phase-matched second-harmonic generation in KTiOPO4 waveguide produced by swift heavy-ion irradiation

Cheng, Y.; Jia, Y.; Akhmadaliev, S.; Zhou, S.; Chen, F.

We report on the guided-wave second-harmonic generation in a KTiOPO4 nonlinear optical waveguide fabricated by a 17  MeV O5+ ion irradiation at a fluence of 1.5×1015  ions/cm2. The waveguide guides light along both TE and TM polarizations, which is suitable for phase-matching frequency doubling. Second harmonics of green light at a wavelength of 532 nm have been generated through the KTiOPO4 waveguide platform under an optical pump of fundamental wave at 1064 nm in both continuous-wave and pulsed regimes, reaching optical conversion efficiencies of 5.36%/W and 11.5%, respectively. The propagation losses have been determined to be ∼3.1 and ∼5.7  dB/cm for the TE and TM polarizations at a wavelength of 632.8 nm, respectively.

Keywords: Second-harmonic generation; Waveguides; Ions; Planar waveguides; Crystals

Related publications

Permalink: https://www.hzdr.de/publications/Publ-21081
Publ.-Id: 21081


Preparation of 4-Halobenzoate Containing Phosphane Based Building Blocks for Labeling Reactions Using the Traceless Staudinger Ligation

Mamat, C.; Köckerling, M.

Functionalized phosphane-containing key building blocks were synthesized that are suitable for the labeling of biologically active molecules by the traceless Staudinger ligation. Thus, a 2-(diphenylphosphanyl)phenyl 4-stannylbenzoate building block was converted into the 4-iodobenzoate by the introduction of iodine. The traceless Staudinger ligation was used to introduce the resulting 4-iodobenzoate moiety into selected molecules of pharmacological interest. Furthermore, the labeling procedure was used to transferred the 4-iodobenzoate moiety to a peptide on solid support. Finally, a convenient recovery procedure of the key phosphane building block 2-(diphenylphosphanyl)phenol from 2-(diphenylphosphoryl)phenol was evaluated

Permalink: https://www.hzdr.de/publications/Publ-21080
Publ.-Id: 21080


Geomorpho-tectonic evolution of the Jamaican restraining bend

Domínguez-González, L.; Andreani, L.; Stanek, K. P.; Gloaguen, R.

This work applies recent advances in tectonic geomorphology in order to understand the geomorphic evolution of the Jamaican restraining bend located along the Caribbean–Gonâve–North American plate boundary. We propose a classification of landscapes according to their erosional stages. The approach is mainly based on the combination of two DEM-based geomorphic indices: the hypsometric integral which highlights elevated surfaces, and the surface roughness which increases when the relief is incised by the drainage network. River longitudinal profiles were also analyzed as the drainage network responds quickly to base-level change triggered by external forcing such as tectonics. Anomalies in river profiles (knickpoints and convex segments) were mapped using stream length-gradient (SL) and normalized steepness (ksn) indices. The results provide new insights for understanding the complex evolution of the Jamaican restraining bend. Three main morphotectonic regions were identified in Jamaica: (1) the Blue Mountain–Wagwater unit located at the eastern tip of the island, (2) the Jamaican highlands plateau which covers most of the northern and central areas and (3) the tilted block province located along the southern part of Jamaica. Each region has a specific morphological signature which marks a different stage in the Late Miocene to present evolution of the Jamaican restraining bend. The evolution of the bend is mainly associated with the western propagation of major E-trending strike-slip faults and NW-trending thrusts. In the western and central parts of Jamaica the present-day motion between the Caribbean plate and the Gonâve microplate is broadly distributed along several structures, while in the easternmost part of the island this motion seems to be almost completely accommodated along the Blue Mountain range and the Plantain-Garden Fault.

Keywords: Jamaican restraining bend; Tectonic geomorphology; Geomorphic indices; Caribbean plate; North American plate; Gonâve microplate

Permalink: https://www.hzdr.de/publications/Publ-21079
Publ.-Id: 21079


Scale-Resolving Simulations for bubble columns

Ma, T.; Lucas, D.; Fröhlich, J.

This seminar presents detailed Euler-Euler Large Eddy Simulation and Scale-Adaptive Simulation of dispersed bubbly flow in different kinds of bubble columns. The main objective is to investigate the potential of these approaches for the prediction of bubbly flows with anisotropic liquid velocity fluctuations. The set of physical models describing the momentum exchange between the phases was chosen according to previous experiences of the authors. Experimental data are used for comparison. It was found that the presented modelling provides very good agreement with experimental data for the mean flow and the liquid velocity fluctuations. The energy spectra obtained from the simulations are presented and compared to the experimental spectra.

  • Lecture (Conference)
    East German Centre of Competence in Nuclear Technology, 04.12.2014, Zittau, Deuschland

Permalink: https://www.hzdr.de/publications/Publ-21078
Publ.-Id: 21078


Large Eddy Simulations for dispersed bubbly flows

Ma, T.; Lucas, D.

Die Untersuchungen zur Einbeziehung eines geeigneteren Turbulenzmodells für das GENTOP-Konzept wurden fortgesetzt. Der erste Schritt zur Untersuchung des Turbulenzanteils der nicht aufgelösten Blasen wurde durchgeführt. Es wurden Scale-Resolving Simulationen (hier, LES und SAS) auf unterschiedliche Blasensäulen gerechnet.

  • Lecture (Conference)
    HZDR PhD-Seminar, 07.-09.10.2014, Altenberg, Deuschland

Permalink: https://www.hzdr.de/publications/Publ-21077
Publ.-Id: 21077


Large Eddy Simulation of a bubble plume

Ma, T.; Ziegenhein, T.; Lucas, D.; Fröhlich, J.

The paper presents Euler-Euler Large Eddy Simulations (LES) of dispersed bubbly flow in a rectangular bubble column. The flow is characterized by a low Reynolds number. The set of physical models describing the momentum exchange between the phases was chosen according to previous experiences of the authors. The emphasis of the study is the analysis of bubbly flows concerning the investigation of the influence of the subgrid-scale model and the bubble induced turbulence model. It was found that the presented modelling combination provides good agreement with experimental data for the mean flow and liquid velocity fluctuations. The energy spectrum obtained from the resolved velocity is presented and discussed.

  • Book chapter
    Jochen Fröhlich, Stefan Odenbach, Konrad Vogeler: Strömungstechnische Tagung 2014 - Tagung anlässlich des 100. Geburtstags von Werner Albring, Dresden: TUDpress, 2014, 978-3-944331-78-2
  • Poster
    Strömungstechnische Tagung 2014, 10.10.2014, Dresden, Deuschland

Permalink: https://www.hzdr.de/publications/Publ-21076
Publ.-Id: 21076


X-ray structure of 2-(diphenylphosphano)phenyl-4-(hydroxymethyl)benzoate

Mamat, C.; Flemming, A.; Köckerling, M.

The title compound, C26H21O3P, was obtained as by-product due to the hydrolysis of the desired tosylated compound. The dihedral angles between the three aromatic rings attached to the P atom lie in the range 78.1 (1)–87.6 (1) . The hydroxymethyl group is disordered between two conformations in a 0.719 (9):0.281 (9) ratio. The hydroxy H atom is not involved in intermolecular interactions, while the hydroxy O atom serves as a donor for weak C-H...O hydrogen bonds, which link the molecules into chains propagating in [011].

Keywords: crystal structure; benzoate functionalized 2-(di­phenyl­phosphano)phenol derivative; hydrogen bonding

Permalink: https://www.hzdr.de/publications/Publ-21075
Publ.-Id: 21075


Experimental investigation of the influence of column scale, gas density and liquid properties on gas holdup in bubble columns

Rollbusch, P.; Becker, M.; Ludwig, M.; Bieberle, A.; Grünewald, M.; Hampel, U.; Franke, R.

Measurements of gas holdups in bubble columns of 0.16, 0.30 and 0.33 m diameter were carried out. These columns were operated in concurrent flow of gas and liquid phases and in semibatch mode. The column of 0.33 m diameter was operated at elevated pressures of up to 3.6 MPa. Nitrogen was employed as the gas phase and deionized water, aqueous solutions of ethanol and acetone and pure acetone and cumene as the liquid phase. The effects of differing liquid properties, gas density (due to elevated pressure), temperature, column diameter and superficial liquid velocity on gas holdup were studied. The gas holdup measurements were utilized by differential pressure measurements at different positions along the height of the bubble columns which allowed for the identification of axial gas holdup profiles. A decrease of gas holdup with increasing column diameter and an increase of gas holdup with increasing pressure was observed. The effect of a slightly decreasing gas holdup with increasing liquid velocity was found to be existent at smaller column diameters. The use of organic solvents as the liquid phase resulted in a significant increase in gas holdup compared to deionized water. It is found that published gas holdup models are mostly unable to predict the results obtained in this study.

Keywords: multiphase flow; bubble column; scale-up; gas density; organic solvents; coalescence

Permalink: https://www.hzdr.de/publications/Publ-21074
Publ.-Id: 21074


Application of magnetically driven tornado-like vortex for stirring floating particles into liquid metal

Grants, I.; Räbiger, D.; Vogt, T.; Eckert, S.; Gerbeth, G.

A tornado-like liquid metal vortex is driven by magnetic body forces. A continuously applied rotating magnetic field provides source of the angular momentum. A pulse of a much stronger travelling magnetic field drives a converging flow that temporarily focuses this angular momentum towards the axis of the container. A highly concentrated vortex forms that produces a funnel-shaped surface depression. The ability of this vortex to entrain floating unwetted particles in liquid metal is investigated experimentally.

Keywords: Magnetic body force; Vortical flow; Metal matrix composite

  • Magnetohydrodynamics 51(2015)3, 419-424

Permalink: https://www.hzdr.de/publications/Publ-21073
Publ.-Id: 21073


Exploiting the material-specific current-voltage-pressure relationship of the reactive magnetron discharge for the growth of transparent conductive (Al,Ga):ZnO and Nb:TiO2

Cornelius, S.; Vinnichenko, M.; Möller, W.

Reactive magnetron sputtering is an attractive technique for the fabrication of transparent conductive oxide thin films, due to several advantages compared to other PVD methods. These include the scalability to large substrate areas and the use of cost efficient metallic alloy targets as well as
(pulsed) DC technology for plasma excitation. Besides these technological benefits reactive magnetron sputtering (MS) inherently offers great flexibility for the control of the film stoichiometry. In particular for transparent conductive oxide (TCO) materials, the precise control of the oxygen deficiency of the layers is of utmost importance to achieve the desired electrical and optical properties.
The present work demonstrates that the material-specific shape of the current-voltage-pressure relationship of the reactive magnetron discharge may be used to tailor the electrical and optical properties of transpar-ent conductors by controlling the metal to oxygen flux ratio towards the growing film. It is shown that two groups of metals with distinctly different reactive behavior in Ar/O2 magnetron plasmas exist. Consequently, the reactive process control must be adapted in a material-specific way in order to stabilize the reactive discharge in the transition mode. This enables both control of oxygen deficiency as well as high film growth rates. In contrast to conventional reactive MS operation schemes like optical plasma emission to oxygen flow feedback, in this work an alternative technique is explained which allows controlling the oxygen partial pressure without changing the oxygen gas flow. The effect is based on the interplay of changes in secondary electron emission and sputter yield at the (partially) oxidized sputter target surface in conjunction with the internal reactive gas gettering effect of the MS setup itself.
Model experiments for the reactive magnetron sputter deposition of transparent conductive (Al,Ga) doped ZnO and Nb doped TiO2 layers are presented in detail. The effect of oxygen deficiency induced by exploiting the current-voltage-pressure relationship on the electrical and optical film properties will be discussed. The results demonstrate that the proposed method of reactive MS control is suitable to prepare high quality transparent conductive oxide thin films. Crucial parameters for TCO performance like free electron mobility and dopant activation are found to be highly dependent on oxygen to metal flux ratio during growth.

Keywords: physical vapor deposition; reactive magnetron sputtering; transparent conductive oxide; ZnO; TiO2

Related publications

  • Poster
    5th International Symposium on Transparent Conductive Materials, 12.-17.10.2014, Chania, Crete, Greece
  • Poster
    14th International Conference on Plasma Surface Engineering, 15.-19.09.2014, Garmisch-Partenkirchen, Germany

Permalink: https://www.hzdr.de/publications/Publ-21072
Publ.-Id: 21072


Interplay of phase formation, oxygen deficiency, dopant activation and charge transport in Nb doped TiO2 prepared by reactive pulsed magnetron sputtering

Cornelius, S.; Vinnichenko, M.; Möller, W.; Potzger, K.

Intense research on TiO2 as a transparent conductor material was triggered less than ten years ago by a series of breakthrough publications demonstrating a combination of resistivity below
5x10-4 Ωcm and average visible transmittance above 80% for Nb doped anatase phase TiO2 thin films [1]. Scientific as well as commercial interest in transparent conducting TiO2 is further driven by the prospective additional functionality and low production costs due to the exceptionally high refractive index, the chemical inertness and the very high abundance of TiO2 compared to the conventional transparent conductive oxides (TCOs). Early experiments were focused on pulsed laser deposition (PLD) on single crystalline substrates resulting in record free electron mobilities of up to ~25 cm²/Vs in epitaxial anatase layers [1,2]. However, neither the PLD technique nor epitaxial substrates are suitable for typical large area TCO applications. Consequently, the investigations were extended to magnetron sputter (MS) deposition and low-cost glass substrates. Here, the main focus was put on radio-frequency MS [3] and more recently on direct current MS [4] using (electrically conductive) oxygen deficient ceramic sputter targets. After initial reports on poor electron mobilities of ~1cm²/Vs in sputtered TiO2 films directly grown onto heated amorphous (glass) sub-strates, it was soon realized that controlling the crystallization from the amorphous state, the suppression of the rutile phase formation and the extrinsic doping level in conjunction with the oxygen deficiency are crucial to obtain high quality TiO2 based TCO layers. However, there are several drawbacks associated with sputtering from ceramic targets such as limited variability of the oxygen deficiency, low growth rates and higher material costs compared to metallic targets.
Therefore, this contribution is aimed at understanding the influence of the oxygen deficiency and the phase composition on the electrical and optical film properties of Nb:TiO2 prepared by pulsed direct current MS of TiNb alloy targets in Ar/O2 atmosphere. For this purpose, three routes for film preparation, including direct growth at elevated substrate temperatures, post deposition annealing of amorphous layers and epitaxial growth on SrTiO3(100), are investigated. A non-conventional process stabilization method based on the material specific current-voltage-pressure characteristics of the reactive MS discharge is employed to obtain high growth rates as well as precisely tunable oxygen partial pressures in the so-called transition mode. This approach enables the investigation of the effect of the oxygen deficiency on the crystallization of amorphous films during annealing, the Nb dopant activation (Rutherford Backscattering), the phase composition (X-ray diffraction), the charge transport (Hall Effect) and the optical properties of the Nb:TiO2 films. Using spectroscopic ellipsometry together with spectral photometry, an optical model of the dielectric function of Nb:TiO2 with different crystalline structure and conductivity is established. Moreover, charge transport in degenerately doped anatase TiO2 films will be discussed in the framework of a unified charge transport model including optical phonon scattering, ionized impurity scattering and grain boundary effects. Implications for the maximum achievable electron mobility in polycrystalline anatase TiO2 films are derived from a comparison of transport data of epitaxial and polycrystalline thin films, revealing the crucial role of the highly anisotropic effective electron mass.

Keywords: physical vapor deposition; reactive magnetron sputtering; transparent conductive oxide; TiO2; charge transport; charge carrier mobility

Related publications

  • Lecture (Conference)
    5th International Symposium on Transparent Conductive Materials, 12.-17.10.2014, Chania, Crete, Greece
  • Poster
    TCO 2014 - Transparent Conductive Oxides - Fundamentals and Applications, 29.09.-02.10.2014, Leipzig, Germany

Permalink: https://www.hzdr.de/publications/Publ-21071
Publ.-Id: 21071


Limits to charge transport and electrical dopant activation in transparent conductive (Al,Ga):ZnO prepared by reactive pulsed magnetron sputtering

Cornelius, S.; Vinnichenko, M.; Möller, W.; Munnik, F.

Degenerately doped ZnO is a highly promising material for applications as transparent electrode (TE) in a variety of modern opto-electronic applications. All of them have in common that the TE material should be highly conductive and transparent at the same time. However, both properties cannot be improved simultaneously due to the optical absorption caused by the free charge carriers. Therefore, a well accepted strategy of materials design is the improvement of the free electron mobility resulting in both decreased resisitivity and enhanced near-infrared transmittance. The present work discusses the limitations to the charge carrier mobility in Al and Ga doped ZnO thin films prepared by reactive magnetron sputtering.
The dominant scattering mechanisms are identified by comparison of experimental data to different charge transport models. A systematic study covering a wide range of dopant concentrations and deposition conditions allows to estimate a material limit for the minimum resisitivity of transparent conductive zinc oxide. It is shown that this limit may be reached by a proper choice of depositions conditions during reactive magnetron sputtering – demonstrating the potential of the method for practical applications. Further, it is shown that electron scattering caused by the incorporation of the Al and Ga dopant into the ZnO host lattice is one of the main limitations for the electron mobility.
Therefore, the effective dopant activation in ZnO is quantified by a combination of electrical, optical and ion-beam analysis characterization methods. Possible mechanisms leading to the deactivation of the dopant at high growth temperatures are discussed. It is demonstrated that Ga is a more efficient electron donor than Al, confirming theoretical predictions on the point defect formation energetics in ZnO.

Keywords: physical vapor deposition; reactive magnetron sputtering; transparent conductive oxide; ZnO; charge transport; charge carrier mobility

Related publications

  • Lecture (Conference)
    14th International Conference on Plasma Surface Engineering, 15.-19.09.2014, Garmisch-Partenkirchen, Germany

Permalink: https://www.hzdr.de/publications/Publ-21069
Publ.-Id: 21069


Speciation studies of uranyl(VI) using combined theoretical and luminescence spectroscopic methods

Drobot, B.; Steudtner, R.; Raff, J.; Brendler, V.; Geipel, G.; Tsushima, S.

Continuous wave luminescence spectra of uranyl(VI) hydrolysis were analyzed using parallel factor analysis (PARAFAC). Distribution patterns of five major species were thereby derived under a fixed uranyl concentration (10-5 M) over a wide pH range from 2 to 11. UV (180 nm to 370 nm) excitation spectra were extracted for individual species. Time-dependent density functional theory (TD-DFT) calculations revealed ligand excitation (water, hydroxo, oxo) in this region and ligand-to-metal charge transfer responsible for luminescence. Thus excitation in the UV is extreme ligand sensitive and highly specific.

  • Poster
    Advanced Techniques in Actinide Spectroscopy 2014 (ATAS 2014), 03.-07.11.2014, Dresden, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-21067
Publ.-Id: 21067


Risk management in companies - a questionnaire as an instrument for analysing the the present situation

Stiller, D.; Joehnk, P.

The topic risk management receives new impulses in the context of the financial and economic crisis in the years 2007 until 2011 as well as the question whether companies took consequences. The article briefly describes the importance of risk management and then explained the theoretical principles of empirical methods. Excerpts from developed questionnaire will be presented.

Keywords: Industrial management; risk management; ermirical research; qualitative and quantitative survey

  • Open Access Logo Contribution to proceedings
    International Doctoral Seminar 2014, 19.-21.05.2014, Zielona Gora, Poland
    Research Papers Faculty of Materials Science and Technology in Trnava, Vol. 22, 83-88
  • Lecture (Conference)
    International Doctoral Seminar 2014, 19.-21.05.2014, Zielona Gora, Poland

Permalink: https://www.hzdr.de/publications/Publ-21065
Publ.-Id: 21065


Abundance of live 244Pu in deep-sea reservoirs on Earth points to rarity of actinide nucleosynthesis

Wallner, A.; Faestermann, T.; Feige, J.; Feldstein, C.; Knie, K.; Korschinek, G.; Kutschera, W.; Ofan, A.; Paul, M.; Quinto, F.; Rugel, G.; Steier, P.

Half of the heavy elements including all actinides are produced in r-process nucleosynthesis, whose sites and history remain a mystery. If continuously produced, the Interstellar Medium is expected to build up a quasi-steady state of abundances of short-lived nuclides (with half-lives ≤100My), including actinides produced in r-process nucleosynthesis. Their existence in today’s Interstellar Medium would serve as a radioactive clock and would establish that their production was recent. In particular 244Pu, a radioactive actinide nuclide (81My half-life), can place strong constraints on recent r-process frequency and production yield. Here we report the detection of live interstellar 244Pu, archived in Earth’s deep-sea floor during the last 25My, at abundances lower than expected from continuous production in the Galaxy by about two orders of magnitude. This large discrepancy may signal a rarity of actinide r-process nucleosynthesis sites, compatible with neutron-star mergers or with a small subset of actinide-producing supernovae.

Permalink: https://www.hzdr.de/publications/Publ-21064
Publ.-Id: 21064


Coherent and nonlinear terahertz spectroscopy of low-dimensional semiconductors with a free-electron laser

Schneider, H.

This talk reviews recent experimental studies carried out using the mid-infrared and terahertz (THz) free-electron laser (FEL) facility FELBE in Dresden, Germany. Its intense, nearly transform-limited picosecond pulses, which can also be combined with synchronous pico- or femtosecond pulses from near-infared tabletop lasers, provide unique research opportunities to advance our knowledge on the interaction of mid-infrared and THz fields with materials and devices.

Keywords: terahertz spectroscopy; free-electron laser

Related publications

  • Invited lecture (Conferences)
    7th International Symposium on Ultrafast Phenomena and Terahertz Waves (ISUPTW 2014), 13.-14.10.2014, Shanghai, China

Permalink: https://www.hzdr.de/publications/Publ-21063
Publ.-Id: 21063


Dark current mechanism of terahertz quantum-well photodetectors

Jia, J. Y.; Gao, J. H.; Hao, M. R.; Wang, T. M.; Shen, W. Z.; Zhang, Y. H.; Cao, J. C.; Guo, X. G.; Schneider, H.

Dark current mechanisms of terahertz quantum-well photodetectors (THz QWPs) are systematically investigated experimentally and theoretically by measuring two newly designed structures combined with samples reported previously. In contrast to previous investigations, scattering-assisted tunneling dark current is found to cause significant contributions to total dark current. A criterion is also proposed to determine the major dark current mechanism at different peak response frequencies. We further determine background limited performance (BLIP) temperatures, which decrease both experimentally and theoretically as the electric field increases. This work gives good description of dark current mechanism for QWPs in the THz region and is extended to determine the transition fields and BLIP temperatures with response peaks from 3 to 12 THz.

Keywords: terahertz quantum-well photodetector; dark current; GaAs/AlGaAs

Permalink: https://www.hzdr.de/publications/Publ-21062
Publ.-Id: 21062


A route toward the development of 3D magnetic scaffolds with tailored mechanical and morphological properties for hard tissue regeneration: preliminary study

de Santis, R.; Gloria, A.; Russo, T.; D'Amora, U.; Zeppetelli, S.; Tampieri, A.; Herrmannsdörfer, T.; Ambrosio, L.

A basic approach toward the design of three-dimensional (3D) rapid prototyped magnetic scaffolds for hard-tissue regeneration has been proposed. In particular, 3D scaffolds consisting of a poly(ε-caprolactone) (PCL) matrix and iron oxide (Fe3O4) or iron-doped hydroxyapatite (FeHA) nanoparticles were fabricated through a 3D fibre deposition technique. As a first approach, a polymer to nanoparticle weight ratio of 90/10 (wt/wt) was used. The effect of the inclusion of both kinds of nanoparticles on the mechanical, magnetic, and biological performances of the scaffolds was studied. The inclusion of Fe3O4 and FeHA nanoparticles generally improves the modulus and the yield stress of the fibres if compared to those of neat PCL, as well as the modulus of the scaffolds. Micro-computed tomography has confirmed the possibility to design morphologically-controlled structures with a fully interconnected pore network. Magnetisation analyses performed at 37°C have highlighted M-H curves that are not hysteretic; values of saturation magnetisation (Ms) of about 3.9 emu/g and 0.2 emu/g have been evaluated for PCL/Fe3O4 and PCL/FeHA scaffolds, respectively. Furthermore, results from confocal laser scanning microscopy (CLSM) carried out on cell-scaffold constructs have evidenced that human mesenchymal stem cells (hMSCs) better adhered and were well spread on the PCL/Fe3O4 and PCL/FeHA nanocomposite scaffolds in comparison with the PCL structures.

Permalink: https://www.hzdr.de/publications/Publ-21061
Publ.-Id: 21061


Sample preparation of cosmogenic nuclides apart from C-14

Merchel, S.

invited talk - no abstract

Keywords: AMS; sample preparation

Related publications

  • Invited lecture (Conferences)
    Cosmogenic nuclide dating workshop at the 14C Dating Centre, 06.11.2014, Aarhus, Danmark

Permalink: https://www.hzdr.de/publications/Publ-21060
Publ.-Id: 21060


A basic approach toward the development of nanocomposite magnetic scaffolds for advanced bone tissue engineering

de Santis, R.; Gloria, A.; Russo, T.; D'Amora, U.; Zeppetelli, S.; Dionigi, C.; Sytcheva, A.; Herrmannsdörfer, T.; Dediu, V.; Ambrosio, L.

Magnetic scaffolds for bone tissue engineering based on a poly(e-caprolactone) (PCL) matrix and iron oxide (Fe3O4) magnetic nanoparticles were designed and developed through a three-dimensional (3D) fiber-deposition technique. PCL/Fe3O4 scaffolds were characterized by a 90/10 w/w composition. Tensile and magnetic measurements were carried out, and nondestructive 3D Imaging was performed through microcomputed tomography (Micro-CT). Furthermore, confocal analysis was undertaken to investigate human mesenchymal stem cell adhesion and spreading on the PCL/Fe3O4 nanocomposite fibers. The results suggest that nanoparticles mechanically reinforced the PCL matrix; the elastic modulus and the maximum stress increased about 10 and 30%, respectively. However, the maximum strain decreased about 50%; this suggested an enhanced brittleness. Magnetic results evidenced a superparamagnetic behavior for these nanocomposite scaffolds. Micro-CT suggested an almost uniform distribution of nanoparticles. Confocal Analysis highlighted interesting results in terms of cell adhesion and spreading. All of these results show that a magnetic feature could be incorporated into a polymeric Matrix that could be processed to manufacture scaffolds for advanced bone tissue engineering and, thus, provide new opportunity in terms of scaffold fixation and functionalization.

Permalink: https://www.hzdr.de/publications/Publ-21059
Publ.-Id: 21059


Nuklearchemie Forschung & Perspektiven

Fachgruppe Nuklearchemie in der Gesellschaft Deutscher Chemiker; Merchel, S.; Steinbach, J.

Die Fachgruppe Nuklearchemie in der Gesellschaft Deutscher Chemiker repräsentiert die Wissenschaftler* und Ingenieure, die bei ihren Arbeiten mit radioaktiven Stoffen und ionisierender Strahlung umgehen und diese für Zwecke der Forschung, Industrie, Medizin und Lehre nutzen.
Die Tätigkeiten ihrer Mitglieder reichen von den rein grundlagenwissenschaftlichen Gebieten der Chemie radioaktiver Stoffe, wie den schwersten synthetischen Elementen über nuklearchemische Aspekte der Kernenergienutzung bis hin zur Verwendung von Radionukliden in den Lebens und Umweltwissenschaften. Die Nuklearchemie umfasst die Bereiche der Kern-, Radio- und Strahlenchemie.
In ihrer mehr als 100-jährigen Geschichte, die mit der Entdeckung der Radioaktivität und der Radioelemente, hat die Nuklearchemie mit bahnbrechenden Entdeckungen, mit der Einführung bedeutender neuer Arbeitsmethoden und mit einer Vielzahl von innovativen wissenschaftlichen und technischen Anwendungen die Entwicklung der modernen Industriegesellschaft beeinflusst. In der öffentlichen Wahrnehmung werden jedoch nuklearchemische Arbeiten überwiegend der nuklearen Energiegewinnung und dem nuklearen Brennstoffkreislauf zugeordnet – Themen, die in der Öffentlichkeit sehr kontrovers diskutiert werden. Diese Bereiche stellen nach wie vor bedeutende Themen für die Nuklearchemie dar.
Entsprechend der vielfältigen Möglichkeiten und der Fortentwicklung von Wissenschaft und Technik haben sich aber seit langem weitere Schwerpunkte herausgebildet, die ebenfalls von großer grundlegender, gesellschaftlicher, ökologischer und ökonomischer Relevanz sind. Nuklearchemische Therapie- und Diagnoseverfahren sind beispielsweise aus den Lebenswissenschaften und der Medizin nicht mehr wegzudenken. Nuklearchemiker untersuchen die Elementsynthese in Sternen, sie erforschen die Struktur von Atomkernen, erzeugen die schwersten Elemente jenseits des Urans, die alle radioaktiv sind, und untersuchen deren chemische und physikalische Eigenschaften.
Sie treibt unter anderem die Suche nach dem Verständnis an, was die Materie im Innersten zusammenhält.
Das breite Spektrum nuklearchemischer Methoden macht deren Einsatz auch für ganz andere Sparten interessant: Auch in der Geologie, der Hydrologie, der Umweltforschung,
dem Strahlenschutz oder der nuklearen Forensik kommt man nicht ohne das Handwerkszeug der Nuklearchemie aus.
Die vorliegende Broschüre soll einen Einblick in die vielfältigen Themen und Arbeitsfelder nuklearchemischer Forschung und Anwendung geben, die in den folgenden
Schwerpunkten zusammengefasst werden können:
-Grundlagenforschung
-Chemie der schwersten Elemente
-Actinidenchemie
-Kosmochemie
-Radioanalytik
-Gesundheit und Umwelt
-Nuklearchemie in den Lebenswissenschaften (Radiopharmazie)
-Isotopengeochemie
-Strahlenschutz und Radioökologie
-Nukleare Forensik
-Energie
-Partitioning & Transmutation
-Endlagerforschung
-Reaktorchemie
-Tritiumchemie
-Lehre, Ausbildung und Kompetenzerhalt

Keywords: fundamental research; heavy elements; actinides; cosmochemistry; radioanalytics; health; environment; nuclear chemistry; life sciences; radiopharmacy; geochemistry; isotopes; radioecology; radiation safety; nuclear forensics; energy; partitioning; transmutation; nuclear waste disposal; nuclear reactor; tritium

  • Other report
    Frankfurt am Main: Herausgeber: Gesellschaft Deutscher Chemiker e.V. (GDCh), 2015
    25 Seiten

Permalink: https://www.hzdr.de/publications/Publ-21058
Publ.-Id: 21058


The effect of natural and forced melt convection on dendritic solidification in Ga-In alloys

Shevchenko, N.; Roshchupkina, O.; Sokolova, O.; Eckert, S.

The directional solidification of Ga–25wt%In alloys within a Hele-Shaw cell was visualized by means of X-ray radioscopy. The experimental investigations are especially focused on the impact of melt convection on the dendritic growth. Natural convection occurs during a bottom up solidification because lighter solute is rejected at the solid-liquid interface leading to an unstable density stratification. Forced convection was produced by a rotating wheel with two parallel disks containing at their inner sides a set of permanent NdFeB magnets with alternating polarization. The direction of forced melt flow is almost horizontal at the solidification front whereas local flow velocities in the range between 0.1 and 1.0 mm/s were achieved by controlling the rotation speed of the magnetic wheel. Melt flow induces various effects on the grain morphology primarily caused by the convective transport of solute. Our observations show a facilitation of the growth of primary trunks or lateral branches, suppression of side branching, dendrite remelting and fragmentation. The manifestation of all phenomena depends on the dendrite orientation, local direction and intensity of the flow. The forced flow eliminates the solutal plumes and damps the local fluctuations of solute concentration. It provokes a preferential growth of the secondary arms at the upstream side of the primary dendrite arms, whereas the high solute concentration at the downstream side of the dendrites can inhibit the formation of secondary branches completely. Moreover, the flow changes the inclination angle of the dendrites and the angle between primary trunks and secondary arms.

Keywords: X-ray radioscopy; in situ studies; melt convection; directional solidification; forced convection; dendritic growth

Permalink: https://www.hzdr.de/publications/Publ-21057
Publ.-Id: 21057


Partialoxidation von Isobutan

Willms, T.

Im Rahmen des Helmholtz-Energy-Allianz-Projektes „Energieeffiziente chemische Mehrphasenprozesse“ wird das Potential der Energieeffizienzverbesserung der partiellen Oxidation von Isobutan mit Sauerstoff bzw. Luft zu tert.-Butylhydroperoxid (TBHP) angesichts der Technologie mikrostrukturierter Reaktoren evaluiert. Zur Untersuchung der Zusammensetzung des Reaktionsgemisches wird eine gaschromatographische Methode entwickelt, die es ermöglicht, die laut Literatur im Reaktionsgemisch oder aus der Zersetzung von TBHP zu erwartenden flüssigen Substanzen (TBHP, di-t-Butylperoxid (DTBP), t-Butanol, Methanol, Azeton, Ameisensäure, Isobutylenoxid, Methylethylketon, Isobutanol) sowie zahlreiche andere Komponenten wie Lösungsmittel (Acetonitril, Hexan, Ethanol, Dioxan, Dekan), potentielle interne Standards (Methyl-t-Butylether) sowie weitere Substanzen (Hexanol, Essigsäure) zu trennen. Des Weiteren können auch die zu erwartenden gasförmigen Substanzen (Sauerstoff, Stickstoff, Isobutan, Kohlenmonoxid, Kohlendioxid, Methan, Isobuten) getrennt werden. Dazu wird eine STABILWAX-Säule verwendet, die mittels eines Switch sowohl mit einer Molsiebsäule als auch mit dem Massenspektrometer (MS) verbunden ist. Im Falle der Trennung von flüssigen Produkten wird das Gas durch einen geeigneten Befehl an den Switch nur ins MS geleitet. Zur Trennung der Gase wird der Gasstrom die ersten paar Minuten über die Molsiebsäule geleitet und die getrennten Permanentgase Stickstoff, Sauerstoff, Kohlenmonoxid und Kohlendioxid) über einen Wärmeleitfähigkeitsdetektor detektiert. Die restlichen Gase werden über die STABILWAX -Säule getrennt und dann mittels des MS detektiert.

In the frame of the Helmholtz-Energy-Alliance project “Energy efficient chemical multiphase processes“ the potential to improve the energy efficiency of the partial oxidation of isobutane by oxygene and air to t-Butyl hydroperoxide in view of the technology of microstructured reactors is evaluated.
To investigate the composition of the reaction mixture a gaschromatographic method has been developed, which is able to separate the substances expected according to literature in the reaction mixture or due to the decomposition of TBHP (TBHP, di-t-Butyl peroxide (DTBP), t-butanol, methanol, acetone, formic acid, Isobutylen oxide, Methylethyl ketone, Isobutanol) as well as numerous other compounds like solvents (acetonitrile, ethanol, dioxane, decane), potential internal standards (Methyl-t-butyl ether) as well as further substances (hexanol, acetic acid). Furthermore, also the expected gaseous substances (oxygen, nitrogen, isobutane, carbon monoxide, methane, carbon dioxide, isobutene) can be separated. To achieve this a STABILWAX column is used, which can be connected either to a mol sieve column or the mass spectrometer. In case of the separation of liquid products, the gas flow will only be separated by the STABILWAX column and conducted to the mass spectrometer by an adequate command to the switch. To separate gases, the gas flow is conducted within the first minutes to the molsieve column and the separated permanent gases (oxygen, nitrogen, isobutane, carbon monoxide, methane) are detected by a thermal conductivity detector. The other gases are detected by the mass spectrometer.

Keywords: gas chromatography; GC-MS; isobutane oxidation; reaction products; t-butyl hydroperoxide

  • Open Access Logo SHIMADZU NEWS 03(2014), 8-9

Permalink: https://www.hzdr.de/publications/Publ-21056
Publ.-Id: 21056


Organotypical vascular model for characterization of radioprotective compounds: Studies on antioxidant 2,3-diaryl-substituted indole-based cyclooxygenase-2 inhibitors

Ullm, S.; Laube, M.; Bechmann, N.; Knieß, T.; Pietzsch, J.

Radiotherapy of various cancers is closely associated with increased cardiovascular morbidity and mortality. Arachidonic acid metabolites are supposed to play a key role in radiation-induced vascular dysfunction. This study was designed to evaluate the effects of novel, antioxidative 2,3-diaryl-substituted indole-based selective cyclooxygenase-2 (COX-2) inhibitors (2,3-diaryl-indole coxibs) on radiation-induced formation of arachidonic acid metabolites via COX-2 and oxidant stress pathways in an organotypical vascular model of rat aortic rings. Acute and subacute effects of X-ray radiation (4 and 10 Gy; 1 and 3 days post irradiation) with or without the presence of 1 µM of the 2,3-diaryl-indole coxib 2-[4-(aminosulfonyl)phenyl]-3-(4-methoxyphenyl)-1H-indole (C1) or celecoxib as reference compared to sham-irradiated controls were assessed. The following parameters were measured: metabolic activity of the aortic rings; induction and regulation of COX-2 expression; release of prostaglandin E2 and F2alpha-isoprostane. Irradiation without presence of coxibs resulted in a dose-dependent augmentation of all parameters studied. When aortic rings were exposed to the 2,3-diaryl-indole coxib 1 h before irradiation, metabolic activity was restored and the release of both prostaglandin and isoprostane was inhibited. The latter indicates a direct interaction with oxidant stress pathways. By contrast, celecoxib exhibited only slight effects on the formation of isoprostane. The reduction of radiation-induced vascular dysfunction by antioxidative coxibs may widen the therapeutic window of COX-2 targeted treatment.

Keywords: Aortic ring model; coxibs; prostanoids; normal tissue damage; radiation therapy; adjuvant radioprotective therapy; cardiovascular disease

Permalink: https://www.hzdr.de/publications/Publ-21055
Publ.-Id: 21055


Role of Mn in a Magnetic Semiconductor: InMnP

Khalid, M.; Weschke, E.; Hübner, R.; Baehtz, C.; Skorupa, W.; Helm, M.; Zhou, S.

The manganese induced magnetic, electrical and structural modification in InMnP epilayers, prepared by Mn ion implantation and pulsed laser annealing, are investigated in the following work. All samples exhibit clear hysteresis loops and strong spin polarization at the Fermi level. The degree of magnetization, the Curie temperature and the spin polarization depend on the Mn concentration. The bright-field transmission electron micrographs show that InP samples become almost amorphous after Mn implantation but recrystallize after pulsed laser annealing. We did not observe an insulator-metal transition in InMnP up to a Mn concentration of 5 at.%. Instead all InMnP samples show insulating characteristics up to the lowest measured temperature. Magneotresistance results obtained at low temperatures support the hopping conduction mechanism in InMnP. We find that the Mn impurity band remains detached from the valence band in InMnP up to 5 at.% Mn doping. Our findings indicate that the local environment of Mn ions in InP is similar to GaMnAs, GaMnP and InMnAs, however, the electrical properties of these Mn implanted III-V compounds are different. This is one of the consequences of the different Mn binding energy in these compounds.

Keywords: III-V magnetic semiconductors

Related publications

  • Poster
    Moscow International Symposium on Magnetism MISM-2014, 29.06.-03.07.2014, Moscow, Russia

Permalink: https://www.hzdr.de/publications/Publ-21054
Publ.-Id: 21054


Extremely High Energy Density Deposition by Heavy Polyatomic Ion Impacts – Surface Nanopatterning and Frozen Phase Diagram Pathways

Böttger, R.; Heinig, K.-H.; Bischoff, L.; Anders, C.; Urbassek, H. M.; Hübner, R.; Liedke, B.

Bi and Au ions of a few tens of keV deposit a high energy density into the collision cascade volume of due to (i) their high mass and (ii) their low projected range. At higher energies, this density becomes diluted as the cascade volume increases super-linearly with ion energy.
Compared to monatomic ions, polyatomic ions deposit a much higher energy density. This is sufficient to form a pool of a localized, almost classical melt in a semiconductor surface lasting up to half of a nanosecond. Local melting and resolidification by single polyatomic ion impacts is proven by molecular dynamics calculations.
Well-ordered, self-organized dot patterns on Si and Ge surfaces have been found after heavy polyatomic ion irradiation, which can be attributed to the impact-induced local transient melting. The kinetics of localized melt pools leads to a generic, Bradley-Harper-type partial differential equation for the surface evolution. Whereas so far the mechanisms of ion-induced surface pattern evolution are assumed to be surface curvature dependent ion erosion or ion-momentum-induced mass drift of surface atoms, for heavy polyatomic ions we have identified a completely different mechanism.
The local melting and quenching process is so far from equilibrium that particularities of phase diagrams like the Bi state in Si or Ge are frozen into the nanostructure of the resolidified volume. This opens the possibility to study extremely fast solid-liquid phase transitions.

Keywords: self-organization; nanopatterning; polyatomic ions; energy deposition

Related publications

  • Lecture (Conference)
    Workshop Ionenstrahlen & Nanostrukturen, 20.-22.07.2014, Paderborn, Deutschland
  • Lecture (Conference)
    19th International Conference on Ion Beam Modification of Materials, 14.-19.09.2014, Leuven, Belgium

Permalink: https://www.hzdr.de/publications/Publ-21053
Publ.-Id: 21053


Experimente mit schnellen Neutronen an der Flugzeit-Anlage nELBE

Beyer, R.

Beschreibung der verschiedenen bisher an der Neutronen-Flugzeit-Anlage nELBE durchgeführten Experimente.

Keywords: nELBE; neutron time-of-flight; transmission; inelastic scattering; fission

Related publications

  • Invited lecture (Conferences)
    Fachbereichsseminar, 19.09.2014, Braunschweig, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-21052
Publ.-Id: 21052


Frequency-Domain Magnetic Resonance—Alternative Detection Schemes for Samples at the Nanoscale

Möller, M.; Lenz, K.; Lindner, J.

Magnetic Resonance in the frequency domain provides a tool to investigate and quantitatively measure many important magnetic key parameters, such like the effective magnetization, magnetic anisotropies, magnetic damping parameters or coupling field strengths. Although it has been widely employed for studying magnetic bulk and thin film samples, the sensitivity of this classical method often suffers from being too low when single nanostructures are of interest. This review discusses Magnetic Resonance as technique, providing an introduction also to non-experts in the field. The theoretical background is discussed on an ‘easy to read’ basis, followed by a brief summary of methods that are capable of investigation spin dynamics within single nanostructures (nearfield microscopy, Brillouin Light Scattering, time-resolved Magneto-optical Kerr-effect). Focusing on frequency-domain approaches we then give a detailed explanation of what we call conventional way of experimentally detecting Magnetic Resonance which is based on the use of microwave cavities. This serves a basis to discuss different approaches to enhance sensitivity within a frequency-domain Magnetic Resonance experiment. As shown this includes either improving the conventional setup itself (microresonators) or using alternative detection routes, such as optical or electrical detection.

Keywords: FMR; ferromagnetic resonance; Kerr effect; MOKE; Microresonators; Magnetism; Magnetic nanostructures

Related publications

Permalink: https://www.hzdr.de/publications/Publ-21051
Publ.-Id: 21051


Magnetic Bioinspired Hybrid Nanostructured Collagen - Hydroxyapatite Scaffolds Supporting Cell Proliferation and Tuning Regenerative Process

Tampieri, A.; Iafisco, M.; Sandri, M.; Panseri, S.; Cunha, C.; Sprio, S.; Savini, E.; Uhlarz, M.; Herrmannsdörfer, T.

A bioinspired mineralization process was applied to develop biomirnetic hybrid scaffolds made of (Fe2+/Fe3+)-doped hydroxyapatite nanocrystals nucleated on self-assembling collagen fibers and endowed with super-paramagnetic properties, minimizing the formation of potentially cytotoidc magnetic phases such as magnetite or other iron oxide phases. Magnetic composites were prepared at different temperatures, and the effect of this parameter on the reaction yield in terms of mineralization degree, morphology, degradation, and magnetization was investigated. The influence of scaffold properties on cells was evaluated by seeding human osteoblast-like cells on magnetic and nonmagnetic materials, and differences in terms of viability, adhesion, and proliferation were studied. The synthesis temperature affects mainly the chemical-physical features of the mineral phase of the composites influencing the degradation, the microstructure, and the magnetization values of the entire scaffold and its biological performance. In vitro investigations indicated the biocompatibility of the materials and that the magnetization of the super-paramagnetic scaffolds, induced applying an external static magnetic field, improved cell proliferation in comparison to the nonmagnetic scaffold.

Permalink: https://www.hzdr.de/publications/Publ-21050
Publ.-Id: 21050


Quantitative molecular plating of large-area 242Pu Targets with improved layer properties

Vascon, A.; Runke, J.; Trautmann, N.; Cremer, B.; Eberhardt, K.; Düllmann, C. E.

For measurements of the neutron-induced fission cross section of 242Pu, large-area (42 cm2) 242Pu targets were prepared on Ti-coated Si wafers by means of constant current density molecular plating. Radiochemical separations were performed prior to the platings. Quantitative deposition yields (495%) were determined for all targets by means of alpha-particle spectroscopy. Layer densities in the range of 100–150 μg/cm2 were obtained. The homogeneity of the targets was studied by radiographic imaging.
A comparative study between the quality of the layers produced on the Ti-coated Si wafers and the quality of layers grown on normal Ti foils was carried out by applying scanning electron microscopy and energy dispersive X-ray spectroscopy. Ti-coated Si wafers resulted clearly superior to Ti foils in the production of homogeneous 242Pu layers with minimum defectivity.

Keywords: 242Pu Large-area targets; Molecular plating; Quantitative deposition yield

Permalink: https://www.hzdr.de/publications/Publ-21049
Publ.-Id: 21049


Thermal properties of point defects and their clusters in bcc Fe

Devaraj, M.; Posselt, M.; Schiwarth, M.

Ferritic Fe and Fe-Cr alloys are basic structural materials of present and future nuclear fission and fusion reactors. The formation of the micro- and nanostructure of these alloys and the structural evolution under irradiation is essentially influenced by the interaction between solutes, vacancies and self-interstitials. These processes take place in different alloys such as reactor-pressure-vessel and oxide-dispersion-strengthened steels. The understanding of the nanostructure of those materials and of its radiation-induced evolution is indispensable for nuclear reactor safety. First-principle calculations based on the Density Functional Theory (DFT) are a very useful method to get atomistic insights into the interactions between solutes, vacancies and self-interstitials in bcc Fe. Traditionally, formation and binding energies of these species are investigated at T=0 and these data are further used in calculations on larger length and time scales such as in kinetic Monte Carlo simulations and Rate Theory.
The main objective of present work is the determination of the temperature-dependent free formation and binding energy of selected point defects and their clusters in bcc Fe. For this purpose DFT is used to obtain the corresponding vibrational free energies within the framework of the harmonic approximation. The substitutional solutes Cu, Y and Ti, the interstitial solute atom O, the vacancy as well as small clusters consisting of solute atoms and vacancies are considered. The results are compared with theoretical data obtained by other authors and discussed in relation to experimental solubility data. It is found that the free energies show a significant dependence on temperature. This must be taken into account in multiscale simulations that use DFT input data.

Keywords: point defects; nanoclusters; bcc-Fe; free energy; temperature dependence; Density Functional Theory

  • Lecture (Conference)
    7th International Conference on Multiscale Materials Modeling (MMM 2014), 06.-10.10.2014, Berkeley, USA

Permalink: https://www.hzdr.de/publications/Publ-21048
Publ.-Id: 21048


Establishing the Fundamental Magnetic Interactions in the Chiral Skyrmionic Mott Insulator Cu2OSeO3 by Terahertz Electron Spin Resonance

Ozerov, M.; Romhanyi, J.; Belesi, M.; Berger, H.; Ansermet, J. P.; van den Brink, J.; Wosnitza, J.; Zvyagin, S. A.; Rousochatzakis, I.

The recent discovery of Skyrmionics in Cu2OSeO3 has established a new platform to create and manipulate Skyrmionic spin textures. We use high-field electron spin resonance with a terahertz free-electron laser and pulsed magnetic fields up to 64 T to probe and quantify its microscopic spin-spin interactions. In addition to the previously observed long-wavelength Goldstone mode, this technique probes also the high-energy part of the excitation spectrum which is inaccessible by standard low-frequency electron spin resonance. Fitting the behavior of the observed modes in magnetic field to a theoretical framework establishes experimentally that the fundamental magnetic building blocks of this Skyrmionic magnet are rigid, highly entangled and weakly coupled tetrahedra.

Permalink: https://www.hzdr.de/publications/Publ-21047
Publ.-Id: 21047


Solid phase recrystallization of Si nanowires

Posselt, M.; Liedke, B.; Baldauf, S.

Advanced Si and Ge nanowire transistors can be produced by top-down or bottom-up approaches. In order to obtain the desired electrical properties doping of the nanowires is required. Ion implantation is one of the favored methods to introduce dopant atoms in a controlled manner. If relatively high ion fluences are needed the originally single-crystalline nanowire is amorphized. Subsequently, thermal processing must be used to restore the Si or Ge crystal and to activate the dopants electrically. In planar structures a complete restoration can be achieved by solid-phase epitaxial recrystallization, whereas more complex processes take place in nanowires, due to the significant influence of surfaces and interfaces. In order to understand the solid-phase recrystallization in such confined systems molecular dynamics simulations are performed. Partially amorphized nanowires embedded in a matrix as well as free nanowires and nanopillars are considered. In dependence on whether embedded or free nanowires are investigated several phenomena are observed, such as stacking fault and twin formation, random nucleation of separate crystalline grains, as well as edge rounding and necking. The simulation results are in qualitative agreement with experimental findings.

Keywords: Solid phase recrystallization; Si nanowires; Molecular dynamics simulation

Related publications

  • Poster
    7th International Conference on Multiscale Materials Modeling (MMM 2014), 06.-10.10.2014, Berkeley, USA

Permalink: https://www.hzdr.de/publications/Publ-21046
Publ.-Id: 21046


Properties of oxide nanoclusters in ODS ferritic steels: A combined DFT and Monte Carlo simulation study

Devaraj, M.

Not available, please contact the author.

Keywords: oxide nanoclusters; ferritic steels; Density Functional Theory; Monte Carlo simulations

  • Lecture (others)
    Seminarvortrag im Department of Mathematical Sciences, Loughborough University, UK, 02.10.2014, Loughborough, UK

Permalink: https://www.hzdr.de/publications/Publ-21045
Publ.-Id: 21045


Electronic properties of a distorted kagome lattice antiferromagnet Dy3Ru4Al12

Gorbunov, D. I.; Henriques, M. S.; Andreev, A. V.; Gukasov, A.; Petricek, V.; Baranov, N. V.; Skourski, Y.; Eigner, V.; Paukov, M.; Prokleska, J.; Goncalves, A. P.

Electronic properties of Dy3Ru4Al12 (hexagonal crystal structure, Dy atoms form distorted kagome nets) are studied on a single crystal by means of magnetization, neutron diffraction, specific heat, and resistivity measurements. The onset of a long-range magnetic order of Dy moments occurs at 7 K through a first-order phase transition. The compound has a noncollinear antiferromagnetic structure with a propagation vector (1/2 0 1/2). The configuration of the Dy moments is consistent with the monoclinic Shubnikov group Cc2/c. The gamma coefficient in the temperature linear term of the specific heat is strongly enhanced to 500 mJ mol-1 K-2 taking into account the localized nature of Dy magnetism. An additional contribution originates from spin fluctuations induced in the 4d subsystem of Ru by the exchange field acting from the Dy 4f moments. In an applied magnetic field Dy3Ru4Al12 displays magnetization jumps along all crystallographic directions. All the metamagnetic transitions are accompanied by large positive magnetoresistance. The maximum effect (125%-140%) is attained for current along the [100] axis and field along the [120] or [001] axes. The large positive effect is explained by changes in the conduction electron spectra through the jumps as the conduction electrons interact with localized magnetic moments.

Permalink: https://www.hzdr.de/publications/Publ-21044
Publ.-Id: 21044


Temperature and flux dependence of ion-beam mixing in crystalline and amorphous germanium isotope multilayers

Radek, M.; Posselt, M.; Liedke, B.; Schmidt, B.; Bischoff, L.; Prucnal, S.; Bougeard, D.; Bracht, H.

The availability of highly enriched stable isotopes enables the preparation of isotopically controlled semiconductors. By means of crystalline (c-Ge) and preamorphized (a-Ge) germanium isotope multilayer structures we investigated the temperature and flux dependence of ion-beam induced self-atom mixing. Low,intermediate,and high temperature regions with different mixing behavior are identified after Ga implantation at 310 keV and various temperatures. In the first region (0K - 470K) the amount of mixing in c-Ge and a-Ge is very similar, an increasing mixing with increasing temperature is observed. Region 2 (470K - 540K) reveals a strong drop of mixing in c-Ge whereas the mixing in a-Ge still increases with temperature. In region 3 (570K and above) the mixing in a-Ge drops to the level of c-Ge. Within region 2 no significant structural change occurs during implantation suggesting an efficient annealing of the radiation damage. In addition we performed Focused-Ion-Beam (FIB) implantations with 60 keV Si ions into Ge using two different fluxes at two different temperatures. The experimental results indicate that the annealing of radiation damage is not only temperature but also flux dependent.
Molecular dynamics simulations with a Stillinger-Weber type potential are used to study the self-atom mixing observed in the experiment. It is found that the dominant mechanisms of mixing are thermal spikes formed by transferring kinetic energy of the incident ion to the lattice. If the transferred energy is high enough,locally molten regions are created in which the atoms can move more freely compared to the lattice atoms. With increasing temperature the thermal spikes last longer and the mixing increases. This is in accord with the experimentally observed mixing behavior in region 1. Differences between the mixing in a-Ge and c-Ge in region 2 are related to the initial crystal structure. Qualitative agreement is achieved with molecular dynamics simulations.

Keywords: ion-beam mixing; Ge isotope multilayers; temperature and flux dependence

Related publications

  • Lecture (Conference)
    19th International Conference on Ion Beam Modification of Materials (IBMM 2014), 14.-19.09.2014, Leuven, Belgium

Permalink: https://www.hzdr.de/publications/Publ-21043
Publ.-Id: 21043


Magnetization Reversal of Disorder Induced Ferromagnetic Regions in Fe60Al40 Thin Films

Tahir, N.; Gieniusz, R.; Maziewski, A.; Bali, R.; Kostylev, M. P.; Wintz, S.; Schultheiss, H.; Facsko, S.; Potzger, K.; Lindner, J.; Fassbender, J.

Magnetization reversal processes were investigated in iron-aluminum (Fe60Al40) alloy films of 40 nm thickness by employing magnetometry and magnetic domain imaging using magneto-optical longitudinal and polar effects. The films were initially chemically ordered and weakly ferromagnetic, and a large increase in the saturation magnetization was induced due to disorder magnetization induced by Ne+-ion irradiation. Three different sample geometries were investigated; a) continuous film; b) homogenously irradiated wire; and c) magnetic stripe-patterned wire. Specific magnetization reversal mechanism were identified for the different sample geometries.

Keywords: magnetic patterning; magnetic nanostructures; magneto-optical magnetometry; ions irradiation effects; magnetic domains

Related publications

Permalink: https://www.hzdr.de/publications/Publ-21042
Publ.-Id: 21042


Quo vadis?: Ion Beam Engineeering and beyond…

Skorupa, W.

There is no doubt that ion beam based research and applications- like all semiconductor-based revolutionary developments of our society- have reached a kind of saturation overlooking the last 60 years when ion implantation started as a child of the early nuclear weapon development. It was the mass separator as a key part of the ion implanter allowing the formation of atomically pure beams. Doping of semiconductor materials with a clear dominance of silicon was the technology driver for the development of ion beam technology. Moreover, the physical and chemical modification of surfaces as well as regions in shallow and deeper regions below the surface of solid materials was the matter of interest for using this efficient tool. At all times, annealing/thermal treatment of ion beam treated materials within different time ranges –from hours down to picoseconds- was a close relative of ion beam engineering. Even flash lamp annealing as one of the annealing methods based on early experiments performed for the simulation of strong optical radiation impact on materials during nuclear weapon attacks. In this talk I will shortly discuss historical and future aspects of ion beam engineering to initiate a discussion on: From nuclear weapons to superchips…, what remains to be done? or, ...what more do people really need? I will extend this lecture to issues that should be of broader interest, but also, to our community!

Keywords: ion beam engineering; flash lamp annealing; ion beam technology

Related publications

  • Invited lecture (Conferences)
    X-th International Conference Ion Implantation and other Applications of Ions and Electrons, 23.-26.06.2014, , Poland, 23.-26.06.2014, Kazimierz Dolny, Poland

Permalink: https://www.hzdr.de/publications/Publ-21041
Publ.-Id: 21041


Development and Characterization of a tunable ultrafast X-ray source via Inverse Compton Scattering

Jochmann, A.

Ultrashort, nearly monochromatic hard X-ray pulses enrich the understanding of the dynamics and function of matter, e.g., the motion of atomic structures associated with ultrafast phase transitions, structural dynamics and (bio)chemical reactions. Inverse Compton backscattering of intense laser pulses from relativistic electrons not only allows for the generation of bright X-ray pulses which can be used in a pumpprobe experiment, but also for the investigation of the electron beam dynamics at the interaction point.
The focus of this PhD work lies on the detailed understanding of the kinematics during the interaction of the relativistic electron bunch and the laser pulse in order to quantify the influence of various experiment parameters on the emitted X-ray radiation.
The experiment was conducted at the ELBE center for high power radiation sources using the ELBE superconducting linear accelerator and the DRACO Ti:sapphire laser system. The combination of both these state-of-the-art apparatuses guaranteed the control and stability of the interacting beam parameters throughout the measurement.
The emitted X-ray spectra were detected with a pixelated detector of 1024 by 256 elements (each 26μm by 26μm) to achieve an unprecedented spatial and energy resolution for a full characterization of the emitted spectrum to reveal parameter influences and correlations of both interacting beams. In this work the influence of the electron beam energy, electron beam emittance, the laser bandwidth and the energy-anglecorrelation on the spectra of the backscattered X-rays is quantified.
A rigorous statistical analysis comparing experimental data to ab-initio 3D simulations enabled, e.g., the extraction of the angular distribution of electrons with 1.5% accuracy and, in total, provides predictive capability for the future high brightness hard X-ray source PHOENIX (Photon electron collider for Narrow bandwidth Intense X-rays) and potential all optical gamma-ray sources.
The results will serve as a milestone and starting point for the scaling of the Xray flux based on available interaction parameters of an ultrashort bright X-ray source at the ELBE center for high power radiation sources. The knowledge of the spatial and spectral distribution of photons from an inverse Compton scattering source is essential in designing future experiments as well as for tailoring the X-ray spectral properties to an experimental need.

Related publications

  • Doctoral thesis
    TU Dresden, 2014
    Mentor: Prof. Dr. Roland Sauerbrey
    103 Seiten
  • Open Access Logo Wissenschaftlich-Technische Berichte / Helmholtz-Zentrum Dresden-Rossendorf; HZDR-055 2014
    ISSN: 2191-8708, eISSN: 2191-8716

Downloads

Permalink: https://www.hzdr.de/publications/Publ-21040
Publ.-Id: 21040


The development of a compact EBIS with integrated ion optics for FIB applications

Schmidt, M.; Zschornack, G.; Gierak, J.

Related publications

  • Lecture (Conference)
    Condensed Matter in Paris 2014, CMD 25 – JMC 14, 25.08.2014, Paris, France

Permalink: https://www.hzdr.de/publications/Publ-21039
Publ.-Id: 21039


IMALION – Creation and Low Energy Transportation of Milliampere Metal Ion Beams

Weichsel, T.; Hartung, U.; Kopte, T.; Zschornack, G.; Kreller, M.; Silze, A.

Related publications

  • Lecture (Conference)
    5th International Particle Accelerator Conference, 16.06.2014, Dresden, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-21038
Publ.-Id: 21038


Implementation of a Superconducting Electron Beam Ion Source into the HIT Ion Source Testbench

Ritter, E.; Silze, A.; Zschornack, G.; Cee, R.; Haberer, T.; Peters, A.; Winkelmann, T.

Related publications

  • Lecture (Conference)
    5th International Particle Accelerator Conference, 16.06.2014, Dresden, Deutschland
  • Open Access Logo Contribution to proceedings
    5th International Particle Accelerator Conference, 16.06.2014, Dresden, Deutschland
    Proceedings of IPAC2014: JACoW, 2153

Permalink: https://www.hzdr.de/publications/Publ-21037
Publ.-Id: 21037


Eifficient charge-breeding of Helium-6 in an EBIT for precision measurement of the beta-neutrino correlation

Schmidt, M.; Hass, M.; Zschornack, G.; Rappaport, M. L.; Heber, O.; Prygarin, A.; Shachar, Y.; Vaintraub, S.

Related publications

  • Lecture (Conference)
    14th International Symposium on Electron Beam Ion Sources and Traps (EBIS/T 2014), 20.05.2014, East Lansing, USA

Permalink: https://www.hzdr.de/publications/Publ-21036
Publ.-Id: 21036


Momentum phase space analysis with charged particle diagnostic devices

Zschornack, G.; Ritter, E.

Related publications

  • Lecture (Conference)
    DPG-Frühjahrstagung 2014, 17.03.2014, Frankfurt/Main, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-21035
Publ.-Id: 21035


Electron Beam Ion Sources for Student Education

Zschornack, G.; Ritter, E.

Related publications

  • Lecture (Conference)
    DPG-Frühjahrstagung 2014, 17.-21.03.2014, Frankfurt/Main, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-21034
Publ.-Id: 21034


Materials Analysis with Electron Beam Ion Sources

König, J.; Bischoff, L.; Kentsch, U.; Kreller, M.; Pilz, W.; Ritter, E.; Schmidt, M.; Silze, A.; Zschornack, G.

Related publications

  • Lecture (Conference)
    DPG-Frühjahrstagung 2014, Sektion Mikroproben, 02.04.2014, Dresden, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-21033
Publ.-Id: 21033


Suppression of tin precipitation in SiSn alloy layers by implanted carbon

Gaiduk, P. I.; Lundsgaard Hansen, J.; Nylandsted Larsen, A.; Bregolin, F. L.; Skorupa, W.

By combining transmission electron microscopy and Rutherford backscattering spectrometry, we have identified carbon related suppression of dislocations and tin precipitation in supersaturated molecular-beam epitaxial grown SiSn alloy layers. Secondary ion mass spectrometry has exposed the accumulation of carbon in the SiSn layers after high temperature carbon implantation and high temperature thermal treatment. Strain-enhanced separation of point defects and formation of dopant-defect complexes are suggested to be responsible for the effects. The possibility for carbon assisted segregation-free high temperature growth of heteroepitaxial SiSn/Si and GeSn/Si structures is argued.

Keywords: ion implantation; precipitation; carbon; tin; SiSn alloy; transmission electron microscopy; Rutherford backscattering spectrometry

Related publications

Permalink: https://www.hzdr.de/publications/Publ-21032
Publ.-Id: 21032


Corundum-type Fe-doped cathodic arc evaporated Al-Cr-O coatings

Koller, C. M.; Ramm, J.; Polcik, P.; Munnik, F.; Paulitsch, J.; Mayrhofer, P. H.

A quaternary alloying concept comprising the addition of 1-5 at% Fe to Al0.7Cr0.3 targets for cathodic arc evaporation at 550 °C is investigated regarding its influence on promoting singe-phase α-(Al,Cr)2O3 film growth. Based on detailed X-ray diffraction and transmission electron microscopy studies we can show that the α-phase fraction correlates with the incorporated Fe content and increases with increasing film thickness at the expense of the cubic phases.

Keywords: Corundum-type aluminium oxide; (Al; Cr)₂O₃; (Al; Cr; Fe)₂O₃; cathodic arc evaporation

Related publications

Permalink: https://www.hzdr.de/publications/Publ-21031
Publ.-Id: 21031


Chemoradiotherapy with nimorazole: Factors influencing local tumor control

Mobius, L.; Koi, L.; Yaromina, A.; Schmidt, M.; Zips, D.; Krause, M.; Baumann, M.

Chemoradiotherapy with nimorazole: Factors influencing local tumor control

  • Abstract in refereed journal
    Strahlentherapie und Onkologie 190(2014), 21-22
    ISSN: 0179-7158

Permalink: https://www.hzdr.de/publications/Publ-21030
Publ.-Id: 21030


Vorsicht bei der hypofraktionierten dosiseskalierten Strahlentherapie beim nicht-kleinzelligen Bronchialkarzinom [Caution with hypofractionated dose-escalating radiotherapy in non-small cell lung cancer].

Philipp, J.; Baumann, M.

no abstract available

Permalink: https://www.hzdr.de/publications/Publ-21029
Publ.-Id: 21029


Radiogenomics: Radiobiology Enters the Era of Big Data and Team Science

Rosenstein, B.; West, C.; Bentzen, S.; Alsner, J.; Andreassen, C.; Azria, D.; Barnett, G.; Baumann, M.; Burnet, N.; Chang-Claude, J.; Chuang, E.; Coles, C.; Dekker, A.; de Ruyck, K.; de Ruysscher, D.; Drumea, K.; Dunning, A.; Easton, D.; Eeles, R.; Fachal, L.; Gutierrez-Enriquez, S.; Haustermans, K.; Henriquez-Hernandez, L.; Imai, T.; Jones, G.; Kerns, S.; Liao, Z.; Onel, K.; Ostrer, H.; Parliament, M.; Pharoah, P.; Rebbeck, T.; Talbot, C.; Thierens, H.; Vega, A.; Witte, J.; Wong, P.; Zenhausern, F.

there is no abstract

Permalink: https://www.hzdr.de/publications/Publ-21028
Publ.-Id: 21028


Spectroscopic evidence for selenium(IV) dimerization in aqueous solution

Kretzschmar, J.; Jordan, N.; Brendler, E.; Tsushima, S.; Franzen, C.; Foerstendorf, H.; Stockmann, M.; Heim, K.; Brendler, V.

The aqueous speciation of selenium(IV) was elucidated by a combined approach applying quantum chemical calculations, infrared (IR), Raman, and 77Se NMR spectroscopy. The dimerization of hydrogen selenite (HSeO3−) was confirmed at concentrations above 10 mmol L–1 by both IR and NMR spectroscopy. Quantum chemical calculations provided the assignment of vibrational bands observed to specific molecule modes of the (HSeO3)22– ion. The results presented will provide a better understanding of the chemistry of aqueous Se(IV) which is of particular interest for processes occurring at mineral/water interfaces.

Keywords: selenium; dimers; speciation; NMR; IR; Raman; DFT

Permalink: https://www.hzdr.de/publications/Publ-21027
Publ.-Id: 21027


BAY 87-2243, a novel inhibitor of hypoxia-induced gene activation, improves local tumor control after fractionated irradiation in a schedule-dependent manner in head and neck human xenografts

Helbig, L.; Koi, L.; Bruechner, K.; Gurtner, K.; Hess-Stumpp, H.; Unterschemmann, K.; Baumann, M.; Zips, D.; Yaromina, A.

Background: The transcription factor hypoxia-inducible factor-1 (HIF-1) pathway plays an important role in tumor response to cytotoxic treatments. We investigated the effects of a novel small molecule inhibitor of mitochondrial complex I and hypoxia-induced HIF-1 activity BAY-87-2243, on tumor microenvironment and response of human squamous cell carcinoma (hSCC) to clinically relevant fractionated radiotherapy (RT) with and without concomitant chemotherapy.
Methods: When UT-SCC-5 hSCC xenografts in nude mice reached 6 mm in diameter BAY-87-2243 or carrier was administered before and/ or during RT or radiochemotherapy with concomitant cisplatin (RCT). Local tumor control was evaluated 150 days after irradiation and the doses to control 50% of tumors (TCD50) were compared between treatment arms.
Tumors were excised at different time points during BAY-87-2243 or carrier treatment for western blot and immunohistological investigations.
Results: BAY-87-2243 markedly decreased nuclear HIF-1 alpha expression and pimonidazole hypoxic fraction already after 3 days of drug treatment. BAY-87-2243 prior to RT significantly reduced TCD50 from 123 to 100 Gy (p=0.037). Additional BAY-87-2243 application during RT did not decrease TCD50. BAY-87-2243 before and during radiochemotherapy did not improve local tumor control.
Conclusions: Pronounced reduction of tumor hypoxia by application of BAY-87-2243 prior to RT improved local tumor control. The results demonstrate that radiosensitizing effect importantly depends on treatment schedule. The data support further investigations of HIF-1 pathway inhibitors for radiotherapy and of predictive tests to select patients who will benefit from this combined treatment.

Keywords: HIF pathway inhibition; Cisplatin; Fractionated radiation; Local tumor control; Tumor microenvironment; Human tumor xenograft

Permalink: https://www.hzdr.de/publications/Publ-21026
Publ.-Id: 21026


Paramagnetism in neutron irradiated graphite

Wang, Y.; Jenkins, C. A.; Arenholz, E.; Bukalis, G.; Skorpa, W.; Helm, M.; Zhou, S.

Defect induced magnetism in carbon based materials has many attractive perspectives in the fundamental understanding of magnetism as well as in future spintronic applications. Graphite has been reported that it can be ferromagnetic after proton irradiation. After that, successive investigation was done for confirming the ferromagnetism in graphite and for finding other carbon based materials to be ferromagnetic. So far although the mechanism of ferromagnetism in carbon-based materials is still an open question, more and more experiments show some common features: First, paramagnetism can be largely enhanced by introducing defects. Second, ferromagnetism only appears under certain defect concentration. Third, defects induced or disturbed electron states play an important role to generate local moments and to establishing the ferromagnetic coupling. In the past most of researchers used ions implantation to introduce defects in graphite or graphene. This technology usually generates defect in the near--surface and it is hard to effectively increasing the total number of defect in the whole matrix. Consequently, the magnetic signal is so weak that confuses the interpretation for the source of the observed ferromagmetism. To obtain more reliable information, thereby to better understand this phenomenon, it is necessary to enhance the total number of defect states and simultaneously keep defect concentration constant when the ferromagnetism appears. So in this contribution we use neutron irradiation to extend defect region in graphite from the near surface region to the whole sample. We present the magnetic properties and X-ray absorption spectroscopy of irradiated graphite.

Keywords: XAS; neutron irradiation; graphite

Related publications

  • Poster
    19th international conference on ion beam modification of materials (IBMM 2014), 14.-19.09.2014, Leuven, Belgium

Permalink: https://www.hzdr.de/publications/Publ-21025
Publ.-Id: 21025


Stratified and Segregated Flow Modelling - Interfacial Area Density Models – AIAD

Höhne, T.

Today: Limits in simulating stratified & segregated two phase flow
Algebraic Interfacial Area Density Model (AIAD)
Free Surface Drag
Turbulence Damping
Sub-grid wave turbulence (SWT)
Verification and Validation is going on – more experimental data are required for the validation

Keywords: AIAD; Free Surface Drag; Sub-grid wave turbulence (SWT)

  • Contribution to proceedings
    12th Short Course “Multiphase Flow: Simulation,Experiment and Application”, 25.-27.11.2014, Dresden, Deutschland
    CD-ROM
  • Lecture (Conference)
    12th Short Course “Multiphase Flow: Simulation,Experiment and Application”, 25.-27.11.2014, Dresden, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-21024
Publ.-Id: 21024


Gleichgewichtsdynamik der Huminstoff-Komplexbildung: Konzentrations- und zeitabhängige Effekte

Lippold, H.

Es ist kein Abstract vorhanden.

  • Lecture (others)
    7. Workshop zum Verbundprojekt "Rückhaltung endlagerrelevanter Radionuklide im natürlichen Tongestein und in salinaren Systemen", 28.-29.10.2014, Saarbrücken, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-21023
Publ.-Id: 21023


Low energy proton radiation impact on 4H-SiC nMOSFET gate oxide stability

Florentin, M.; Alexandru, M.; Constant, A.; Schmidt, B.; Millán, J.; Godignon, P.

The 4H-SiC MOSFET electrical response to 180 keV proton radiations at three different fluences has been evaluated. For a certain dose, the devices show an improvement of their electrical characteristics likely due to the N and/or H atoms diffusion inside the oxide layer. This work shows that not only the 4H-SiC material is robust to the radiation, but also a MOSFET build on this material can withstand it, and even its electrical performance results improved if submitted to an appropriate fluence.

Keywords: Charge trapping; Mobility; Proton irradiation; SiC MOSFET; Threshold voltage; Time bias stress instability

Related publications

Permalink: https://www.hzdr.de/publications/Publ-21022
Publ.-Id: 21022


Simultaneous measurement of AMR and observation of magnetic domains in stripe-patterned permalloy

Osten, J.; Langer, M.; Lenz, K.; Lindner, J.; Fassbender, J.

AMR depends on the angle between applied current and the direction of the internal magnetization. The influence of magnetic domains on the AMR is still not fully understood. Therefore it is important to observe the domain structure while measuring the AMR. To observe the domain structure Kerr microscopy based on the magneto-optical Kerr effect was applied. For measuring the AMR during imaging, the sample holder was equipped with electrical contacts in four-point style.The investigated permalloy films are stripe patterned by Implantation.The implantation leads to a lower saturation magnetization in the implanted stripes compared to the non-implanted ones. Our measurements show a clear correlation between AMR and the magnetic domain structur.

Here we present how simultaneous anisotropic magnetoresistance (AMR) and Kerr microscopy measurements of patterned samples can be applied to develop new types of magnetic sensors. One observes that the AMR has a minmum value if the magnetization is perpendicular to the current and a maximum value if parallel. Without patterning Permalloy the resistance shows a symmetric behavior. By introducing a certain stripe structure it was possible to achieve a sinusoidal resistance.

Keywords: magnetic domains; AMR; Kerr microscope

Related publications

  • Lecture (Conference)
    IEEE International Magnetics Conference, 04.-08.05.2014, Dresden, Deutschland
  • Lecture (Conference)
    Physikerinnentagung, 16.-19.10.2014, Dresden, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-21021
Publ.-Id: 21021


Synthesis of S-Layer Conjugates and Evaluation of Their Modifiability as a Tool for the Functionalization and Patterning of Technical Surfaces

Weinert, U.; Pollmann, K.; Barkleit, A.; Vogel, M.; Günther, T.; Raff, J.

Chemical groups of surface layer (S-layer) proteins were chemically modified in order to evaluate the potential of S-layer proteins for the introduction of functional molecules.
S-layer proteins are structure proteins that self-assemble to regular arrays on surfaces. One general feature of S layer proteins is their high amount of carboxylic and amino groups. These groups are potential targets for linking functional molecules thus producing reactive surfaces.
In this work these groups were conjugated with the amino acid tryptophan. In another approach, SH-groups were chemically inserted in order to extend the spectrum of modifiable groups. The amount of modifiable carboxylic groups was further evaluated by potentiometric titration in order to evaluate the efficiency of S-layer proteins to work as matrix for bioconjugations. The results proved that S-layer proteins can work as matrizes for the conjugation of different molecules. The advantage of using chemical modification methods over genetic methods lies in its versatile usage enabling the attachment of biomolecules as well as fluorescence dyes and inorganic molecules. Together with their self-assembling properties S-layer proteins are suitable as targets for bioconjugates, thus enabling a nanostructuring and bio-functionalization of surfaces which can be used for different applications like biosensors, filter materials or (bio)catalytic surfaces.

Keywords: EDC; Modified Surface-layer proteins; Potentiometric titration; Modification rate; Bio-functionalization of surfaces; Chemical modification; Immobilization

Downloads

Permalink: https://www.hzdr.de/publications/Publ-21020
Publ.-Id: 21020


Atomistic modeling of ion-beam induced processes in Si and Ge

Liedke, B.; Heinig, K.-H.; Böttger, R.; Anders, C.; Urbassek, H.; Facsko, S.; Posselt, M.

Modeling of ion-beam induced processes includes ion beam – solid interactions as well as solid state physics. Thus, a rather broad field of physics has to be considered which can be approached using a large variety of modeling techniques. Atomistic models of ion-induced materials modification can be classified as follows: (i) including the ion-induced collision cascade, molecular dynamics (MD) simulations provide the most accurate way to simulate a single or a few ion impacts. The predictive power of MD simulations depends on the accuracy of the interatomic potentials in the wide energy range from meV to keV. (ii) For energetic ions, with the Binary Collision Approximation (BCA) properties like the ion range can be predicted with similar precision like with MD, but thermally activated processes following the collision cascade cannot be simulated; (iii) kinetic Monte-Carlo (KMC) simulations can be used very efficiently and with an acceptable accuracy for modelling of diffusion, relaxation and precipitation of defects and impurities.
Here we will address all of three types of atomistic simulations: (i) With our recently developed TRIDER program, which unifies the BCA and KMC methods [1], low-energy irradiation of a-Si surface has been accurately simulated, in particular the rotation of self-organized surface ripples with the angle of ion incidence. (ii) The BCA, KMC and MD simulation methods have been employed to study the surface stability of Ge and Si under irradiation with heavy ion. [2]. KMC simulations show that the hole-like and sponge-like morphologies results from the vacancy kinetics. The origin of dot-like patterns after irradiation with poly-atomic ions or at elevated substrate temperatures has been revealed by a model based on TRIM and MD simulations: Single ion impacts induce tiny, short-living melt pools. Each meltpool generates a local surface minimization which leads, together with the high ion erosion rate, to a pronounce surface instability. (iii) Swift-heavy-ions change drastically the shape of spherical nanoparticles embedded in silica: Metal clusters become rods, whereas e.g. Ge clusters form to discs. [3]. A model has been developed which is based on transient melting of the nanoparticles by single ion hits, and the volume change of the metal/Ge upon this phase transition. Our KMC program has been modified to simulate the ion-induced shape evolution of different elements for different ion species, energies and fluences even quantitatively, where finally just one fit parameter describes all experiments.
References:
1. Liedke, B.; Heinig, K.-H.; Möller, W.; Nucl. Instr. Meth. B 316, 56 (2013)
2. Böttger, R.; Heinig, K.-H.; Bischoff, L.; Liedke, B.; Facsko, S.; Appl. Phys. A 113, 53 (2013)
3. Schmidt, B.; Heinig, K.-H.; Mücklich, A.; Akhmadaliev,; Nucl. Instr. Meth. B 267, 1345 (2009)

Keywords: molecular dynamics; kinetic Monte-Carlo; TRIM; TRIDER; surface patterning; ion-beam shaping

Related publications

  • Invited lecture (Conferences)
    Swift Heavy ions in Materials Engineering and Characterization (SHIMEC 2014), 14.-17.10.2014, New Delhi, India

Permalink: https://www.hzdr.de/publications/Publ-21019
Publ.-Id: 21019


First Investigation of the two-phase oxidation of isobutane by a micro reactor.

Willms, T.; Kryk, H.

The micro reactor, the principal structure and components of the lab facility and the most important challenges of its construction are presented. As a proof of functionality, the first two-phase flow oxidation experiment of isobutane to t-Butyl hydroperoxide (TBHP) in a micro reactor was accomplished. Challenges of the gas chromatographic analytics (GC) of the reaction are discussed.
The chromatogram of the reaction mixture obtained by the first experiment has been interpreted.
Furthermore a device has been developed to allow the analysis of the gaseous products in a high pressure steel crucible for Differential scanning calorimetry (DSC).
It has been used to analyze the gases resulting from the decomposition of TBHP at higher temperatures by GC.

Keywords: micro reactor; isobutane oxidation; gas chromatography

  • Lecture (others)
    Halbjahresmeeting Helmholtz-Energie-Allianz, 09.-10.10.2014, Hamburg, Duetschland

Permalink: https://www.hzdr.de/publications/Publ-21018
Publ.-Id: 21018


Untersuchung von Kopplungseffekten und magnetischer Anisotropie in Fe3Si-Dreifachlagen mittels ferromagnetischer Resonanz

Schneider, T.

Im Rahmen dieser Arbeit wurden Einzelfilme und Dreifachlagen bestehend aus Fe3Si mittels ferromagnetischer Resonanz untersucht. Das Hauptaugenmerk lag hierbei auf der Bestimmung der Interlagenaustauschkopplungskonstanten J1 . Außerdem sollen g-Faktor und Anisotropiekonstanten bestätigt werden. Hierbei kann aufgrund des breitbandigen Aufbaus auf die Linienbreite der Signale über einen großen Frequenzbereich eingegangen werden. Bei dem verwendeten Probensystemen Fe3Si/MgO/Fe3Si/MgO/GaAs(001) wurde die Dicke der MgO-Schicht variiert, um einerseits den Einfluss der verschiedenen Lagen aufeinander und andererseits das gekoppelte Verhalten zu untersuchen. Dabei konnte festgestellt werden: (i) Die in dieser gemessenen Parameter stimmen gut mit vorher bestimmten überein. (ii) Das dynamische Verhalten wird durch Zwei-Magnonen-Streuung und Einflüsse der Mosaizität geprägt. (iii) Die Kopplungkonstante J1 wurde bei beiden verwendeten MgO-Zwischenschichtdicken bestimmt. (iv) Der Ursprung der uniaxialen Anisotropie ist durch Grenzflächeneffekte zwischen Fe3Si/GaAs und Fe3Si/MgO bedingt.

Keywords: Interlayer exchange coupling; FMR; Fe3Si

Related publications

  • Bachelor thesis
    TU Dresden, 2013
    Mentor: Fassbender, Jürgen
    54 Seiten

Permalink: https://www.hzdr.de/publications/Publ-21017
Publ.-Id: 21017


Investigation of interlayer exchange coupling and magnetic anisotropy of Fe3Si-trilayers using ferromagnetic resonance

Schneider, T.; Hübner, R.; Lenz, K.; Lindner, J.; Fassbender, J.

In this thesis, magnetic properties of single Fe3Si-films und trilayer structures are investigated by ferromagnetic resonance. Using this technique, it is possible to determine the magnetic anisotropy energy and interlayer exchange coupling J1 in absolute units. Further on, values for the magnetic anisotropy constants and the g-factor should be confirmed in this work. Due to the use of a broad band setup, it is possible to investigate the linewidth of the measured signals. The measurements are carried out using structures containing two Fe3Si films separated by one MgO-layer. The MgO thickness is varied to obtain two different samples. In one of these samples both layers can be considered as decoupled. In the second sample both layers are coupled due to interlayer exchange coupling (IEC). The main results of this thesis are: (i) The obtained parameters for magnetic anisotropy and the g-factor match former results quite well. (ii) The investigation of the resonance linewidth shows contributions of two-magnon-scattering and inhomogeneous broadening due to the mosaicity. (iii) For both used layer thicknesses the interlayer exchange coupling can always be neglected. (iv) The origin of the uniaxial anisotropy is given by effects at the interfaces between the Fe3Si and MgO or the Fe3Si and GaAs layers.

Keywords: Interlayer exchange coupling; FMR; Fe3Si

Related publications

  • Lecture (others)
    Gruppenseminar AG Wende, 14.01.2014, Duisburg, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-21016
Publ.-Id: 21016


Taktsynchronisierung und Zeitmessung in einem verteilten Datenerfassungssystem

Födisch, P.; Sandmann, J.; Lange, B.; Kaever, P.

Die Zeitmessung mit einem verteilten Datenerfassungssystem erfordert die Synchronisierung der einzelnen Teilsysteme. Eine dedizierte Taktverteilung ist für diese Anwendung eine einfache und präzise Lösung, erfordert aber zusätzlichen Installationsaufwand und bereitet vor allem bei der Skalierung des Gesamtsystems Probleme. Stattdessen können auch die vorhandenen Datenlinks der einzelnen Module für eine Rückgewinnung des Systemtaktes verwendet werden. Hier wird gezeigt, wie mit industriellen Komponenten (FPGA und Gigabit-Ethernet PHY) die Synchronisierung auf eine gemeinsame Taktfrequenz realisiert wird. Der Abgleich der Uhren erfolgt anschließend protokollbasiert über die Ethernet-Schnittstelle. Es werden die hardwareseitigen Anforderungen, die Umsetzung sowie die experimentellen Ergebnisse vorgestellt. Das implementierte System erreicht Genauigkeiten im Sub-Nanosekunden Bereich mit einer 1000BASE-T Punkt-zu-Punkt Verbindung.

  • Open Access Logo Contribution to proceedings
    105. Tagung der Studiengruppe elektronische Instrumentierung im Frühjahr 2014, 10.-12.03.2014, Geesthacht, Deutschland, Hamburg: Verlag Deutsches Elektronen-Synchrotron, 978-3-935702-85-0, 238-242

Downloads

Permalink: https://www.hzdr.de/publications/Publ-21015
Publ.-Id: 21015


Ferromagnetic InMnAs with perpendicular magnetic anisotropy synthesized by ion implantation

Yuan, Y.; Khalid, M.; Wang, Y.; Weschke, E.; Skorupa, W.; Helm, M.; Zhou, S.

Due to the great potential application in spintronic device, III-Mn-V dilute magnetic semiconductors (DMS) have drawn significant attention during the past two decades. Although of the model member GaMnAs (mostly be prepared by low-temperature molecule beam epitaxy: LTMBE) have been comprehensively investigated, the challenge for preparing other DMS such as InMnAs still exists. Therefore, the understanding about the full family III-Mn-V DMS is far from satisfaction. Ferromagnetic DMS GaMnAs and GaMnP were firstly obtained alternatively by Mn ion implantation and pulsed laser annealing [1, 2], a method rather than LTMBE. The Mn concentration and depth could be controlled through implanting fluence and implanting energy, respectively. When annealing under pulsed laser, due to high temperature gratitude, the large regrowth velocity could trap Mn atoms into the substitutional sites, which is quite effective to obtain high quality laser with less defects which can act as double donors and be harmful to ferromagnetism.
We prepared ferromagnetic InMnAs with different Mn concentrations by ion implantation and pulsed laser annealing. The formation of an epitaxial InMnAs on InAs substrates was proved by Rutherford Backscatting/Channeling and X-ray diffraction. The Curie temperature could be as high as around 75 K when the Mn concentration is around 8%. The out-of-plane direction is the easy axis, originating from the compreassive strain along the perpendicular direction, as expected from the case of GaMnAs [3, 4]. The perpendicular anisotropy is particularly useful for exploiting spintronics functionalities, such as current induced magnetization switching.

[1] M. A. Scarpulla et al. Phys. Rev. Lett., 95, 207204 (2005)
[2] M. A. Scarpulla et al. Appl. Phys. Lett., 82, 1251 (2003)
[3] Shengqiang Zhou et al. APEX, 5, 093007 (2012)
[4] K. W. Edmonds et al. Phys. Rev. Lett., 96 117207 (2006)

Keywords: InMnAs; Ferromagnetic Semiconductors; Ion implantation

Related publications

  • Poster
    International Conference on Ion Beam Modification of Materials, 14.-19.09.2014, leuven, Belgium
  • Lecture (Conference)
    DPG Frühjahrstagung 2015, 15.-20.03.2015, Berlin, Germany

Permalink: https://www.hzdr.de/publications/Publ-21014
Publ.-Id: 21014


Laser-Induced Spectroscopy of Actinides – From simple metal systems to species in living cells

Geipel, G.; Viehweger, K.

Application of laser-induced methods allow the direct determination of uranium speciation at extremely low concentrations. First tunable solid state laser in an actinide chemistry lab was installed in 1993 in Dresden-Rossendorf under Heino Nitsche’s directorship. Later the installation of the first fs-laser system allowed us to study the interaction of organic compounds with actinides.
U(VI) released anthropogenically, e.g. through mining activities, can be accumulated for instance in plants and consequently can enter further parts of the food chain. Uranium as a redox-active heavy metal can cause also various redox imbalances in plant cells.
Recently we have shown that uranium can be taken up by plant cells. Fractionation studies showed that the uranium was present in nearly all cell compartments.
One of the major remaining questions concerns to the ways of uranium uptake. Recently published work proposed that the uranium uptake is influenced by the iron uptake. As it is known that the iron uptake occurs via reduction of the iron(III) into iron(II), we conclude that uranium uptake should also by accompanied by a redox process.
The evaluation of Laser-Induced Photoacoustic Spectra (LIPAS) in the wavelength range 620 nm to 680 nm gave evidence for the formation of both reduced oxidation states in the media studied. The uranium(V) is assigned to an absorption at around 637 nm, while uranium(IV) absorbs light at ~660 nm.

Keywords: Laser-Induced Spectroscopy; uranium, plants

  • Invited lecture (Conferences)
    ACS Annual Spring Meeting Denver, 22.-26.03.2015, Denver, USA

Permalink: https://www.hzdr.de/publications/Publ-21013
Publ.-Id: 21013


Mikrobiologische Verfahren in der Hydrometallurgie

Kutschke, S.; Raff, J.; Pollmann, K.

Die Vorbereitung von Erzen zur Verhüttung kann mit hydrometallurgischen Verfahren erfolgen. Dazu zählen Extraktionsverfahren mit wässrigen Lösungen, die Flotation, Sink-Schwimmtrennung und Fällungen. Diese Verfahren finden häufig in äußerst aggressiver Umgebung statt. Für einige dieser Prozesse stehen interessante Alternativen zur Verfügung. Die untersuchten und dargestellten Methoden werden durch Mikroorganismen oder ihre Stoffwechselprodukte unterstützt.
Seit 1980 wird Bioleaching im industriellen Maßstab in Chile eingesetzt. Zur Laugung trägt in diesen Anlagen die Oxidation der sulfidischen Erze durch Acidithiobacillus sp. bei. Oxidische oder carbonatische Erze können auf diesem Weg nicht gelaugt werden. Untersuchungen zeigen, dass in diesen Fällen der Einsatz von Pilzen und Bacillus sp. zur Freisetzung von Metallen aus diesen Erzen beiträgt. Dabei spielen die von Mikroorganismen gebildeten organischen Säuren eine entscheidende Rolle.
Für Sink- Schwimmtrennungen und Fällungen können weitere biologische Komponenten verwendet werden. Zum einen sind es Phagen mit speziell gestalteten Oberflächen. Diese Oberflächen können so konstruiert werden, dass sie spezifisch für einzelne Metalle sind. Durch weitere Variationen der Phagenoberfläche kann die Hydro¬phobi¬zität der mikroskopisch kleinen Partikel an die Anforderungen zum Beispiel einer Flotation angepasst werden. Zum anderen sind es calciumbindende Proteine, die über spezifische und unspezifische Bindungsstellen verfügen und darüber einzelne industrierelevante Metalle sehr selektiv binden können. Die letzten beiden Ideen werden in anderen Bereichen bereits genutzt, zeigen aber auch ein sehr hohes Anwendungspotential bei der Aufbereitung von Erzen.

  • Lecture (Conference)
    Jahrestagung 2013 „Aufbereitung und Recycling“, 13.-14.11.2013, Freiberg, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-21012
Publ.-Id: 21012


Tilting column and 3D pattern formation during ion beam assisted growth of carbon:nickel nanocomposite films

Krause, M.; Buljan, M.; Möller, W.; Facsko, S.; Zschornak, M.; Wintz, S.; Heller, R.; Endrino, J. L.; Gemming, S.

Ion assistance provides unique opportunities to influence the microstructure of growing films due to energy and momentum transfer. Here, ion effects on the microstructure of C:Ni nanocomposite thin films grown at RT to 500°C by ion-beam sputtering with assisting oblique incidence angle Ar+ ion beam irradiation (50 – 130 eV) are studied by SEM, (c)AFM, TEM, GISAXS, and TRI3DYN simulations. Two types of ordered metallic nanostructures in an amorphous carbon matrix are identified and characterized: i) tilted parallel columns [1] and ii) rippled, periodic three-dimensional nanoparticle arrays [2]. For the former one, the tilt angle and diameter of the nanocolumns are controlled by the deposition parameters. Ion-enhanced diffusivity and ion-induced surface drift are responsible for the tilted column microstructure. Complex secondary structures like chevrons with partially epitaxial junctions are grown by sequential deposition. For a given composition of the depositing flux, the transition from the columnar growth to the 3D pattern formation regime as a function of the assisting ion energy is demonstrated. The 3D pattern is attributed to the transfer of compositionally modulated surface ripples into the bulk of the C:Ni thin film. The essential experimental features are reproduced by three-dimensional binary collision computer simulations. This agreement points to ion-induced preferential displacements as the driving force for the 3D pattern formation.

Keywords: Nanocomposites; Ion assistance; pattern formation

Related publications

  • Poster
    14th International Conference on Plasma Surface Engineering, 15.-19.09.2014, Garmisch-Partenkirchen, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-21011
Publ.-Id: 21011


P1311 - Anordnung zur schnellen Elektronenstrahl-Röntgencomputertomographie

Barthel, F.

Aufgabe der Erfindung ist es, eine Anordnung zur Elektronenstrahl-Röntgen-Computertomographie anzugeben, die ohne die erhebliche axiale Ausdehnung des Elektronenstrahlers auskommt, und weitgehend auf elektronenoptische Strahlführungselemente verzichtet. Die Erfindung umfasst, dass ein Röntgendetektorbogen (6) und das Target (4) um den Untersuchungsquerschnitt innerhalb einer Bestrahlungsebene angeordnet sind, und ein im Elektronenstrahlerzeuger generierter Elektronenstrahl in den Durchflutungsbereich einer oder mehrerer Längsspulen radial eingebracht wird, und durch das Magnetfeld auf eine Kreisbahn gezwungen wird. Durch periodisches Verstellen der Feldstärke wird der Radius der Kreisbahn vergrößert, was dazu führt, dass der Elektronenstrahl das Target (4) in einem tangential wandernden Brennfleck (7) trifft. Vom das Target umgebenden Röntgendetektor(6) werden Durchstrahlungsprojektionen des in der Mitte der Anordnung befindlichen Objekts (8) aufgenommen. Der Elektronenstrahlerzeuger (1) kann sowohl innerhalb als auch außerhalb der Längsspulen (3) angeordnet sein. Darüber hinaus kann die Target- und Röntgendetektorebene mit oder ohne Axialversatz angeordnet sein.

  • Patent
    DE102013206252 - Offenlegung 09.10.2014, Nachanmeldung WO, EP, JP, US

Permalink: https://www.hzdr.de/publications/Publ-21010
Publ.-Id: 21010


Tetrahedral amorphous carbon coatings for friction reduction of the valve train in internal combustion engines

Götze, A.; Makowski, S.; Kunze, T.; Hübner, M.; Zellbeck, H.; Weihnacht, V.; Leson, A.; Beyer, E.; Joswig, J.-O.; Seifert, G.; Abrasonis, G.; Posselt, M.; Fassbender, J.; Gemming, S.; Krause, M.

Tetrahedral amorphous carbon (ta-C) is studied as a tribological coating for the valve train’s exhaust camshaft of a combustion engine. The coated camshafts were installed in a non-fired engine, tested in a computerized component test bench under practice-relevant conditions and analyzed for their frictional behavior. A notable reduction of the valve train’s drive torque on the test bench is demonstrated. Namely, on a roller cam system with ta-C coated camshaft the reduction is about 15% in average within the entire engine-map. The ta-C coatings were extensively characterized under laboratory conditions before and after the investigations on the test bench. Mechanistic understanding of the tribological behavior of ta-C coatings under dry or starving lubricated conditions was achieved by atomistic simulations of the tribological contact. Industrial utilization of these results would lead to a significant increase of the energy efficiency of combustion engines.

Keywords: tribological coatings; tetrahedral amorphous carbon (ta-C); combustion engines; atomistic simulations

Related publications

Permalink: https://www.hzdr.de/publications/Publ-21009
Publ.-Id: 21009


Heterogeneous nucleation in cfd simulation of flashing flows in converging-diverging nozzle

Janet, J. P.; Liao, Y.; Lucas, D.

Flashing flow is an important industrial phenomenon present in many contexts. In flashing flow, a liquid boils in response to a depressurization. CFD is used to simulate the complex two-phase nature of flow, but nucleation is frequently neglected in these simulations. In this work, 3 models for wall nucleation in flashing flow are tested and compared against experimental data. The models are implemented as source terms at the walls only, consistent with experimental observations. The model proposed by Blinkov et al. (1993) is found to provide the best agreement with no parameter fitting. Axial properties and mass flow can be well predicted, but matching the radial profiles requires the addition of a bulk heterogeneous nucleating term, which is small in comparison to wall nucleation and has little impact on average properties but has a large effect on the vapour structure. Additionally, other effects such as coalescence influencing bubble size should be taken into account, since radial distribution of the vapour phase depends directly on the bubble size.

Keywords: Flashing; Nozzle; CFD; Nucleation; Depressurization

Permalink: https://www.hzdr.de/publications/Publ-21008
Publ.-Id: 21008


Imaging systems for dose monitoring in particle therapy

Fiedler, F.

no abstract available

  • Invited lecture (Conferences)
    Interdisciplinary Symposium ''Precision, Speed and Flexibility: New radiation detection methods for ion beam radiotherapy, 23.-25.10.2014, Heidelberg, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-21007
Publ.-Id: 21007


Particle Therapy Positron Emission Tomography (PT-PET) for Treatment Verification

Fiedler, F.

Radiation therapy is an important treatment modality in cancer therapy. New radiation species, like protons and light ions have the potential of increasing tumor conformality of irradiation. Because of the way these particles deposit their energy on their path through tissue they allow for an increased dose deposition in the tumor volume and reduce the damage of the surrounding normal tissue.
High precision radiotherapy treatment requires efficient quality assurance techniques. Even small changes in the irradiated volume will lead to a mismatch of the deposited dose maximum and the tumor. This causes missing dose in the tumor volume and potential damage to normal tissue. Therefore, a treatment verification system is highly desirable. Between 1997 and 2008, the in-beam Positron Emission Tomography (PET) method was used at the GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany to monitor the dose delivered by 12C beams [1]. This method makes use of the β+-activity produced via nuclear interactions between the therapeutic beam and the patient tissue. The results and experiences of the clinical application of in-beam PET for carbon ions GSI will be shown. Based on this experience several approaches to improve the significance of the result have been studied.
Since the dose delivery is evaluated by means of a comparison between measured and simulated data a reliable prediction of β+-activity is crucial. To model the positron emitter production accurately, cross sections for all possible nuclear reactions occurring in the tissue during irradiation which lead to positron emitters are required. Since these cross sections are available only for a few reaction channels in the required energy range, a novel approach for estimating the positron emitter production from experimental data is introduced [2].
Up to now the comparison of the distributions is performed by well-trained observers (clinicians, physicists). This process is very time consuming and low in reproducibility. Therefore, a semi-automatic method has been developed evaluating the range and including a cavity filling detection algorithm. System inherent uncertainties are handled by means of a statistical approach [3, 4].
The Particle Therapy (PT)- PET method has been approved for static tumors under clinical conditions. However, also for intra-fractionally moving targets, the 4D simulation [5] as well as the 4D reconstruction [6] of PT-PET data has been established. By means of dedicated 4D-PET experiments the results of the comparison between measured and anticipated activities have been investigated.
References
[1] W. Enghardt, et al., Nucl. Instr. Meth A 525, 2004.
[2] M. Priegnitz, et al., IEEE Trans. Nucl. Sci. 59, 2012.
[3] S. Helmbrecht, et al., Phys. Med. Biol. 57, 2012.
[4] P. Kuess, et al., Med. Phys. 39, 2012.
[5] K. Laube, et al., Phys. Med. Biol. 58, 2013.
[6] K.Stützer, Phys. Med. Biol. 58, 2013.

  • Invited lecture (Conferences)
    Workshop on Range Assessment and Dose Verification in Particle Therapy, 29.-30.09.2014, Dresden, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-21006
Publ.-Id: 21006


Identifizierung der Oberflächenkomplexe von Radionukliden an Mineralphasen – Schwingungsspektroskopische Echtzeitexperimente

Foerstendorf, H.

Für eine verlässliche Beschreibung des Migrationsverhaltens von Radionukliden in der Umwelt ist unter anderem eine genaue Kenntnis der molekularen Prozesse an Mineraloberflächen in Aquiferen unverzichtbar. Unter den spektroskopischen Methoden, die sich auf diesem Forschungsfeld etabliert haben, hat sich die in situ Infrarotspektroskopie für Untersuchungen von Grenzflächenprozessen gelöster Schwermetallionen an festen Mineralphasen als besonders wertvoll erwiesen, da aus den schwingungsspektroskopischen Daten komplementäre Informationen auf molekularer Ebene erhalten werden. In diesem Vortrag soll ein Überblick über aktuelle Ergebnisse der Sorptionsreaktionen von Uran(VI) und Selen(VI) an Metalloxiden gegeben werden.
Mit Hilfe der in situ IR Spektroskopie lassen sich die Sorptions- und Desorptionsprozesse in Echtzeit unter umweltrelevanten Bedingungen untersuchen und somit können Rückschlüsse über die Art der Oberflächenkomplexe über die Reversibilität der Sorptionsreaktionen gezogen werden. Für das Uran wurde beispielsweise eine signifikant unterschiedliche Oberflächenkomplexierung an verschiedenen eisenhaltigen Mineralphasen beobachtet. Zudem lassen sich die Bildung ternärer Oberflächenkomplexe des Urans mit Carbonat- oder Phosphatliganden beobachten, womit weitere Einblicke in den Ablauf komplexerer Sorptionsprozesse gewonnen werden.
Das Selenatanion (SeVIO4 2−) zeigt generell schwache, überwiegend elektrostatische Wechselwirkungen (Physisorption) mit Mineralphasen im neutralen pH Bereich. Es hat sich jedoch gezeigt, dass diese Wechselwirkungen, die sog. außersphärische Komplexierung, auf verschiedenen Arten von Oberflächenkomplexen basieren kann. Auf Grund der hohen Selektivität der IR Spektroskopie bezüglich der Molekülsymmetrie, zeigen die Sorptionsexperimente des Se(VI) mit verschiedenen Mineralphasen die Bildung zweier unterschiedlicher Arten außersphärischer Komplexe.

  • Lecture (others)
    Institutsseminar des Instituts für Kernchemie, Universität Mainz, 02.02.2015, Mainz, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-21005
Publ.-Id: 21005


Hyperdoping Si with chalcogen: solid vs. liquid phase epitaxy

Liu, F.; Prucnal, S.; Gao, K.; Khalid, M.; Skorupa, W.; Helm, M.; Zhou, S.

Chalcogen-hyperdoped silicon shows potential applications in silicon-based infrared photodetectors and intermediate band solar cells. Due to the low solid solubility limits of chalcogen elements in Si, the materials were previously only realized by femtosecond or nanosecond laser annealing of implanted Si or bare Si in certain background gases. The high energy density deposited on the Si surface renders it into a liquid phase and the fast recrystallization velocity allows trapping of S/Se/Te into the Si matrix. However, this method encounters a problem of S/Se/Te surface segregation. In this Letter, we propose a solid phase processing by flash lamp annealing in the millisecond range, which is in between the conventional rapid thermal annealing and pulsed laser annealing. Flash lamp annealed Se-implanted Si shows a substitutional rate of more than 70% with the implanted concentration up to 1-2%. The resistivity is lower and the carrier mobility is higher than those of laser annealed samples. Our results show that flash lamp annealing is superior laser annealing in preventing surface segregation and in allowing scalability.

Keywords: Chalcogen elements; pulsed laser annealing

Related publications

  • Poster
    E-MRS 2014 FALL MEETING, 15.-18.09.2014, Warsaw, Poland

Permalink: https://www.hzdr.de/publications/Publ-21003
Publ.-Id: 21003


Hyperdoping Si with deep level impurities by ion implantation and short-time annealing

Liu, F.; Prucnal, S.; Gao, K.; Khalid, M.; Skorupa, W.; Helm, M.; Zhou, S.

Impurities play an important role in determining the electrical, optical and structural properties of semiconductors. It has been proposed that deep level impurities, such as Titanium (Ti) or chalcogens in Si, can induce an impurity band inside the bandgap at high enough doping concentration [1, 2]. The insertion of an impurity band can enhance the absorption at a broader wavelength range and leads to applications in the so-called intermediate band solar cell [3]. In the present work, we use ion implantation combined with short-time annealing to realize hyperdoping of Ti and chalcogens in Si. The structural, electrical and optical properties were determined by X-raydiffraction and Rutherford backscattering spectroscopy/channeling, electrical transport measurement and Raman spectroscopy. Analysis shows that the implanted Si layer can be recrystallized by both flashlamp and pulsed laser annealing. Ti ions mainly occupy the interstitial sites, while S and Se ions substitute the Si in the lattice. The consequent changes in electrical properties are also observed.

[1] J. Olea, G. González-Díaz, D. Pastor, I. Mártil, A. Martí, E. Antolín, and A. Luque, J. Appl. Phys. 109, 063718 (2011).
[2] Brion P. Bob, Atsushi Kohno, Supakit Charnvanichborikarn, Jeffrey M. Warrender, Ikurou Umezu, Malek Tabbal, James S. Williams, and Michael J. Aziz J. Appl. Phys. 107, 123506 (2010)
[3] A. Luque and A. Martí, Phys. Rev. Lett. 78, 5014 (1997).

Keywords: Ion implantation; deep level impurities

Related publications

  • Lecture (Conference)
    ION, 23.-26.06.2014, Kazimierz Dolny, Poland

Permalink: https://www.hzdr.de/publications/Publ-21002
Publ.-Id: 21002


Hyperdoping Si with deep level impurities by ion implantation and short-time annealing

Liu, F.; Prucnal, S.; Gao, K.; Khalid, M.; Skorupa, W.; Helm, M.; Zhou, S.

Impurities play an important role in determining the electrical, optical and structural properties of semiconductors. It has been proposed that deep level impurities, such as Titanium (Ti) or chalcogens in Si, can induce an impurity band inside the bandgap at high enough doping concentration [1, 2]. The insertion of an impurity band can enhance the absorption at a broader wavelength range and leads to applications in the so-called intermediate band solar cell [3]. In the present work, we use ion implantation combined with short-time annealing to realize hyperdoping of Ti and chalcogens in Si. The structural, electrical and optical properties were determined by X-raydiffraction and Rutherford backscattering spectroscopy/channeling, electrical transport measurement and Raman spectroscopy. Analysis shows that the implanted Si layer can be recrystallized by both flashlamp and pulsed laser annealing. Ti ions mainly occupy the interstitial sites, while S and Se ions substitute the Si in the lattice. The consequent changes in electrical properties are also observed.

[1] J. Olea, G. González-Díaz, D. Pastor, I. Mártil, A. Martí, E. Antolín, and A. Luque, J. Appl. Phys. 109, 063718 (2011).
[2] Brion P. Bob, Atsushi Kohno, Supakit Charnvanichborikarn, Jeffrey M. Warrender, Ikurou Umezu, Malek Tabbal, James S. Williams, and Michael J. Aziz J. Appl. Phys. 107, 123506 (2010)
[3] A. Luque and A. Martí, Phys. Rev. Lett. 78, 5014 (1997).

Keywords: Ion implantation; deep level impurities

Related publications

  • Poster
    Deutsche Physikalische Gesellschaft, 30.03.-04.04.2014, Dresden, Germany

Permalink: https://www.hzdr.de/publications/Publ-21001
Publ.-Id: 21001


Ferromagnetic GaMnP prepared by ion implantation and pulsed laser annealing

Y, Yuan.

We present the magnetic, transport and structural properties of GaMnP with different Mn concentrations prepared by ion implantation and pulsed laser annealing. The Curie temperature increases with Mn concentration and the samples show in-plane magnetic anisotropy due to the in-plane compressive strain in the GaMnP layer. Anomalous Hall effect and negative magnetoresistance are observed, indicating the carrier mediated nature of the ferromagnetism in GaMnP. According to the micro-Raman spectroscopy data after pulsed laser annealing the implanted layer has been fully recrystallized and the carrier concentration (hole) increases with Mn concentration.

Keywords: Ferromagnetic semiconductors; GaMnP; Ion Implantation; Pulsed laser annealing

Related publications

  • Lecture (Conference)
    IEEE International Magnetics Conference, 04.-08.05.2014, Dresden, Germany

Permalink: https://www.hzdr.de/publications/Publ-21000
Publ.-Id: 21000


Possible defect-induced ferromagnetism in Cr doped SiC single crystals

Liu, Y.; Zhou, S.; Wang, G.; Wang, S.; Sun, W.; Chen, X.

Defect-induced ferromagnetism (FM) was realized in non-magnetic materials, such as highly oriented pyrolytic graphite (HOPG), HfO2, and Li doped ZnO. Recently, such FM was also found in SiC by doping, neutron bombardment and ion implantation. As now SiC crystals are available in microelectronic grade, the good crystallinity makes SiC a kind of potential materials for spin electronics. However, one problem in defect-induced FM in bulk SiC crystals is that the magnetization induced by defects is not strong, which might increase the difficulty for the further study. Here, we demonstrate the enhanced defect-induced FM in Cr doped SiC. The 4H-SiC single crystals were grown by physical vapor transport method. The SiC sample is diamagnetic when the nominal doping density of Cr is below 0.5%, whereas the room-temperature FM reaching 1.5 x 10-3 emu/g is observed in SiC with 1% Cr doping. However, the actual Cr concentrations in magnetic SiC measured by secondary ion mass spectroscopy are nearly equal in both the nominal 0.5% and 1% samples, so Cr doping is not the origin of the FM. After annealing, the decreased magnetization suggests that the FM is closely associated with defects. However, we can not distinguish the defect types by positron annihilation lifetime spectroscopy or photoluminescence. The defects with higher dimensions rather than divacancies are proposed to induce the FM in Cr doped SiC. More efforts are needed to clarify this puzzling phenomenon.

Keywords: defect-induced ferromagnetism; SiC; Cr doping; semiconductors

  • Poster
    The 19th International Conference on Ion Beam Modification of Materials (IBMM 2014), 14.-19.09.2014, Leuven, Belgium

Permalink: https://www.hzdr.de/publications/Publ-20999
Publ.-Id: 20999


Possible defect-induced ferromagnetism in Cr doped SiC single crystals

Liu, Y.; Zhou, S.; Wang, G.; Wang, S.; Sun, W.; Chen, X.

Defect-induced ferromagnetism (FM) was realized in non-magnetic materials, such as highly oriented pyrolytic graphite (HOPG), HfO2, and Li doped ZnO. Recently, such FM was also found in SiC by doping, neutron bombardment and ion implantation. As now SiC crystals are available in microelectronic grade, the good crystallinity makes SiC a kind of potential materials for spin electronics. However, one problem in defect-induced FM in bulk SiC crystals is that the magnetization induced by defects is not strong, which might increase the difficulty for the further study. Here, we demonstrate the enhanced defect-induced FM in Cr doped SiC. The 4H-SiC single crystals were grown by physical vapor transport method. The SiC sample is diamagnetic when the nominal doping density of Cr is below 0.5%, whereas the room-temperature FM reaching 1.5 x 10-3 emu/g is observed in SiC with 1% Cr doping. However, the actual Cr concentrations in magnetic SiC measured by secondary ion mass spectroscopy are nearly equal in both the nominal 0.5% and 1% samples, so Cr doping is not the origin of the FM. After annealing, the decreased magnetization suggests that the FM is closely associated with defects. However, we can not distinguish the defect types by positron annihilation lifetime spectroscopy or photoluminescence. The defects with higher dimensions rather than divacancies are proposed to induce the FM in Cr doped SiC. More efforts are needed to clarify this puzzling phenomenon.

Keywords: defect-induced ferromagnetism; SiC; Cr doping; semiconductors

  • Poster
    E-MRS 2014 SPRING MEETING, 26.-30.05.2014, Lille, France

Permalink: https://www.hzdr.de/publications/Publ-20998
Publ.-Id: 20998


XFM studies of plutonium dispersed in an arid environment

Ikeda-Ohno, A.; Johansen, M. P.; Payne, T. E.; Hotchkis, M. A. C.; Child, D. P.

The soil particles collected at a former British nuclear test site in Australia were investigated by synchrotron-based X-ray fluorescence microscopy (XFM), in order to determine the chemical speciation of radioactive nuclides retained in the particles. The results demonstrate that the particles contain a high concentration of Pu which derives from the original nuclear bomb material. The outcomes of this study would have a potential impact on the safety and environmental assessment associated with the former nuclear test sites.

Keywords: actinides; plutonium; synchrotron; X-ray fluorescence microscopy; environment; speciation

  • Lecture (Conference)
    12th International Conference on X-Ray Microscopy (XRM 2014), 26.-31.10.2014, Melbourne, Australia

Permalink: https://www.hzdr.de/publications/Publ-20997
Publ.-Id: 20997


Pages: [1.] [2.] [3.] [4.] [5.] [6.] [7.] [8.] [9.] [10.] [11.] [12.] [13.] [14.] [15.] [16.] [17.] [18.] [19.] [20.] [21.] [22.] [23.] [24.] [25.] [26.] [27.] [28.] [29.] [30.] [31.] [32.] [33.] [34.] [35.] [36.] [37.] [38.] [39.] [40.] [41.] [42.] [43.] [44.] [45.] [46.] [47.] [48.] [49.] [50.] [51.] [52.] [53.] [54.] [55.] [56.] [57.] [58.] [59.] [60.] [61.] [62.] [63.] [64.] [65.] [66.] [67.] [68.] [69.] [70.] [71.] [72.] [73.] [74.] [75.] [76.] [77.] [78.] [79.] [80.] [81.] [82.] [83.] [84.] [85.] [86.] [87.] [88.] [89.] [90.] [91.] [92.] [93.] [94.] [95.] [96.] [97.] [98.] [99.] [100.] [101.] [102.] [103.] [104.] [105.] [106.] [107.] [108.] [109.] [110.] [111.] [112.] [113.] [114.] [115.] [116.] [117.] [118.] [119.] [120.] [121.] [122.] [123.] [124.] [125.] [126.] [127.] [128.] [129.] [130.] [131.] [132.] [133.] [134.] [135.] [136.] [137.] [138.] [139.] [140.] [141.] [142.] [143.] [144.] [145.] [146.] [147.] [148.] [149.] [150.] [151.] [152.] [153.] [154.] [155.] [156.] [157.] [158.] [159.] [160.] [161.] [162.] [163.] [164.] [165.] [166.] [167.] [168.] [169.] [170.] [171.] [172.] [173.] [174.] [175.] [176.] [177.] [178.] [179.] [180.] [181.] [182.] [183.] [184.] [185.] [186.] [187.] [188.] [189.] [190.] [191.] [192.] [193.] [194.] [195.] [196.] [197.] [198.] [199.] [200.] [201.] [202.] [203.] [204.] [205.] [206.] [207.] [208.] [209.] [210.] [211.] [212.] [213.] [214.] [215.] [216.] [217.] [218.] [219.] [220.] [221.] [222.] [223.] [224.] [225.] [226.] [227.] [228.] [229.] [230.] [231.] [232.] [233.] [234.] [235.] [236.] [237.] [238.] [239.] [240.] [241.] [242.] [243.] [244.] [245.] [246.] [247.] [248.] [249.] [250.] [251.] [252.] [253.] [254.] [255.] [256.] [257.] [258.] [259.] [260.] [261.] [262.] [263.] [264.] [265.] [266.] [267.] [268.] [269.] [270.] [271.] [272.] [273.] [274.] [275.] [276.] [277.] [278.] [279.] [280.] [281.] [282.] [283.] [284.] [285.] [286.] [287.] [288.] [289.] [290.] [291.] [292.] [293.] [294.] [295.] [296.] [297.] [298.] [299.] [300.] [301.] [302.] [303.] [304.] [305.] [306.] [307.] [308.] [309.] [310.] [311.] [312.] [313.] [314.] [315.] [316.] [317.] [318.] [319.] [320.] [321.] [322.] [323.] [324.] [325.] [326.] [327.] [328.] [329.] [330.] [331.] [332.] [333.] [334.] [335.] [336.] [337.] [338.] [339.] [340.] [341.] [342.] [343.] [344.] [345.] [346.] [347.] [348.] [349.]