Prof. Dr. Joachim Wosnitza

Dresden High Magnetic Field Laboratory
Phone: +49 351 260 3524

Julia Blöcker

Secretary/ Administration,
Phone: +49 351 260 3527

Nicole Zimmermann

Phone: +49 351 260 3535


Publication: Origin of the quasi-quantized Hall effect in ZrTe5

Galeski, S. et al., Nat. Comm. 12 (2021), 3197

Publication: Electric Quadrupolar Contributions in the Magnetic Phases of UNi4B

Yanagisawa, T. et al., Phys. Rev. Letters 126 (2021), 157201

Publication: Experimental evidence for Zeeman spin–orbit coupling in layered antiferromagnetic conductors

Ramazashvili, R. et al., npj Quantum Materials 6 (2021), 11

Newsletter: Read the latest news from the four leading high field labs in Europe on the EMFL website.

EMFL News 1/2021 ©Copyright: EMFL

Video: EMFL - Science in High Magnetic Fields

Get more information


Research Highlights

Integral reefer containers ©Copyright: Wikimedia commons, Lizenz: CC0 1.0

How to cool more efficiently: Scientists break new ground in future refrigeration

In the journal Applied Physics Reviews, an international research team from the University of Barcelona, the Helmholtz-Zentrum Dresden-Rossendorf (HZDR), and TU Darmstadt report on possibilities for implementing more efficient and environmentally friendly refrigeration processes. For this purpose, they investigated the effects of simultaneously exposing certain alloys to magnetic fields and mechanical stress. Read more...

This work is published in:

Gràcia-Condal, A.; Gottschall, T.; Pfeuffer, L.; Gutfleisch, O.; Planes, A.; Mañosa, L.
Multicaloric effects in metamagnetic Heusler Ni-Mn-In under uniaxial stress and magnetic field
Applied Physics Reviews 7 (2020), 041406

Opened diamond anvil cell after experiment ©Copyright: Toni Helm

A topography of extremes: On the track of unconventional superconductivity, researchers are charting unknown territory

An international team of scientists from the Helmholtz-Zentrum Dresden-Rossendorf (HZDR), the Max Planck Institute for Chemical Physics of Solids, and colleagues from the USA and Switzerland have successfully combined various extreme experimental conditions in a completely unique way, revealing exciting insights into the mysterious conducting properties of the crystalline metal CeRhIn5. Read more...

This work is published in:

Helm, T.; Grockowiak, A. D.; Balakirev, F. F.; Singleton, J.; Betts, J. B.; Shirer, K. R.; König, M.; Förster, T.; Bauer, E. D.; Ronning, F.
Non-monotonic pressure dependence of high-field nematicity and magnetism in CeRhIn5
Nat. Comm. 11 (2020)1, 3482

Magnetspule in der Nahaufnahme ©Copyright: HZDR/Oliver Killig

“SuperEMFL” and “ISABEL”: European Union awards EMFL consortium 7.8 million Euro funding

Together with partners, the three European Magnetic Field Laboratories, joined in EMFL, have been awarded two EU Horizon 2020 grants: one to develop all-superconducting user magnets beyond 40 Tesla (2.9 million Euro), and one to expand EMFL’s industrial and user community (4.9 million Euro). With these grants, EMFL will strengthen its long-term sustainability and invest in the design of beyond-state-of-the-art magnets. Read more...

Landscape - The magnetocaloric effect: Brought into a magnetic field, the temperature of certain materials changes significantly. ©Copyright: HZDR/ Juniks

Tomorrow's coolants of choice

Later during this century, around 2060, a paradigm shift in global energy consumption is expected: we will spend more energy for cooling than for heating. Meanwhile, the increasing penetration of cooling applications into our daily lives causes a rapidly growing ecological footprint. New refrigeration processes such as magnetic cooling could limit the resulting impact on the climate and the environment. Researchers at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) and the Technische Universität Darmstadt have taken a closer look at today's most promising materials. The result of their work is the first systematic magnetocaloric material library with all relevant property data, which they have published now in the journal Advanced Energy Materials. Read more...

This work is published in:

T. Gottschall, K. P. Skokov, M. Fries, A. Taubel, I. Radulov, F. Scheibel, D. Benke, S. Riegg, O. Gutfleisch
Making a Cool Choice: the Materials Library of Magnetic Refrigeration 
Adv. Energy Mater. 9 (2019), 1901322

Crystal caesium copper chloride (Cs2CuCl4), short CCC ©Copyright: Detlev Müller / HZDR

Frustrated materials under high pressure

HZDR researchers modify magnetic behavior of exotic materials

People are not the only ones to be occasionally frustrated. Some crystals also show frustrations. They do so whenever their elementary magnets, the magnetic spins, cannot align properly. Cesium copper chloride (Cs2CuCl4) – or CCC for short – is a prime example of frustrated materials. In this crystal, the magnetic copper atoms reside on a triangular lattice and seek to align themselves antiparallel to each other. In a triangle, this does not work, however. This geometric frustration challenges physicists. After all, it promises the discovery of new magnetic phenomena that may even be used for quantum computers in the future. To better investigate and understand the underlying basics, physicists from the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) in Germany, supported by Japanese and American colleagues, can now control the magnetic coupling using an elegant measuring method. Read more...

This work is published in:

S. A. Zvyagin, D. Graf, T. Sakurai, S. Kimura, H. Nojiri, J. Wosnitza, H. Ohta, T. Ono, H. Tanaka
Pressure-tuning the quantum spin Hamiltonian of the triangular lattice antiferromagnet Cs2CuCl4
Nature Communications 10 (2019), 1064

Darstellung Spinell-Verbindung

Supersolidity in bond-frustrated MnCr2S4

The high-field phase diagram of MnCr2S4 suggests the existence of extended supersolid phases, in addition to superfluid and crystalline phases. A supersolid is an ordered solid which, due to quantum phenomena, has also superfluid properties and, under some conditions, can thus behave as a liquid without viscosity. This was found together with researchers from the Center for Electronic Correlations and Magnetism at the University of Augsburg. The work shows that magnetic systems under extreme conditions are prime candidates for the emergence of coherent quantum phenomena. Read more...

This work is published in:

V. Tsurkan, S. Zherlitsyn, L. Prodan, V. Felea, P. T. Cong, Y. Skourski, Z. Wang, J. Deisenhofer, H.-A. Krug von Nidda, J. Wosnitza, and A. Loidl
Ultra-robust high-field magnetization plateau and supersolidity in bond-frustrated MnCr2S4
Sci. Adv. 3, e1601982 (2017)

Observation of a Quantum Spin Liquid (Picture: Helmholtz-Zentrum Berlin)

Observation of a Quantum Spin Liquid

A novel and rare state of matter known as a quantum spin liquid has been empirically demonstrated in a single crystal of the compound calcium-chromium oxide by a team of Helmholtz scientists in Berlin and Dresden. What is remarkable about this discovery is that according to conventional understanding, a quantum spin liquid should not be possible in this material. A theoretical explanation for these observations has also been developed. This work deepens our knowledge of condensed matter and might also be important for future developments in quantum information. Read more...

This work is published in:

C. Balz, B. Lake, J. Reuther, H. Luetkens, R. Schönemann, T. Herrmannsdörfer, Y. Singh, A. T. M. Nazmul Islam, E. M. Wheeler, J. A. Rodriguez-Rivera, T. Guidi, G. G. Simeoni, C. Baines, H. Ryll
Physical realization of a quantum spin liquid based on a complex frustration mechanism
Nature Physics 12 (2016), 942-950

Giant magnetoresistance in niobium phosphor

With 300 Kilometers per Second to New Electronics

The material NbP exhibits an extremely large magnetoresistance that may be suitable for use in electronic components. This was discovered by a cooperation with researchers from the Max Planck Institute for Chemical Physics of Solids and from the High Magnetic Field Laboratory at the Radbound University in the Netherlands. Read more...

This work is published in:

C. Shekhar, A. K. Nayak, Y. Sun, M. Schmidt, M. Nicklas, I. Leermakers, U. Zeitler, Y. Skourski, J. Wosnitza, Z. Liu, Y. Chen, W. Schnelle, H. Borrmann, Y. Grin, C. Felser, B, Yan

Extremely large magnetoresistance and ultrahigh mobility in the topological Weyl semimetal candidate NbP

Nature Physics 11(2015), 645-649

Cosmic Jets Forming from a Young Star

Cosmic Jets of Young Stars Formed by Magnetic Fields

Astrophysical jets are counted among our Universe’s most spectacular phenomena: From the centers of black holes, quasars, or protostars, these rays of matter sometimes protrude several light years into space. Now, for the first time, an international team of researchers has successfully tested a new model that explains how magnetic fields form these emissions in young stars. Read more...

This work is published in:

B. Albertazzi, A. Ciardi, M. Nakatsutsumi, T. Vinci, J. Béard, R. Bonito, J. Billette, M. Borghesi, Z. Burkley, S. N. Chen, T. E. Cowan, T. Herrmannsdörfer, D. P. Higginson, F. Kroll, S. A. Pikuz, K. Naughton, L. Romagnani, C. Riconda, G. Revet, R. Riquier, H.-P. Schlenvoigt, I. Yu. Skobelev, A. Ya. Faenov, A. Soloviev, M. Huarte-Espinosa, A. Frank, O. Portugall, H. Pépin, J. Fuchs
Laboratory formation of a scaled protostellar jet by coaligned poloidal magnetic field
Science 346 (2014), 325-328

Schematic low-temperature phase diagram of CoCr2O4Unconventional high magnetic field phase in multiferroic material CoCr2O4

Together with colleagues from the Institute of Physics, University of Augsburg and the Institute of Applied Physics, Academy of Sciences of Moldova we have discovered a novel high-field phase in the multiferroic material CoCr2O4. This material is a possible candidate for applications.

This work is published in:

V. Tsurkan, S. Zherlitsyn, S. Yasin, V. Felea, Y. Skourski, J. Deisenhofer, H.-A. Krug von Nidda, J. Wosnitza, and A. Loidl
Unconventional Magnetostructural Transition in CoCr2O4 at High Magnetic Fields
Phys. Rev. Lett. 110, 115502 (2013)

Ein Einzeller macht es möglich: Ganz von selbst ordnen sich auf den Hüllproteinen von Sulfolobus acidocaldarius Goldatome zu magnetischen Nano-Clustern an.Strong Paramagnetism of Gold Nanoparticles Deposited on a protein Surface Layer

By means of magnetization measurements, we have observed unexpected large magnetic moments of Au nanoclusters with an average diameter of 2.6 nm which have been deposited on an organic template. This work has been done in cooperation with colleagues from Universidad de Zaragoza, the University of Granada, and the European Synchrotron Radiation Facility (ESRF) in Grenoble. Read more...

This work is published in:

J. Bartolomé, F. Bartolomé, L. M. García, A. I. Figueroa, A. Repollés, M. J. Martínez, F. Luis, C. Magén, S. Selenska-Pobell, F. Pobell, T. Reitz, R. Schönemann, T. Herrmannsdörfer, A. Geissler, M. Merroun, F. Wilhelm and A. Rogalev
Strong paramagnetism of Gold nanoparticles deposited on a Sulfolobus acidocaldarius S-layer
Phys. Rev. Lett. 109, 247203 (2012)

Die Kristallstruktur des Materials SrMnBi2 ist ähnlich aufgebaut wie die einiger Eisen-Pniktide.Anisotropic Dirac Fermions in a Bi Square Net of SrMnBi2

In cooperation with the Pohang University of Science and Technology, Korea we have determined the band structure of SrMnBi2. We have observed interesting features including linear dispersion (analogy to graphene) and possibilities for chemical tuning. Read more...

This work is published in:

J. Park; G. Lee; F. Wolff-Fabris; Y. Y. Koh; M. J. Eom; Y. K. Kim; M. A. Farhan; Y. J. Jo; C. Kim; J. H. Shim; J. S. Kim
Anisotropic Dirac Fermions in a Bi Square Net of SrMnBi2
Phys. Rev. Lett. 107, 126402 (2011)

Here you will find the Press Release.

(a) Optical images of a typical device before top-gate deposition.Stacking-order dependent transport properties of trilayer graphene

We have observed novel transport properties in trilayer graphene. In our joint experiments with the university of Regensburg we observed the strong dependency of the emerge of an energy gap or band overlap on the mutual orientation of the graphene layers.

This work is published in:

S. H. Jhang; M. F. Craciun; S. Schmidmeier; S. Tokumitsu; S. Russo; M. Yamamoto; Y. Skourski; J. Wosnitza; S. Tarucha; J. Eroms; C. Strunk
Stacking-order dependent transport properties of trilayer graphene
Phys. Rev. B 84, 161408(R) (2011)