Porträt PD Dr. habil. Schmidt, Moritz; FWOF

PD Dr. habil. Moritz Schmidt

Head Chemistry of the f-elements
Phone: +49 351 260 3156
+49 351 260 2536

Social Media


Department of Chemistry of the f-elements

We study the chemistry of the actinides and their lanthanide homologues in solid state as well as in solution. Modern analytical tools combined with quantum chemical computations, provide atomic scale information which can be used to characterize the physico-chemical properties of the actinides in molecules.

Übersicht FWOF ©Copyright: PD Dr. habil. Schmidt, Moritz

Our main focus is on the coordination chemistry of f-elements with inorganic and organic ligands, mostly biological and bio-inspired ligand systems. These studies use single-crystal X-ray diffraction to study structures in the solid state, and spectroscopic techniques, such as NMR, XANES, and TRLFS, to characterize structures in solution. All studies are complemented by quantum-theoretical calculations, which rely heavily on the in-house development of theoretical methods for 5f systems (i.e. actinides).

The fundamental understanding of actinide chemistry is applied to investigate actinide reactivity at the water/mineral interface, where atomic force microscopy, TRLFS, and surface X-ray diffraction are used as surface sensitive speciation techniques.

A full list of experimental equipment and capacities can be found here.

Our group is open for interested Bachelor's and Master's students, as well as research internships. Get in touch with us!

Latest Publication

Preparation and characterization of Mn(II)Mn(III) complexes with relevance to class Ib ribonucleotide reductases

Doyle, L. M.; Bienenmann, R. L. M.; Gericke, R.; Xu, S.; Farquhar, E. R.; Que Jr, L.; McDonald, A. R.


The Mn₂ complex (Mn(II)₂(TPDP)(O₂CPh)₂)(BPh₄) (1, TPDP = 1,3-bis(bis(pyridin-2-ylmethyl)amino)propan-2-ol, Ph = phenyl) was prepared and subsequently characterized via single-crystal X-ray diffraction, X-ray absorption, electronic absorption, and infrared spectroscopies, and mass spectrometry. 1 was prepared in order to explore its properties as a structural and functional mimic of class Ib ribonucleotide reductases (RNRs). 1 reacted with superoxide anion (O₂(•–)) to generate a peroxido-MnIIMnIII complex, 2. The electronic absorption and electron paramagnetic resonance (EPR) spectra of 2 were similar to previously published peroxido-Mn(II)Mn(III) species. Furthermore, X-ray near edge absorption structure (XANES) studies indicated the conversion of a Mn(II) 2 core in 1 to a Mn(II)Mn(III) state in 2. Treatment of 2 with para-toluenesulfonic acid (p-TsOH) resulted in the conversion to a new Mn(II)Mn(III) species, 3, rather than causing O—O bond scission, as previously encountered. 3 was characterized using electronic absorption, EPR, and X-ray absorption spectroscopies. Unlike other reported peroxido-Mn(II)Mn(III) species, 3 was capable of oxidative O—H activation, mirroring the generation of tyrosyl radical in class Ib RNRs, however without accessing the Mn(III)Mn(IV) state.

Keywords: Bioinorganic; Dimanganese cluster; Ribonucleotide reductase; Dioxygen activation; electron paramagnetic resonance




  • Bioinspired polyhydroxamic sequestering agents for the in vivo decorporation of actinides
    (ActiDecorp, ANR/DFG, 04/2024-03/2027)
  • Actinide-metal-bonding at the atomic level
    (Am-BALL, BMUV, 05/2023-04/2026)
  • Investigation of the interactions of f-elements with biologically-relevant structural motives: Determination of structure-effect principles for a mobilization in the environment
    (FENABIUM-II, BMBF, 04/2023-03/2026)
  • Competition and Reversibility of sorption processes
    (KuRSiV, BMUV, 01/2023-06/2026)
  • Spectroscopic characterization of f-Element complexes with soft donor ligands
    (f-Char, BMBF, 10/2020 - 03/2024)


  • Structure effect relations between f-elements and organic ligands with natural-analogue binding modes in regards to a possible mobilization in the environment
    (FENABIUM, BMBF, 10/2016 – 05/2021)
  • Smart-Kd applications for the long term safety assessment of nuclear waste disposal sites
    (SMILE, BMWi, 09/2018 – 02/2022)


Image: Group image


NameBld./Office+49 351 260Email
PD Dr. habil. Moritz Schmidt801/P2493156


NameBld./Office+49 351 260Email
Dr. Robert Gericke801/P2052011
Dennis Grödler801/P2052438
Dr. Peter Kaden801/P2172261
Aliaksandra Khokh801/P2193194
Jessica Lessing801/P3523154
Adrian Näder801/P3523154
Dr. Michael Patzschke801/P3562989
Till Erik Sawallisch801/P3502035

Actinid chemistry of metall organics

NameBld./Office+49 351 260Email
Dr. Juliane März801/P2173209
Boseok Hong801/P2052438