Actinide thermodynamics department
Research
The research topics of the Department of Actinide Thermodynamics within the Institute of Resource Ecology are clustered around the determination of thermodynamic (and kinetic) parameters, their evaluation, processing, storage in respective databases and utilization for geochemical modeling. From a chemical point of view the focus is set on heavy metal contaminants, namely long-lived radionuclides. Their environmental fate, including migration and entrance into the food chain is of paramount societal concern. Respective precaution, detoxification, separation and remediation measures need to be designed on the basis of a mechanistic understanding of all relevant physico-chemical processes. Then in turn a realistic, i.e. precise and robust forecast of their dissemination in geo- and biosphere and the risk involved for human health becomes possible.
Whereas the thermodynamic of aquatic species is often quite well understood, the picture is different for surface processes such as surface complexation, ion exchange, mineral transformation and surface precipitation - all of them considered important retardation mechanisms in complex environmental systems. With respect to solid phases research primarily deals with those minerals dominati
ng most rocks and soils. Prominent examples are the rock-forming constituents of crystalline rocks such as quartz, feldspars and mica, or alumosilicates such as kaolinite, illite, or montmorillonite. Engineered systems of interest are iron minerals and cementitious compounds.
Based on own investigations but also strongly embedded in the research topics of other departments (namely Surface Processes, Chemistry of the f-Elements, Molecular Structure and Biogeochemistry) the identification of (surface) species and development of molecular models lays the foundation of realistic sets of species and their reaction equations - usually called model development. In a second step formation constants and other thermodynamic parameters are determined through experimental series under varying boundary conditions like pH, redox potential, ionic strength, temperature or CO2 partial pressure. This allows for the parameterization of the models derived afore. Species sets, reactions and parameters then support the compilation of respective geochemical databases providing required for the assessment of the macroscopic migration behavior of the long-lived radionuclides. Respective codes are shared with the department of Reactive Transport, where the team also provides many aspects of surface characterizations needed for our own model development. Another overarching goal is a tiered approach towards upscaling from the nano- to the macro scale, bridging the distance between atomistic investigations and the large scale prognostics required e.g. in performance assessment of nuclear waste repositories and covering distances of several km over up to one million years.
The actual major research topics of our department can be su
mmarized as follows:
-
(Radio)chemical analyses of contaminant elements as well as matrix compounds down to the ultratracer level.
-
Set-up of thermodynamic data bases for prospective deep nuclear waste repositories.
Latest publication
Influence of gluconate on the retention of Eu(III), Am(III), Th(IV), Pu(IV), and U(VI) by C-S-H (C/S = 0.8)
Dettmann, S.; Huittinen, N. M.; Jahn, N.; Kretzschmar, J.; Kumke, M. U.; Kutyma, T.; Lohmann, J.; Reich, T.; Schmeide, K.; Shams Aldin Azzam, S.; Spittler, L.; Stietz, J.
The retention of actinides in different oxidation states (An(X), X = III, IV, VI) by a calcium-silicate-hydrate (C-S-H) phase with a Ca/Si (C/S) ratio of 0.8 was investigated in the presence of gluconate (GLU). The actinides considered were Am(III), Th(IV), Pu(IV), and U(VI). Eu(III) was investigated as chemical analogue for Am(III) and Cm(III). In addition to the ternary systems An(X)/GLU/C-S-H, also binary systems An(X)/C-S-H, GLU/C-S-H, and An(X)/GLU were studied. Complementary analytical techniques were applied to address the different specific aspects of the binary and ternary systems. Time-resolved laser-induced luminescence spectroscopy (TRLFS) was applied in combination with parallel factor analysis (PARAFAC) to identify retained species and to monitor species-selective sorption kinetics. 13C and 29Si magic-angle-spinning (MAS) nuclear magnetic resonance (NMR) spectroscopy and X-ray photoelectron spectroscopy (XPS) were applied to determine the bulk structure and the composition of the C-S-H surface, respectively, in the absence and presence of GLU. The interaction of Th(IV) with GLU in different electrolytes was studied by capillary electrophoresis-inductively coupled plasma mass spectrometry (CE-ICP-MS). The influence of GLU on An(X) retention was investigated for a large concentration range up to 10−2 M. The results showed that GLU had little to no effect on the overall An(X) retention by C-S-H with C/S of 0.8, regardless of the oxidation state of the actinides. For Eu(III), the TRLFS investigations additionally implied the formation of a Eu(III)-bearing precipitate with dissolved constituents of the C-S-H phase, which becomes structurally altered by the presence of GLU. For U(VI) sorption on the C-S-H phase, only a small influence of GLU could be established in the luminescence spectroscopic investigations, and no precipitation of U(VI)-containing secondary phases could be identified.
Keywords: actinide; organic ligand; sorption; cementitious material; concrete; luminescence
Related publications
- DOI: 10.1107/S1600577520014265 is cited by this (Id 35722) publication
-
Frontiers in Nuclear Engineering 2(2023), 1124856
DOI: 10.3389/fnuen.2023.1124856
Staff
Head | |||||
Name | Bld./Office | +49 351 260 | |||
---|---|---|---|---|---|
Prof. Dr. Vinzenz Brendler | 801/P250 | 2430 | v.brendler@hzdr.de | ||
Employees | |||||
Name | Bld./Office | +49 351 260 | |||
Dr. Dinara Abbasova | 801/P153 | 3373 | d.abbasova![]() | ||
Dr. Frank Bok | 801/P202 | 3551 | f.bok@hzdr.de | ||
Viktor Dück | 801/P306 | 3241 | v.dueck![]() | ||
Dr. Jerome Kretzschmar | 801/P207 | 3136 | j.kretzschmar![]() | ||
Dr. Anke Richter | 801/P202 | 2426 | anke.richter![]() | ||
Dr. Katja Schmeide | 801/P208 | 2436 2513 | k.schmeide![]() | ||
Salim Shams Aldin Azzam | 801/P348 | 2386 | s.shams![]() | ||
Claudia Sieber | 801/P254 | 2251 | c.sieber![]() | ||
Susanne Zechel | 801/P352 | 3328 | s.zechel![]() |
Analytics
Head | |||||
Name | Bld./Office | +49 351 260 | |||
---|---|---|---|---|---|
Dr. Harald Foerstendorf | 801/P251 | 3664 2504 | h.foerstendorf![]() | ||
Employees | |||||
Name | Bld./Office | +49 351 260 | |||
Sabrina Beutner | 801/P203 | 2429 2528 | s.beutner![]() | ||
Dominik Goldbach | 801/P203 | 3198 | d.goldbach![]() | ||
Karsten Heim | 801/P201 | 2434 2504 | k.heim![]() | ||
Sylvia Schöne | 801/P203 | 3198 2526 | s.schoene@hzdr.de, s.guertler![]() |