Department of Intelligent Materials and Systems
Electronics of tomorrow will be flexible and will form a seamless link between soft, living beings and the digital world. The unique possibility to adjust the shape of the devices offered by this alternative formulation of the electronics provides vast advantages over the conventional rigid devices particularly in medicine, consumer goods and eMobility.
The main activities of the group are focused on the development of magnetoelectronics which can be reshaped on demand after fabrication. These shapeable (flexible, stretchable and printable) magnetic sensorics can be used to realize interactive consumer electronics, e.g. intelligent packaging, postcards or promotional materials in the spirit of the Internet of Things (IoT) technology. Alternatively, shapeable magnetosensitive devices can be used to monitor displacements or motion and provide feedback as needed, e.g. for smart implants, proximity sensorics for on-skin or wearable electronics or for the realization of the sensory feedback systems for unique class of soft actuators – soft robotics.
Projects:
- FlexiSens - Helmholtz Innovation Lab for the development of flexible and printable magnetic field sensors
- ERC Project SMaRT - Shapeable Magnetoelectronics in Research and Technology
- EU FET Project CNTQC - Curved Nanomembranes for Topological Quantum Computation
- DFG project - Magnetic Field Tunable Flexible Wireless Communication Device
- BMBF project - German-Ukrainian Center for Large Scale Experiment
- DAAD Leonhard Euler Project - Topological textures in 3D shaped magnetic nanoobjects
Recent Publications:
12. T. Kosub, M. Kopte, R. Hühne, P. Appel, B. Shields, P. Maletinsky, R. Hübner, M. O. Liedke, J. Fassbender, O. G. Schmidt and D. Makarov
Purely antiferromagnetic magnetoelectric random access memory
Nat. Commun. 8, 13985 (2017). URL
11. H. Yu, A. Kopach, V. R. Misko, A. A. Vasylenko, D. Makarov, F. Marchesoni, F. Nori, L. Baraban, and G. Cuniberti
Confined catalytic Janus swimmers in a crowded channel: Geometry-driven rectification transients and directional locking
Small 12, 5882 (2016). URL
10. T. Ueltzhöffer, R. Streubel, I. Koch, D. Holzinger, D. Makarov, O. G. Schmidt, and A. Ehresmann
Magnetically patterned rolled-up exchange bias tubes: A paternoster for superparamagnetic beads
ACS Nano 10, 8491 (2016) URL
9. V. P. Kravchuk, U. K. Rößler, O. M. Volkov, D. D. Sheka, J. van den Brink, D. Makarov, H. Fuchs, H. Fangohr, and Y. Gaididei
Topologically stable magnetization states on a spherical shell: curvature stabilized skyrmions
Phys. Rev. B 94, 144402 (2016) URL PDF
8. G. Lin, D. D. Karnaushenko, G. S. Cañón Bermúdez, O. G. Schmidt and D. Makarov
Magnetic suspension array technology: Controlled synthesis and screening in microfluidic networks
Small 12, 4553 (2016) URL PDF
7. R. Streubel, P. Fischer, F. Kronast, V. Kravchuk, D. D. Sheka, Y. Gaididei, O. G. Schmidt, and D. Makarov
Magnetism in curved geometries
J. Phys. D: Appl. Phys. (Topical Review) 49, 363001 (2016) URL PDF
6. N. Münzenrieder, D. Karnaushenko, L. Petti, G. Cantarella, C. Vogt, L. Büthe, D. D. Karnaushenko, O. G. Schmidt, D. Makarov, G. Tröster
Entirely flexible on-site conditioned magnetic sensorics
Adv. Electron. Mater. 2, 1600188 (2016) URL PDF
5. V. V Temnov, I. Razdolski, T. Pezeril, D. Makarov, D. Seletskiy, A. Melnikov, K. A. Nelson
Towards the nonlinear acousto-magnetoplasmonics
J. Opt. (Topical Review) 18, 093002 (2016) URL PDF
4. D. Makarov, P. Krone, M. Albrecht
Bit-patterned magnetic recording
In: Ultrahigh-density magnetic recording - Storage materials and media designs
Editors: G. Varvaro and F. Casoli. Pan Stanford Publishing Pte. Ldt., 2016.
Print ISBN: 9789814669580; DOI: 10.4032/9789814669597 URL
3. O. V. Pylypovskyi, D. D. Sheka, V. P. Kravchuk, K. V. Yershov, D. Makarov, Y. Gaididei
Rashba torque driven domain wall motion in magnetic helices
Sci. Rep. 6, 23316 (2016). URL PDF
2. R. Streubel, F. Kronast, C. F. Reiche, T. Mühl, A. U. B. Wolter, O. G. Schmidt, D. Makarov
Vortex circulation and polarity patterns in closely packed cap arrays
Appl. Phys. Lett. 108, 042407 (2016) URL
1. D. Makarov, M. Melzer, D. Karnaushenko, O. G. Schmidt
Shapeable Magnetoelectronics
Appl. Phys. Rev. 3, 011101 (2016) URL PDF
Cover Pages:
11/2016 |
09/2016 |
08/2016 |
11/2018 |
11/2018 |
Internal:
Former Members and Guests:
Dr. Alexander Pylypovskyi (Taras Shevchenko National University of Kyiv, Kyiv, Ukraine)
Dr. Niko Münzenrieder (University of Sussex, UK)
Prof. Denis D. Sheka (Taras Shevchenko National University of Kyiv, Kyiv, Ukraine)
Kostiantyn V. Yershov (Bogolyubov Institute for Theoretical Physics of the National Academy of Sciences of Ukraine, Kyiv, Ukraine)
Dr. Yevhen Zabila (The H. Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, 31-342 Krakow, Poland)
Dr. Minjeong Ha (Researcher)
Dr. Jin Ge (Researcher)
Mr. Mykola Sloika (Taras Shevchenko National University of Kyiv, Kyiv, Ukraine)
Mr. Rubaeat Umar (SHK)
Hagen Fuchs (Research Assistant)
Ana Lebanov (Master Student)
Wenya Song (Master Student)