Contact

Porträt Prof. Dr. Brendler, Vinzenz; FWOA

Prof. Dr. Vinzenz Brendler

Head of Department
Thermo­dynamics of Actinides
v.brendler@hzdr.de
Phone: +49 351 260 2430

Social Media

  Twitter-Logo

Actinide thermodynamics department

Research

The research topics of the Department of Actinide Thermodynamics within the Institute of Resource Ecology are clustered around the determination of thermodynamic (and kinetic) parameters, their evaluation, processing, storage in respective databases and utilization for geochemical modeling. From a chemical point of view the focus is set on heavy metal contaminants, namely long-lived radionuclides. Their environmental fate, including migration and entrance into the food chain is of paramount societal concern.  Respective precaution, detoxification, separation and remediation measures need to be designed on the basis of a mechanistic understanding of all relevant physico-chemical processes. Then in turn a realistic, i.e. precise and robust forecast of their dissemination in geo- and biosphere and the risk involved for human health becomes possible.

Whereas the thermodynamic of aquatic species is often quite well understood, the picture is different for surface processes such as surface complexation, ion exchange, mineral transformation and surface precipitation - all of them considered important retardation mechanisms in complex environmental systems. With respect to solid phases research primarily deals with those minerals dominati

ng most rocks and soils. Prominent examples are the rock-forming constituents of crystalline rocks such as quartz, feldspars and mica, or alumosilicates such as kaolinite, illite, or montmorillonite. Engineered systems of interest are iron minerals and cementitious compounds.

Based on own investigations but also strongly embedded in the research topics of other departments (namely Surface Processes, Chemistry of the f-Elements,  Molecular Structure and Biogeochemistry) the identification of (surface) species and development of molecular models lays the foundation of realistic sets of species and their reaction equations - usually called model development. In a second step formation constants and other thermodynamic parameters are determined through experimental series under varying boundary conditions like pH, redox potential, ionic strength, temperature or CO2 partial pressure. This allows for the parameterization of the models derived afore. Species sets, reactions and parameters then support the compilation of respective geochemical databases providing required for the assessment of the macroscopic migration behavior of the long-lived radionuclides. Respective codes are shared with the department of Reactive Transport, where the team also provides many aspects of surface characterizations needed for our own model development. Another overarching goal is a tiered approach towards upscaling from the nano- to the macro scale, bridging the distance between atomistic investigations and the large scale prognostics required e.g. in performance assessment of nuclear waste repositories and covering distances of several km over up to one million years.

The actual major research topics of our department can be su

mmarized as follows:


Latest publication

The many Shapley values for explainable artificial intelligence: A sensitivity analysis perspective

Borgonovo, E.; Plischke, E.; Rabitti, G.

Abstract

Predictive models are increasingly used for managerial and operational decision-making. The use of complex machine learning algorithms, the growth in computing power, and the increase in data acquisitions have amplified the black-box effects in data science. Consequently, a growing body of literature is investigating methods for interpretability and explainability. We focus on methods based on Shapley values, which are gaining attention as measures of feature importance for explaining black-box predictions. Our analysis follows a hierarchy of value functions, and proves several theoretical properties that connect the indices at the alternative levels. We bridge the notions of totally monotone games and Shapley values, and introduce new interaction indices based on the Shapley-Owen values. The hierarchy evidences synergies that emerge when combining Shapley effects computed at different levels. We then propose a novel sensitivity analysis setting that combines the benefits of both local and global Shapley explanations, which we refer to as the “glocal” approach. We illustrate our integrated approach and discuss the managerial insights it provides in the context of a data-science problem related to health insurance policy-making.

Keywords: Sensitivity analysis; Game theory; Interactions

Downloads

Permalink: https://www.hzdr.de/publications/Publ-40064


More publications


Team


Head

NameBld./Office+49 351 260Email
Prof. Dr. Vinzenz Brendler801/P2502430
v.brendler@hzdr.de

Employees

NameBld./Office+49 351 260Email
Dr. Frank Bok801/P2023551
f.bok@hzdr.de
Rodrigo Castro Biondor.castro-biondoAthzdr.de
Viktor Dück801/P3063241
v.dueckAthzdr.de
Alexandra Duckstein801/P1532774
a.ducksteinAthzdr.de
Dr. Stephan Hilpmann801/P3062860
s.hilpmannAthzdr.de
Dr. Jerome Kretzschmar801/P2073136
j.kretzschmarAthzdr.de
Dr. Elmar Plischkee.plischkeAthzdr.de
Dr. Solveig Pospiech801/P2052438
s.pospiechAthzdr.de
Dr. Anke Richter801/P2022426
anke.richterAthzdr.de
Dr. Katja Schmeide801/P2082436
2513
k.schmeideAthzdr.de
Salim Shams Aldin Azzam801/P3482386
s.shamsAthzdr.de
Susanne Zechel801/P3523328
s.zechelAthzdr.de

Analytics

Head

NameBld./Office+49 351 260Email
Dr. Harald Foerstendorf801/P2513664
2504
h.foerstendorfAthzdr.de

Employees

NameBld./Office+49 351 260Email
Sabrina Beutner801/P2032429
2528
s.beutnerAthzdr.de
Tim Gitzel801/P3162025
t.gitzelAthzdr.de
Dominik Goldbach801/P2033198
d.goldbachAthzdr.de
Karsten Heim801/P2012434
2504
k.heimAthzdr.de
Sylvia Schöne801/P2033198
2526
s.schoene@hzdr.de, s.guertlerAthzdr.de