Publications Repository - Helmholtz-Zentrum Dresden-Rossendorf

"Online First" included
Approved and published publications
Only approved publications

41709 Publications

Chemical reaction related mass transfer measurements in organic environments under industrial relevant conditions

Zalucky, J.

Abstract

Within HZDR annual PhD seminar, the PhD motivation, conception, approaches and first results are presented.

Keywords: mass transfer; organo-electrochemical method; zeolite coating; dynamic oxygen sorption technique

  • Poster
    HZDR Doktoranden-Seminar, 07.-09.10.2013, Bautzen, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-19804


Hydrodynamics and transport processes in structured reactor devices - PhD meeting status report TU Hamburg-Harburg

Zalucky, J.

Abstract

On the occasion of half-annual PhD meeting of projekt group at TU Hamburg-Harburg, the status of hydrodynamic setup and current research subproject SiSiC zeolite coating which were investigated under SEM are orally presented.

Keywords: Hydrodynamic setup; SiSiC zeolite coating

  • Lecture (others)
    Half-annual meeting of PhD students within Helmholtz Energy Alliance "Energy Efficient Chemical Multiphase Processes", 26.07.2013, Hamburg, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-19803


Formation of regularly arranged large grain silicon islands by using embedded micro mirrors in the flash crystallization of amorphous silicon

Henke, T.; Bartha, J. W.; Rebohle, L.; Merkel, U.; Hübner, R.; Albert, M.; Skorupa, W.

Abstract

The well-controlled formation of large silicon grains on predetermined positions is a key issue in order to produce single-grain thin film transistors on insulating substrates and thus to enable monolithic 3D integration. One way to achieve this is to artificially control the solidification of molten silicon during the flash crystallization of amorphous silicon. In this work, we present such an approach in which we used patterned metal layers below the amorphous silicon. The metal spots act as embedded micro mirrors and consequently introduce a lateral temperature gradient into the silicon film during flash crystallization. As a result, the grain growth from molten silicon is seeded from the predefined regions with the lowest temperature and thus the formation of large crystal silicon islands proceeds in a controlled manner. In the scope of this study, we evaluated a variety of different mirror patterns with respect to their suitability for this approach and observed that patterns of both circular and line-shaped mirrors are the most promising variants. The resulting silicon islands have pillow-like shapes and are located exclusively in regions between neighboring mirrors. They exhibit dimensions of a few tens of micrometers and consist of grains with sizes up to 28 µm. The formation of single-grain silicon pillow-like structures was observed for particular mirror patterns having circular mirrors. On the other hand, the application of mirror patterns with line-shaped mirrors resulted in the formation of elongated silicon grains which we explained in terms of lateral solidification starting from one edge. Furthermore, this approach exhibits grain filter characteristics leading to the controlled growth of large single grains at predetermined positions.

Keywords: flash lamp annealing; crystallization; liquid phase epitaxy

Involved research facilities

Related publications

Permalink: https://www.hzdr.de/publications/Publ-19802


Inclined rotating fixed bed reactors for process intensification

Härting, H.-U.; Schubert, M.

Abstract

After an introduction of the research activities at the Institue of Fluid Dynamics, especially of the Experimental Thermal Fluid Dynamics Department, process intensification is illustrated by working examles from science and industry.
The new reactor concept "inclined rotating fixed bed reactor" is introduced with detailed explanations of the idea, the benefits as well as aspects of the design.
Selected results from hydrodynamic experiments coupled with tomographic imaging are presented.

Keywords: Process intensification; fixed bed reactor; tomographic imaging; rotation; inclination

  • Lecture (Conference)
    HZDR PhD-Seminar 2013, 07.-09.10.2013, Bautzen, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-19801


Hindered magnetic order from mixed dimensionalities in CuP2O6

Nath, R.; Ranjith, K. M.; Sichelschmidt, J.; Baenitz, M.; Skourski, Y.; Alet, F.; Rousochatzakis, I.; Tsirlin, A. A.

Abstract

We present a combined experimental and theoretical study of the spin-½ compound CuP2O6 that features a network of two-dimensional (2D) antiferromagnetic (AFM) square planes, interconnected via one-dimensional (1D) AFM spin chains. Magnetic susceptibility, high-field magnetization, and electron spin resonance (ESR) data, as well as microscopic density-functional band-structure calculations and subsequent quantum Monte Carlo simulations, show that the coupling J 2D ≃ 40 K in the layers is an order of magnitude larger than J 1D ≃ 3 K in the chains. Below TN ≃ 8 K, CuP2O6 develops long-range order, as evidenced by a weak net moment on the 2D planes induced by anisotropic magnetic interactions of Dzyaloshinsky-Moriya type. A striking feature of this 3D ordering transition is that the 1D moments grow significantly slower than the ones on the 2D units, which is evidenced by the persistent paramagnetic ESR signal below TN . Compared to typical quasi-2D magnets, the ordering temperature of CuP2O6 TN /J 2D ≃ 0.2 is unusually low, showing that weakly coupled spins sandwiched between 2D magnetic units effectively decouple these units and impede the long-range ordering.

Involved research facilities

  • High Magnetic Field Laboratory (HLD)

Permalink: https://www.hzdr.de/publications/Publ-19800


Size-effects in 2D Transition Metal Chalcogenides

Gemming, S.; Seifert, G.

Abstract

Nanoscale Mo_mS_n compounds exist in a large variety of compositions with many different characteristic structural elements and related electronic properties. The structural wealth of Mo_mS_n compounds comprises finite structures such as small clusters and hollow inorganic fullerenes, one-dimensionally extended wires and stripes, or two-dimensional platelets. The structural elements are based either on a three-dimensional Mo_m framework or on platelet-shaped elements derived from the layered MoS_2 bulk structure. The electronic features range from large energy gaps in closed-shell systems over the semiconducting two-dimensional MoS_2 sheet to the metallic conductivity of the brim state in platelets or along the Mo core of wires.
With the help of density-functional calculations the preferred structural elements and the relative stabilities could be correlated with the chemical potentials of sulfur and molybdenum in the system. As structural elements and electronic features are related, this result is the basis for a further tailoring of electronic properties via the preparation conditions. For very small systems Mo_mS_n, with m <= 4, n <= 14 the cluster-platelet transition depends on a sulfur excess of the system of at least one additional S atom per MoS_2 formula unit, i.e. to MoS_3. In the small size regime the most important species are the extremely stable large-gap Mo_4S_6 cluster, Mo_3S_6 as smallest member of (MoS_2)_n platelet family and Mo_3S_3 and Mo_3S_5 as stable building blocks of wires. For one-dimensionally extended conducting structures the termination exhibits a length-dependent crossover of the termination group from (Mo_3S_3)_nS_2 to (Mo_3S_3)_n-1(MoS_4)_2 provided that the chemical potential of sulfur is low and constant. Sulfur-terminated two-dimensional (MoS_2)_nS_m platelets are stable only at the enhanced sulfur chemical potential required to saturate the platelet edges with sulfur up to a stoichiometry of Mo:S = 1:3 in the smallest clusters. In even more sulfur-rich conditions all systems tend to form chemically active, but electronically inert S_2^2- ions.

Keywords: density-functional; molybdenum sulfide; 2D electronics; molecular electronics; inorganic nanotubes; nanotubes; platelet

Involved research facilities

Related publications

  • Invited lecture (Conferences)
    Flatlands Beyond Graphene, 17.-21.06.2013, Bremen, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-19799


Microscopic Processes in Energy and Data Storage

Gemming, S.

Abstract

DGK Symposium MS17 - Materials for Electronics:

Energy and Data Storage through the Eyes of Crystallographers

Keywords: multiscale modeling; density-functional; Heisenberg; Ising; multiferroic

Involved research facilities

Related publications

  • Invited lecture (Conferences)
    21st Annual Conference of the German Crystallographic Society, 19.-22.03.2013, Freiberg (S), Deutschland

Permalink: https://www.hzdr.de/publications/Publ-19798


The nELBE (n,fis) experiment

Kögler, T.; Beyer, R.; Hannaske, R.; Junghans, A.; Massarczyk, R.; Schwengner, R.; Wagner, A.

Abstract

At the Center for High-Power Radiation Sources at Helmholtz-Zentrum Dresden-Rossendorf fast neutron-induced fission cross section experiments on U(235) and Pu(242) will be investigated by a parallel plate fission ionization chamber. An optimization of chamber parameters was performed using extensive Geant4 simulations with GEF code generated fission observable inputs. Pile-up effects due to the high alpha activity of the plutonium targets have been considered in a realistic geometry. Beyond that, a setup for the determination of the areal density and homogeneity of targets will be presented with a focus on current simulation work.

Keywords: nELBE; parallel plate fission ionization chamber; Geant 4 simulations

Involved research facilities

Related publications

  • Lecture (Conference)
    Final ERINDA User Meeting and Scientific Workshop, 01.-03.10.2013, Geneva, Switzerland
  • Open Access Logo Contribution to proceedings
    Final ERINDA User Meeting and Scientific Workshop, 01.-03.10.2013, Geneva, Switzerland
    Proceedings of the ERINDA Workshop, CERN, edited by Enrico Chiaveri CERN Proceedings 2014-002: CERN, 978-92-9083-403-8, 25-30

Permalink: https://www.hzdr.de/publications/Publ-19797


Nanomaterials for Biomedical Applications

Stephan, H.

  • Invited lecture (Conferences)
    Seminar, Jacobs University Bremen, 08.01.2014, Bremen, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-19796


Synthesis and biological evaluation of both enantiomers of [18F]flubatine, promising radiotracers with fas kinetics for the imaging of α4β2-nicotinic acetylcholine receptors

Smits, R.; Fischer, S.; Hiller, A.; Deuther-Conrad, W.; Wenzel, B.; Patt, M.; Cumming, P.; Steinbach, J.; Sabri, O.; Brust, P.; Hoepping, A.

Abstract

Both enantiomers of the epibatidine analogue flubatine display high affinity towards the α4β2 nicotinic acetylcholine receptor (nAChR) in vitro, accompanied by negligible interactions with diverse off-target proteins. Extended single dose toxicity studies in rodent indicated a NOEL (No Observed Effect Level) of 6.2μg/kg for (-)-flubatine and 1.55μg/kg for (+)-flubatine. We developed syntheses for both flubatine enantiomers and their corresponding precursors for radiolabeling. The newly synthesized trimethylammonium precursors allowed for highly efficient (18)F-radiolabelling in radiochemical yields >60% and specific activities >750GBq/μmol, thus making the radioligands practical for clinical investigation.

Keywords: Alzheimers’s disease (AD); Nicotinic acetylcholine receptor (nAChR); Flubatine; PET; Fluorine-18

Permalink: https://www.hzdr.de/publications/Publ-19795


Development of 18F-labeled radiotracers for neuroreceptor imaging with positron emission tomography

Brust, P.; van den Hoff, J.; Steinbach, J.

Abstract

Positron emission tomography (PET) is an in vivo molecular imaging tool which is widely used in nuclear medicine for early diagnosis and treatment follow-up of many brain diseases. PET uses biomolecules as probes which are labeled with radionuclides of short half-lives, synthesized prior to the imaging studies. These probes are called radiotracers. Fluorine-18 is a radionuclide routinely used in the radiolabeling of neuroreceptor ligands for PET because of its favorable half-life of 109.8 min. The delivery of such radiotracers into the brain provides images of transport, metabolic, and neutotransmission processes on the molecular level.
After a short introduction into the principles of PET, the review mainly focuses on the strategy of radiotracer development bridging from basic science to biomedical application. Successful radiotracer design as described here provides molecular probes which not only are useful for imaging of huma brain diseases, but also allow molecular neuroreceptor imaging studies in various small-animal models of diseases, including genetically-engineered animals. Furthermore, they provide a powerful tool for in vivo pharmacology during the process of pre-clinical drug development to identify new drug targets, to investigate phathophysiology, to discover potential drug candidates, and to evaluate the pharmacokinetics and pharmacodynamics of drugs in vivo.

Keywords: Alzheimer's disease; autoradiography; blood-brain barrier; brain tumor; cholinergic system; kinetic modeling; metabolism; molecular imaging; neurodegeneration; positron emission tomography; precursor; psychiatric disorder; radiotracer; sigma receptor

Permalink: https://www.hzdr.de/publications/Publ-19794


Brief review on high-field ESR at the EMFL: facilities and applications

Zvyagin, S.

Involved research facilities

  • High Magnetic Field Laboratory (HLD)
  • Invited lecture (Conferences)
    Round table on NMR and EPR in ultra-high magnetic fiels (Satellite workshop to EUROMAR 2013), 02.07.2013, Herssonisos, Greece

Permalink: https://www.hzdr.de/publications/Publ-19793


Analysen zum Neutronenflussrauschen mit Hilfe des Rechenprogramms DYN3D - Abschlußbericht -

Rohde, U.; Bilodid, Y.

Abstract

In Computersimulationen wurden Schwankungen der Kühlmitteltemperatur (KMT) am Kerneintritt und des Kühlmittelmassenstromes als mögliche Ursache für erhöhtes Neutronenflussrauschen in Druckwasserreaktoren untersucht. Das Ziel ist die Vermeidung von Neutronenflußschwankungen in einer Größenordnung, die zu einer unbeabsichtigten Auslösung von Signalen zur Reaktorschnellabschaltungführen können.
Als Simulationstool wurde dafür der Rossendorfer Reaktordynamikcode DYN3D eingesetzt. Es wurden transiente Rechnungen mit verschiedenen aufgeprägten Randbedingungen für die Kühlmitteleintrittstemperatur oder den Kühlmittelmassenstrom durchgeführt, in denen dreidimensional die zeitlich variierenden lokalen linearen Stableistungen berechnet wurden. Diese lokalen linearen Stableistungen werden als In-Core-Detektorsignale interpretiert. Dabei wurden zunächst harmonische Oszillationen, dann auch stochastische Fluktuationen der lokalen Kühlmitteleintrittstemperatur oder des Massenstroms betrachtet, die zwischen den einzelnen Brennelementen oder Bereichen des Reaktorkerns auf unterschiedliche Weise korreliert sein können. Mittels Fast Fourier Transformation (FFT) wurden Übertragungsfunktionen zwischen Temperaturstörung und Responsesignal (lokale lineare Stableistung) ermittelt und ausgewertet.
Um den Einfluss von unterkühltem Sieden des Kühlmittels und der Wärmeleitung im Brennstab zu klären, wurden Variantenrechnungen mit verstärktem unterkühltem Sieden sowie mit verändertem Wärmedurchgangskoeffizienten im Gasspalt zwischen Brennstoff und Hülle durchgeführt. Unterkühltes Sieden wurde durch eine Reduzierung des Massenstroms bzw. Erhöhung der Eintrittstemperatur generiert. Weiterhin wurden für einen Referenzfall Untersuchungen zum Einfluss der numerischen Diffusion durchgeführt.
Der größte Teil der Rechnungen wurde für eine generische Kernbeladung eines DWR vom Typ Konvoi durchgeführt. Teilweise wurden auch konkrete, reaktor- und zyklusspezifische thermohydraulische Randbedingungen sowie neutronenphysikalische Wirkungsquerschnitte (WQS) benutzt, um quantitativ belastbare Aussagen zu erhalten.
Die Ergebnisse der DYN3D-Simulationen zum können wie folgt zusammengefasst werden:

  • Stochastische, unkorrelierte Schwankungen der KMT am Eintritt in die einzelnen Brennelemente (BE) führen bei realistischer Amplitude nur zu sehr kleinen Schwankungen in der Leistungsdichte, die für eie eventuelle unbeabsichtigte Auslösung eines Signals zur Reaktorschnellabschaltung nicht relevant sind.
  • Stochastische Temperaturschwankungen mit Korrelationen zwischen den BE (z. B. bedingt durch Schwankungen der Kaltstrangtemperaturen) können Leistungsdichteschwankungen mit relevanten Amplituden generieren (je nach Grad der Korrelation).
  • Schwankungen der Leistungsdichte, die durch Schwankungen der Eintrittstemperatur oder durch Massenstromschwankungen hervorgerufen werden, zeigen ein deutlich unterschiedliches Signalverhalten.
  • Unterkühltes Sieden und Variation des WÜ im Gasspalt Brennstoff-Hülle haben nur geringen Einfluss auf das Neutronenflussrauschen.
Aufgrund dieser Ergebnisse können Temperaturschwankungen als Ursache für überhöhtes Neutronenrauschen praktisch ausgeschlossen werden.

Keywords: neutronic noise; temperature fluctuations; statistical analysis; transfer functions; reactor dynamics simulations

  • Article, self-published (no contribution to HZDR-Annual report)
    Forschungszentrum Rossendorf 2014
    HZDR\FWO\2014\02
    46 Seiten
    ISSN: 2191-8708, eISSN: 2191-8716

Permalink: https://www.hzdr.de/publications/Publ-19792


Optimization of magneto-resistive response of ion-irradiated Exchange biased films through zigzag arrangement of magnetization

Trützschler, J.; Sentosun, K.; Langer, M.; Mönch, I.; Mattheis, R.; Fassbender, J.; McCord, J.

Abstract

Exchange coupled ferromagnetic-antiferromagnetic Ni81Fe19/Ir23Mn77 films with a zigzag alignment of magnetization are prepared by local ion irradiation in order to shape the anisotropic magneto-resistive behavior of the magnetic thin film structures. A unique uniaxial field sensitivity along the net magnetization alignment is obtained through the orthogonally modulated and magnetic domain wall stabilized magnetic ground state. Controlling local thin film magnetization distributions and thus the overall magnetization response opens unique ways to tailor the magneto-resistive sensitivity of functional magnetic thin film devices.

Keywords: exchange bias; field sensor; ion irradiation; anisotropic magneto-resistance

Involved research facilities

Related publications

Permalink: https://www.hzdr.de/publications/Publ-19791


Design of Radioligands for PET Imaging of Brain Diseases

Brust, P.

  • Invited lecture (Conferences)
    Partnership: Vanderbilt University - Leipzig University - Leipzig University: 5th Scientific Symposium, 30.10.-03.11.2013, Nashville, USA

Permalink: https://www.hzdr.de/publications/Publ-19790


Synthesis and development of metabolic PSY receptor ligands for imaging

Brust, P.

  • Invited lecture (Conferences)
    Partnership Vanderbilt University - Leipzig University: 4th Scientific Symposium and Kick-off Meeting, 06.-12.07.2013, Leipzig, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-19789


Development of Radioligands for Imaging of nAChR

Brust, P.

  • Invited lecture (Conferences)
    COGNITO Meeting, 27.09.2013, Kopenhagen, Dänemark

Permalink: https://www.hzdr.de/publications/Publ-19788


Development of 18F-labelled radiopharmaceuticals for brain and tumor imaging

Brust, P.

  • Invited lecture (Conferences)
    Colloquium series Zhenjiang University, 27.05.2013, Hangzhou, Zhejiang, China

Permalink: https://www.hzdr.de/publications/Publ-19787


Spin dynamics in the spin-1/2 triangular-lattice antiferromagnet Cs2CuBr4

Zvyagin, S.

Involved research facilities

  • High Magnetic Field Laboratory (HLD)
  • Invited lecture (Conferences)
    EUROMAR 2013, 30.06.-05.07.2013, Hersonissos, Greece

Permalink: https://www.hzdr.de/publications/Publ-19786


Recent development of the High Field ESR facility at HLD Dresden

Zvyagin, S.

Involved research facilities

  • High Magnetic Field Laboratory (HLD)
  • Invited lecture (Conferences)
    Evaluation of research finding applications ETAG (The Estonian Research Council), 21.09.2013, Tallinn, Estonia

Permalink: https://www.hzdr.de/publications/Publ-19785


Recent development of the high-field ESR facility at the Dresden High Magnetic Field Laboratory

Zvyagin, S.

Involved research facilities

  • High Magnetic Field Laboratory (HLD)
  • Invited lecture (Conferences)
    Annual Meeting SPP1601, 12.-14.09.2013, Frauenchiemsee, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-19784


Unconventional spin dynamics in Cs2CuBr4

Zvyagin, S.

Involved research facilities

  • High Magnetic Field Laboratory (HLD)
  • Invited lecture (Conferences)
    ETH Zürich, 26.09.2013, Zürich, Switzerland

Permalink: https://www.hzdr.de/publications/Publ-19783


Spin dynamics in the spin-1/2 triangular-lattice antiferromagnet Cs2CuBr4

Zvyagin, S.

Involved research facilities

  • High Magnetic Field Laboratory (HLD)
  • Lecture (Conference)
    JEMS2013 - Joint European Magnetic Symposia, 25.-30.08.2013, Rhodos, Greece

Permalink: https://www.hzdr.de/publications/Publ-19782


Superconductivity in highly Ga-doped germanium and silicon

Skrotzki, R.

Involved research facilities

  • High Magnetic Field Laboratory (HLD)
  • Lecture (others)
    Institutsseminar TU Dresden, 08.01.2013, Dresden, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-19781


Evidence of Field-Induced Ordering in the Dynamic Spin Ice Compund Pr2Sn2O7

Green, E.

Involved research facilities

  • High Magnetic Field Laboratory (HLD)
  • Invited lecture (Conferences)
    Ss. Cyril and Methodius University, 27.04.2013, Skopje, Macedonia

Permalink: https://www.hzdr.de/publications/Publ-19780


Magnetoelastic properties of some uranium intermetallic antiferromagnets as studied by high-field ultrasound measurements

Zherlitsyn, S.

Involved research facilities

  • High Magnetic Field Laboratory (HLD)
  • Poster
    2013 Joint UFFC, EFTF, and PFM Symposium, 21.-23.07.2013, Prague, Czech Republic

Permalink: https://www.hzdr.de/publications/Publ-19779


Pulsed-magnet upgrades at the Dresden High Magnetic Field Laboratory

Zherlitsyn, S.

Involved research facilities

  • High Magnetic Field Laboratory (HLD)
  • Lecture (Conference)
    MT 23 - International Conference on Magnet Technology, 14.-19.07.2013, Boston, USA

Permalink: https://www.hzdr.de/publications/Publ-19778


Strongly correlated electron physics at high magnetic fields: recent science highlights at the HLD

Herrmannsdörfer, T.

Involved research facilities

  • High Magnetic Field Laboratory (HLD)
  • Invited lecture (Conferences)
    Institutsseminar Hochfeld Magnetlabor Wroclaw, 16.-17.05.2013, Wroclaw, Poland

Permalink: https://www.hzdr.de/publications/Publ-19777


Hydrogenation of α-methylstyrene in an inclined rotating fixed bed reactor

Härting, H.-U.; Schubert, M.

Abstract

Trickle bed reactors are widespread in the chemical industry for the implementation of heterogeneous catalytic processes, especially for the production of bulk chemicals. Nevertheless, the reactor performance may be limited by liquid maldistribution as well as by poor mass and heat transfer rates. Furthermore, the rather simple reactor design and operation is accompanied by limited degrees of freedom for manipulation of local conditions to enhance the reactor performance.
Dynamic operation strategies, like the periodic inlet flow rate modulation, have been proposed for process intensification of trickle bed reactors [1]. These strategies have been proven to result in increased space-time-yields at lab-scale, however, their positive effects are strongly dampened with increasing reactor length.
The inclined rotating fixed bed reactor is an alternative reactor concept, that aims to transform the temporal periodic operation into a spatial periodic one, which holds for the whole length of the reactor. The inclination of the reactor, with the catalyst fixed between two retaining grates, results in a phase separation, whereas the superimposed slow rotation ensures a periodic wetting and draining of the catalyst and will therefore enhance the access of the gas phase to the active sites (see Figure 1).
By adjustment of the reactor inclination and rotation, the performance of the reactor can be adapted to a given reaction system (e. g. fast or slow kinetics, high or low viscous liquid etc.) to optimize the local conditions with respect to flow regime and subsequently to mass and heat transfer performance for a specific process.
For the evaluation of the new reactor concept, the space-time-yield of the hydrogenation of α-methylstyrene to cumene (C9H10 + H2  C9H12) is investigated in the trickle bed reactor as well as in the inclined rotating fixed bed reactor. The reaction already exhibits mass transfer limititations of the gas phase at moderate conditions, which allows for attributing changes in the space-time-yield directly to the operational conditions [2].
The reactor (dR = 0.1 m, LR = 1.6 m) is operated like a differential loop reactor with a layer of the palladium egg-shell catalyst (Pd/γ-Al2O3, dP = 4 mm, w = 0,1 wt-% Pd) placed in the middle of the otherwise inert fixed bed. The reaction studies are performed at varying pressure (p = 1 and 6 bar) and temperature (θ = 25°C and 40°C) at isothermal conditions. The rotational speed and the inclination angle are adjusted to identify optimal hydrodynamic conditions regarding the space-time-yield.
The results of the reaction studies are discussed with respect to the prevailing flow regimes obtained by additional tomographic imaging studies for the same setup and operating conditions.

Keywords: Hydrogenation; process intensification; fixed bed reactor; inclination; rotation

  • Lecture (Conference)
    "CHEMREACTOR-21" XXI International Conference on Chemical Reactors, 22.-25.09.2014, Delft, The Netherlands

Permalink: https://www.hzdr.de/publications/Publ-19776


Hydrierung von alpha-Methylstyrol in einem geneigt rotierenden Festbettreaktor

Härting, H.-U.; Lange, R.; Schubert, M.

Abstract

Rieselbettreaktoren finden in der chemischen Industrie breite Anwendung zur Realisierung heterogen-katalysierter Reaktionen insbesondere bei hohen Eduktdurchsätzen. Allerding ist die Reaktorleistung durch geringe Stoff- und Wärmeübertragungsraten begrenzt. Zusätzlich können sich Fehlverteilungen der Flüssigphase nachteilig auf Transportprozesse, Katalysatorausnutzungsgrad und -aktivität auswirken. Konzepte mit dynamischer Betriebsweise, wie beispielsweise die periodische Variation des Flüssigphasendurchsatzes am Reaktoreingang, wurden vorgeschlagen, bei denen die zeitgemittelten Raum-Zeit-Ausbeuten gesteigert werden konnten. Dispersionsvorgänge schwächen die positiven Effekte jedoch mit zunehmender Länge des Festbetts ab.
Ein alternatives quasi-periodisches Reaktorkonzept ist der geneigt rotierende Festbettreaktor, bei dem die zeitliche in eine örtliche periodische Betriebsweise überführt wird. Die Reaktorneigung führt zur Separation der Gas- und Flüssigphase; die überlagerte Reaktorrotation resultiert in einer periodischen Be- und Entnetzung der im Reaktor fixierten Katalysatorschüttung, wodurch die Zugänglichkeit der aktiven Zentren für die Edukte, insbesondere der Gasphase, über die gesamte Reaktorlänge verbessert wird. Beim neuen Reaktorkonzept können sowohl die Drehzahl als auch die Neigung in Abhängigkeit vom Reaktionssystem (Reaktionsrate, Flüssigkeitseigenschaften, Katalysator etc.) angepasst werden, um die Strömung (siehe Abbildung 1) für den jeweiligen Prozess zu optimieren.
Zur Leistungsbewertung des neuen Reaktorkonzepts wurde zusätzlich zur hydrodynamischen Charakterisierung die jeweilige Strömung hinsichtlich der Raum-Zeit-Ausbeute einer Modellreaktion vergleichend zum Rieselbettreaktor untersucht. Als Modellreaktion wurde die irreversible unselektive Hydrierung von α-Methystyrol zu Cumol (C9H10+H2 --> C9H12) verwendet, bei der bereits bei moderaten Prozessbedingungen Stoffübertragungs¬limitierungen der Gasphase auftreten (Khadilkar et al., 1999). Die Veränderungen beim Reaktionsumsatz in Abhängigkeit von den Betriebsbedingungen (p = 1 bar und 6 bar, T = 25 °C und 40 °C, isotherm) können damit direkt der Stoffübertragung zugeordnet werden. Für die reaktionstechnischen Studien wurde der Reaktor mit einer dünnen Schicht Palladium-Katalysator (kugelförmiges γ-Al2O3-Trägermaterial, Ø 4 mm, egg-shell, 0,1 Ma.-% Pd) in der Mittelebene des Reaktors (L = 1,6 m, D = 0,1 m) zwischen Inertmaterial befüllt.

Keywords: Hydrogenation; process intensification; fixed bed reactor; alpha-methylstyrene; inclination; rotation

  • Poster
    Jahrestreffen Reaktionstechnik 2014, 28.-30.04.2014, Würzburg, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-19775


Residence time distribution in an inclined rotating fixed-bed reactor

Härting, H.-U.; Lange, R.; Schubert, M.

Abstract

Trickle bed reactors (TBR) are widely applied in the chemical industry for heterogeneous catalytic reactions. Besides their wide application, their performance often suffers from inherent drawbacks, like liquid maldistribution and poor mass and heat transfer rates; and are therefore a promising target for process intensification (PI). PI in such reactors can be realised by a periodic operation of the reactor, which is usually implemented by the modulation of liquid flow rate or liquid inlet concentration. Flow rate modulation is known to increase the mass and heat transfer rates and to significantly increase the time-averaged reaction rates compared to steady state results. On the other hand, the positive effects of the flow rate modulation vanish rapidly along the reactor length due to the fading pulse shape.
An alternative reactor concept for PI is the inclined rotating fixed-bed reactor, which retains the positive effects of flow rate modulation but eludes the deficiencies. The reactor inclination results in phase segregation, whereas the superimposed reactor rotation generates a periodic wetting and draining of the particles in the co-rotating fixed-bed (see Figure 1), thus, transforming the temporal periodic operation into a spatial periodic operation, which is present along the whole reactor length.
To optimize the reactor performance for a given chemical reaction, a reactor model is required, which considers the macro-mixing behaviour. Thus, the aim of this study is the systematic investigation of the influence of reactor inclination and rotation on the residence time distribution (RTD) for selected combinations of gas and liquid superficial velocities. The RTD is examined by the imperfect pulse method, whereat inhouse developed wire-mesh sensors are applied to measure the tracer concentration as well as the in-plane spatial phase distribution at two axial positions in the reactor. The experimental data are fitted to the axial dispersion model with open-open boundary conditions, from which the mean residence time and the Péclet number are extracted.
The results will be discussed with respect to flow regime maps that are based on tomographic imaging. Furthermore, the mean residence time and the Péclet number will be compared with data for the vertical reactor configuration (TBR) and with correlations from the literature.

Keywords: Residence time distribution; process intensification; fixed bed reactor; inclination; rotation

  • Lecture (Conference)
    21st International Congress of Chemical and Process Engineering (CHISA 2014), 23.-27.08.2014, Praha, Česká republika

Permalink: https://www.hzdr.de/publications/Publ-19774


Analyse des hydrodynamischen und reaktionstechnischen Verhaltens geneigt rotierender Festbettreaktoren für heterogene Mehrphasenreaktionen

Härting, H.-U.

Abstract

Der geneigt rotierende Festbettreaktor stellt ein neuartiges Reaktorkonzept mit dem Ziel der Prozessintensivierung dar. Anders als bei bisherigen Ansätzen zur Prozessintensivierung, bei denen dem Reaktor üblicherweise durch Strömungsmodulation eine zeitliche Periodizität aufgeprägt wird, erfolgt hier durch die geneigte Rotation die Aufprägung einer örtlichen Periodizität unter gleichzeitiger quasistationärer Durchströmung des Reaktors.
In der Forschungsarbeit wird die Hydrodynamik des neuen Reaktorkonzepts mittels nichtinvasiver bildgebender Verfahren (Gammastrahlen-Computertomographie) aufgeklärt. Zur Leistungsbewertung wird weiterhin der Einfluss der neuen Betriebsparameter Reaktorneigung und –rotation auf die Raum-Zeit-Ausbeute der Hydrierung von alpha-Methylstyrol zu Cumol untersucht. Klassische Methoden der Verfahrenstechnik, wie die Ermittlung der Verweilzeitverteilung durch Aufgabe von Stoßmarkierungen sowie die Bestimmung von Stoffüber-tragungskoeffizienten werden ebenfalls angewandt. Erste Ergebnisse belegen die Eignung des neuen Reaktorkonzepts zur Einstellung definierter Strömungsformen, z. B. einer stratifizierten Strömung, bei konstanten Durchsätzen.

Keywords: Process intensification; inclined rotating fixed bed reactor

  • Contribution to external collection
    in: Jubiläumsband 60 Jahre Dresdner Verfahrenstechnik, Dresden: Inst. für VT und UT, TU Dresden, 2014, 140-140

Permalink: https://www.hzdr.de/publications/Publ-19773


Experimental observation of spatially modulated laser-driven proton beams from micrometer thick targets

Metzkes, J.; Kluge, T.; Zeil, K.; Bussmann, M.; Kraft, S. D.; Cowan, T. E.; Schramm, U.

  • Lecture (Conference)
    Laser and Plasma Accelerator Workshop 2013, 02.-06.09.2013, Goa, India

Permalink: https://www.hzdr.de/publications/Publ-19772


ISR precision measurements of the 2 pi cross section below 1 GeV with the KLOE experiment and their impact on (g-2)_mu

Müller, S. E.

Abstract

During the last 10 years, the use of initial state radiation (ISR) has changed from being a novel method to an established technique for precision measurements of hadronic cross sections at e+e- -colliders. By means of a dispersion integral, these measurements enter the hadronic contribution to the theoretical value of the anomalous magnetic moment of the muon, which still shows a 2-3sigma discrepancy with the experimental value measured at the Brookhaven National Laboratory.

The KLOE collaboration, operating the KLOE experiment at the DAPHNE e+e- -collider in Frascati, has published 4 measurements of the cross section for the process e+e- ->pi+pi- in the energy region below 1 GeV, covering ~70% of the total hadronic contribution to the muon anomaly.

I will present the ISR method in detail using the KLOE measurements as examples, and show how these measurements contribute to the current status of the theoretical evaluation of (g-2)mu.

Keywords: (g-2)_mu; ISR; 2pi cross section; KLOE

  • Lecture (others)
    Institutskolloquium, 09.01.2014, Dresden, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-19771


Mini-Proceedings of the 14th Meeting of the Working Group on Rad. Corrections and MC Generators for Low Energies

Czyż, H.; Eidelman, S.; Fedotovich, G. V.; Korobov, A.; Müller, S. E.; Nyffeler, A.; Roig, P.; Shekhovtsova, O.; Teubner, T.; Venanzoni, G.; (Editors)

Abstract

The mini-proceedings of the 14th Meeting of the "Working Group on Rad. Corrections and MC Generators for Low Energies" held in Frascati on September 13, 2013, as a satellite meeting of the PHIPSI13 conference in Rome, are presented. These meetings, started in 2006, have as aim to bring together experimentalists and theorists working in the fields of meson transition form factors, hadronic contributions to (g-2)_\mu and the effective fine structure constant, and development of MonteCarlo generators and Radiative Corrections for precision e+e- and tau physics.

Keywords: energy: low; electron: energy: low; form factor: transition; fundamental constant: fine structure; radiative correction; magnetic moment; meson

  • Open Access Logo Contribution to proceedings
    14th Meeting of the Working Group on Rad. Corrections and MC Generators for Low Energies, 13.09.2013, Frascati, Italy
    Mini-Proceedings of the 14th meeting of the Working Group on Rad. Corrections and MC Generators for Low Energies arXiv:1312.0454 [hep-ph]

Permalink: https://www.hzdr.de/publications/Publ-19770


Constraining the Hadronic Contributions to the Muon Anomalous Magnetic Moment

Masjuan, P.; Venanzoni, G.; Czyż, H.; Denig, A.; Vanderhaeghen, M.; Eidelman, S.; Hu, H.; Kloss, B.; Kupsc, A.; Pettersson, J.; Ahmadov, A. I.; Kuraev, E. A.; Volkov, M. K.; Voskresenskaja, O. O.; Zemlyanaya, E. V.; Müller, S. E.; Ping, R. G.; Redmer, C. F.; Sanchez-Puertas, P.; Nugent, I.; Przedzinski, T.; Roig, P.; Shekhovtsova, O.; Was, Z.; Spiesberger, H.; Tomasi-Gustafsson, E.; Wang, Y.

Abstract

The mini-proceedings of the Workshop on "Constraining the hadronic contributions to the muon anomalous magnetic moment" which included the "13th meeting of the Radio MonteCarLow WG" and the "Satellite meeting R-Measurements at BES-III" held in Trento from April 10th to 12th, 2013, are presented. This collaboration meeting aims to bring together the experimental e+e- collider communities from BaBar, Belle, BESIII, CMD2, KLOE, and SND, with theorists working in the fields of meson transitions form factors, hadronic contributions to (g-2)_\mu and effective fine structure constant, and development of Monte Carlo generator and Radiative Corrections for precision e+e- and tau physics.

Keywords: muon: magnetic moment; form factor: transition; fundamental constant: fine structure; electron: pair production; BES; radiative correction; Monte Carlo; BaBar; CMD-2; BELLE; KLOE; SND; t; eta; pi0; radiation: initial-state interaction; electron positron: annihilation; photon photon: scattering; tau-: semileptonic decay; eta(958); effective Lagrangian: chiral; quantum chromodynamics: sum rule; anti-p p: annihilation

  • Open Access Logo Contribution to proceedings
    Workshop on "Constraining the hadronic contributions to the muon anomalous magnetic moment" which included the "13th meeting of the Radio MonteCarLow WG" and the "Satellite meeting R-Measurements at BES-III", 10.-12.04.2013, Trento, Italy
    Constraining the Hadronic Contributions to the Muon Anomalous Magnetic Moment arXiv:1306.2045 [hep-ph]

Permalink: https://www.hzdr.de/publications/Publ-19769


First Test of Lorentz Invariance in the Weak Decay of Polarized Nuclei

Dijck, E. A.; Bekker, H.; van den Berg, J. E.; Böll, O.; Hoekstra, S.; Jungmann, K.; Meinema, C.; Noordmans, J. P.; Nunez Portela, M.; Onderwater, C. J. G.; Pijpker, C.; van der Poel, A. P. P.; Santra, B.; Sytema, A.; Timmermans, R. G. E.; Versolato, O. O.; Willmann, L.; Wilschut, H. W.; Yai, K.; Müller, S. E.

Abstract

A new test of Lorentz invariance in the weak interactions has been made by searching for variations in the decay rate of spin-polarized 20Na nuclei. This test is unique to Gamow-Teller transitions, as was shown in the framework of a recently developed theory that assumes a Lorentz symmetry breaking background field of tensor nature. The nuclear spins were polarized in the up and down direction, putting a limit on the amplitude of sidereal variations of the form |(Γup − Γdown)|/(Γup + Γdown) < 3 × 10−3. This measurement shows a possible route toward a more detailed testing of Lorentz symmetry in weak interactions.

Keywords: PACS numbers: 11.30.Cp; 24.80.+y; 23.40.Bw

Permalink: https://www.hzdr.de/publications/Publ-19768


Thermophysical properties of the liquid GaInSn eutectic alloys

Plevachuk, Y.; Sklyarchuk, V.; Eckert, S.; Gerbeth, G.; Novakovic, R.

Abstract

Among different Ga-based alloys the overall properties of the Ga In Sn eutectic alloy make it particularly suitable for many applications. However, the experimental data on its thermophysical properties are rather discrepant. In this work, the electrical and thermal conductivity, thermoelectric power, viscosity, surface tension and density of the Ga In Sn eutectic have been investigated in the temperature range between the melting temperature and 700 K. The experimental results obtained were compared with the data available in the literature. New information from scaling properties of the Ga In Sn eutectic liquid alloy can be used as input for thermodynamic simulations or for the modeling of casting processes.

Keywords: thermophysical properties; liquid metals; GaInSn alloy

Permalink: https://www.hzdr.de/publications/Publ-19767


U(VI) retention by potential host rocks: Comparison of clay and crystalline rock

Schmeide, K.; Joseph, C.; Brendler, V.

Abstract

The long-term disposal of high-level nuclear waste in deep geological formations is discussed worldwide as main strategy for nuclear waste management. This approach requires the use of a multiple barrier system consisting of engineered, geo-engineered, and geological barriers to prevent any release of radionuclides into the geo- and biosphere. Sorption of radionuclides on the host rock of a repository is one important process for retarding their migration. Potential host rocks for nuclear waste repositories that are investigated internationally are salt domes, clay rock, and crystalline rock.
In the present work, the retention behavior of clay and crystalline rock towards U(VI) is compared. For this, sorption of U(VI) onto Opalinus clay from the Mont Terri rock laboratory (Switzerland) was studied in the presence of Opalinus clay pore water (pH = 7.6; I = 0.36 M) [1]. This is compared to U(VI) sorption onto anoxic diorite from Äspö Hard Rock Laboratory (Sweden) that was studied in the presence of Äspö groundwater (pH = 7.8; I = 0.18 M) [2]. The impact of various parameters, such as solid-to-liquid ratio, initial U(VI) concentration, temperature and atmosphere, on U(VI) sorption was studied.
Distribution coefficients, Kd values, determined for the U(VI) sorption onto Opalinus clay and diorite at 25 °C, amount to 22.2 ± 0.4 L/kg [1] and 3.8 ± 0.6 L/kg [2], respectively. This shows that U(VI) sorption onto Opalinus clay is stronger than onto diorite, which can be attributed to its larger surface area. TRLFS and ATR FT-IR spectroscopic measurements showed that the U(VI) speciation in Opalinus clay pore water as well as in diorite groundwater is predominated by the weakly sorbing Ca2UO2(CO3)3(aq) complex. Reduction processes of U play only a subordinate role. The U(VI) sorption increases with increasing temperature.
U(VI) diffusion experiments with intact Opalinus clay bore cores [3] also showed that Opalinus clay has a good retardation potential for U(VI) since the molecular diffusion process through Opalinus clay retards the migration of Ca2UO2(CO3)3(aq).
Generally, it can be concluded that U(VI) retention by clay rock is stronger than that by crystalline rock. This supports decisions to use clay rock not only as host rock but also as backfill material. In case of crystalline rock the natural retention capacity for U is insufficient and has to be strengthened by additional geo-technical and technical barriers that preserve their enclosing capabilities over very long time scales.

[1] Joseph, C., Schmeide, K., Sachs, S., Brendler, V., Geipel, G., Bernhard, G.: Sorption of uranium(VI) onto Opalinus clay in the absence and presence of humic acid in Opalinus clay pore water. Chem. Geology 284, 240-250 (2011).
[2] Schmeide, K., Gürtler, S., Müller, K., Steudtner, R., Bok, F., Joseph, C., Brendler, V.: Interaction of U(VI) with Äspö diorite: A batch and in situ ATR FT-IR sorption study. Appl. Geochem., under review (2014).
[3] Joseph, C., Van Loon, L.R., Jakob, A., Steudtner, R., Schmeide, K., Sachs, S., Bernhard, G.: Diffusion of U(VI) in Opalinus clay: Influence of temperature and humic acid. Geochim. Cosmochim. Acta 109, 74-89 (2013).

Keywords: Uranium; sorption; retention; clay rock; crystalline rock

  • Contribution to proceedings
    RadChem 2014 - 17th Radiochemical Conference, 11.-16.05.2014, Mariánské Lázně, Czech Republic
  • Invited lecture (Conferences)
    RadChem 2014 - 17th Radiochemical Conference, 11.-16.05.2014, Mariánské Lázně, Czech Republic

Permalink: https://www.hzdr.de/publications/Publ-19766


Nanostructuring Ge Surfaces by Ion Irradiation

Facsko, S.; Fritzsche, M.; Ou, X.; Keller, A.

Abstract

Low energy ion irradiation induces the formation of periodic surface patterns. These struc-tured surfaces exhibit periodicities in the range of a few tens to hundreds of nanometers and are promising templates for producing nanostructured thin films. Periodic ripple patterns with wave vector parallel to the ion beam direction are observed frequently for ion irradiation at incidence angles between 50° and 70° to the surface normal. At normal incidence dot or hole patterns with hexagonal symmetry are observed only under special irradiation conditions.
The formation of hexagonally arranged hole patterns on Ge(001) surfaces induced by irradia-tion at normal incidence was studied with a scanned focused Ga+ ion beam (FIB). Hole pat-terns with characteristic length of about 50 nm are observed in a narrow energy range of 4 - 6 keV. Hole patterns induced by FIB irradiations were compared to broad beam Ga+ and Ge+ irradiations with the same ion energy. No differences were found demonstrating that FIB irra-diations with a large overlap of the scanned beam are identical to conventional broad beam irradiations.
Furthermore, ion the formation of checkerboard patterns on Ge surfaces was observed dur-ing 1 keV Ar+ irradiation at normal incidence and higher substrate temperature. Similar to the case of ion irradiated crystalline metal surfaces on the crystalline Ge surface a new instability appears at temperatures above the recrystallization temperature due to the Ehrlich-Schwoebel barrier. In this case, we observe regular checkerboard or hole patterns with the symmetry of the patterns reflecting the crystal structure of the irradiated surface.

Keywords: ion irradiation; surface patterning; Ge; nanostructures

Involved research facilities

Related publications

  • Lecture (Conference)
    18th International Conference on Surface Modification of Materials by Ion Beams (SMMIB 2013), 15.-20.09.2013, Kusadasi, Türkiye

Permalink: https://www.hzdr.de/publications/Publ-19765


Reverse epitaxy: patterns on crystalline Ge surfaces

Facsko, S.; Ou, X.; Keller, A.

Abstract

Low energy ion irradiation induces the formation of periodic surface patterns. These structured surfaces exhibit periodicities in the range of a few tens to hundreds of nanometers and are promising templates for producing nanostructured thin films. Periodic ripple patterns with wave vector parallel to the ion beam direction are observed frequently for ion irradiation at incidence angles between 50° and 70° to the surface normal. At normal incidence dot or hole patterns with hexagonal symmetry are observed only under special irradiation conditions.
At room temperature semiconductor surfaces are amorphized by ion irradiation. However, at temperatures higher than the recrystallization temperature the surface remains crystalline and novel ion induced patterns appear with the symmetry of the crystal structure of the material. We present pattern formation on Ge surfaces during 1 keV Ar+ ion irradiation under normal incidence at temperature above the recrystallization temperature of Ge. Similar to the case of ion irradiated crystalline metal surfaces on the crystalline Ge surface a new instability appears at higher temperature due to the Ehrlich-Schwoebel barrier. In this case, regular checkerboard or hole patterns with the symmetry of the patterns reflecting the crystal structure of the irradiated surface are observed.

Keywords: ion irradiation; surface patterning; homoepitaxy

Involved research facilities

Related publications

  • Lecture (Conference)
    Symposium on „Nanoscale Pattern Formation at Surfaces“, 26.-30.05.2013, Copenhagen, Danmark

Permalink: https://www.hzdr.de/publications/Publ-19764


Ion Irradiation of Ge: From Sponge-Like Structures to Periodic Patterns

Böttger, R.; Ou, X.; Fritzsche, M.; Keller, A.; Heinig, K. H.; Bischoff, L.; Liedke, B.; Facsko, S.

Abstract

Ion irradiation of Ge surfaces leads to a variety of different morphologies depending on the irradiation conditions. In the energy range of few MeV down to a few tens of keV swelling and the formation of sponge like structures are observed. When lowering the energy these porous structures turn into self-organized periodic surface patterns: at off-normal incidence angles well-known ripple patterns with wave vector parallel or perpendicular to the ion beam direction appear, whereas at normal incidence angles hexagonally ordered dot or hole patterns can be formed. The structure size of the patterns is in the range of 10 to 100 nm and, occa-sionally, a high degree of ordering is achieved.
On materials which turn amorphous during ion irradiation the formation of periodic patterns relies on at least two inter-playing processes: surface roughening due to local variation of ero-sion rate and smoothing via diffusional processes. In addition, atomic relocations on the sur-face and in the bulk resulting from the collision cascade have been identified as equally im-portant or even dominating. At the atomic level the creation of surface and bulk defects, sput-tering, and the influence of the ion beam on surface diffusion processes play a decisive role in the morphology evolution.
At high temperature, when amorphization of the Ge surface is prevented by recrystallization, novel surface patterns are developing during ion irradiation. Similar to the case of ion irradia-tions of crystalline metal surfaces a new instability appears on the crystalline Ge surface due to a Ehrlich-Schwoebel barrier for ascending ion induced vacancies. In this case, regular checkerboard patterns are evolving on the Ge (001) surface with structures oriented along the <100> direction.
Moreover, a new mechanism for pattern formation on Ge has been discovered recently: by polyatomic Bi ion irradiation or monoatomic Bi ion irradiation of hot Ge melt pools are in-duced at the Ge surface by the incident ions. These melt pools can also lead to a surface insta-bility and thus to the formation of periodic dot patterns at normal incidence.
We will present an overview of the different morphologies induced by ion irradiation on Ge surfaces and analyze the dominant formation mechanism.

Keywords: ion irradiation; surface patterning; vacancy diffusion

Involved research facilities

Related publications

  • Lecture (Conference)
    Workshop on "Particle - surface interactions: from surface analysis to materials processing" (PASI 2013), 03.-5.05.2013, Luxembourg, Luxembourg

Permalink: https://www.hzdr.de/publications/Publ-19763


Interaction of highly charged ions with surfaces

Facsko, S.

Abstract

Highly charged ions (HCI) release a large amount of potential energy during their neutralization when interacting with solid surfaces. This energy is mostly retained in the solid leading to local phase transformations on a nanometer scale. The study of modifications on surfaces and thin foils as a function of potential and kinetic energy gives insight into the interaction of HCIs with surfaces as well as into phase transformations under these non-equilibrium conditions.

Keywords: Highly charge ions; surfaces; nanostructures

Involved research facilities

Related publications

  • Invited lecture (Conferences)
    11th European Conference on Atoms, Molecules and Photons, 24.-28.06.2013, Aarhus, Danmark

Permalink: https://www.hzdr.de/publications/Publ-19762


Spin Nernst Angle: Definition and qualitative Estimation for Cu Alloys

Zahn, P.; Gemming, S.

Abstract

The spin Nernst effect describes the occurrence of a spin current perpendicular to an applied thermal gradient and the spin quantization axis in a non-magnetic material. To quantify the effect, the spin Nernst angle will be defined in a more general way than in ref. [1]. This allows for a clear separation of the transverse spin current into two opposite contributions proportional to the spin Hall angle and the spin Nernst angle, respectively. Qualitative trends for Cu alloys with 3d, 4d and 5d defects extending a resonant scattering model by Fert and Levy [2] will be presented.
The work was partially supported by the Initiative and Networking Fund of the German Helmholtz Association, Helmholtz Virtual Institute MEMRIOX (VH-VI-442) and the DFG Priority Program 'Nanostructured Thermoelectrics' (ZA264/3-2).
[1] K. Tauber et al., Phys. Rev. Lett. 109, 026601 (2012)
[2] A. Fert and P.M. Levy, Phys. Rev. Lett. 106, 157208 (2011)

  • Poster
    550. WE-Heraeus-Seminar 'Spin Transport beyond Boltzmann', 08.-10.01.2014, Bad Honnef, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-19761


Memory Effects in Resistive Ion-beam Modified Oxides

Zahn, P.; Gemming, S.; Potzger, K.; Schmidt, H.; Mikolajick, T.; Slesazeck, S.; Stöcker, H.; Abendroth, B.; Meyer, D. C.; Dittmann, R.; Rana, V.; Waser, R.; Ronning, C.; Spaldin, N. A.; Basov, D.

Abstract

The Virtual Institute MEMRIOX establishes a joint research initiative in the field of ion-tailored oxide-based memristive elements, to be pursued within a novel and unique combination of core competences from the Helmholtz centers Dresden-Rossendorf and Jülich and their university partners in Dresden, Freiberg, Jena, San Diego, and Zürich.
A nanoscale memristive element may prove the concept of the ultimate future non-volatile memory cell with a resistance set directly by electric currents. The Virtual Institute aims at stepping beyond the established layer-by-layer control of intrinsic defects during the synthesis of memristive elements. The project is financed by the Initiative and Networking Funds of the Helmholtz Association (VH-VI-442).

Involved research facilities

Related publications

  • Poster
    E-MRS Spring Meeting, 27.-31.05.2013, Strasbourg, France

Permalink: https://www.hzdr.de/publications/Publ-19760


Gelatin-based biomaterials with tailorable mechanical properties as promising matrices for soft-tissue replacement

Ullm, S.; Tondera, C.; Gebauer, T.; Neffe, A. T.; Lendlein, A.; Pietzsch, J.

Abstract

Objectives
Gelatin-based hydrogels are promising degradable materials for soft tissue regeneration. Our approach aims at biopolymer-based polymer networks with tailorable elastic properties and degradation behavior due to different degrees of crosslinking with lysine diisocyanate ethyl ester. Two gelatin-based hydrogel films were compared regarding their influence on vitality, adhesion and proinflammatory activation of both endothelial cells and human macrophages, to investigate representative cells being responsible for tissue integration and degradation of the material.
Materials & methods
10 wt% gelatin solutions were crosslinked with three- (G10LNCO3) or eight-fold (G10LNCO8) excess of isocyanate groups, resulting in hydrogels with tailored Young’s moduli (13 and 55 kPa), swelling (1200 and 350 vol%) and degradation time [1]. For experiments on cell vitality, human leukemia HL-60 cells differentiated to macrophages (MΦ), and primary human aortic endothelial cells (HAEC) were incubated with material eluates for 24 and 48 h. Furthermore, these cells were seeded directly on swollen hydrogels for adhesion assays at 2 or 4 h, as well as for microscopic studies on their infiltration ability into the hydrogels after 48 h and 7 days. In order to characterize the ability of hydrogels to induce proinflammatory effects in cells, expression of COX-2 and the receptor for advanced glycation endproducts was quantified by western blotting after 48 h.
Results
MΦ showed a higher vitality and HAEC showed a lower vitality after incubation with material eluates, which can only be related to fragments formed by partial degradation. Interestingly, the strong difference in degradation rate, with G10LNCO3 showing a mass loss of 60 wt% within 6 days, while G10LNCO8 showed only 5–10 wt% mass loss, did not have an influence on the vitality. The adhesion ability of MΦ to swollen hydrogels was significantly decreased to 30% (p<0.05, ANOVA) for G10LNCO3 and to 38% for G10LNCO8, respectively, when compared with adhesion on normal cell culture plastic. By contrast, HAEC in part showed enhanced adhesion to the materials (116% for G10LNCO3, n.s.; 145% for G10LNCO8, p<0.05). This suggests that gelatin offers adhesion sequences for HAEC, but not for MΦ. A higher degree of crosslinking resulted in higher adhesion of both cell types. Additionally, both cell types infiltrated the materials within 4 days, which highlights the degradability of the material, putatively supported by cell-mediated mechanisms. Direct contact with the materials resulted in an increment of COX-2 expression in both cell lines, with a higher degree of hydrogel crosslinking leading to elevated COX-2 expression. Receptor for advanced glycation endproducts synthesis remained unaffected in both MΦ and HAEC.
Conclusion
The hydrogels provide both a surface preventing adhesion of macrophages and supporting adhesion of endothelial cells, which might lead to good tissue integration. However, the materials or their degradation products induced proinflammatory effects on MΦ depending on the degree of crosslinking. In further studies, these hydrogel films will be studied in animal models concerning their initial interaction with the organism after implantation and their degradation.
Financial & competing interests disclosure
This work is part of a research initiative within the Helmholtz-Portfoliotheme “Technologie und Medizin - Multimodale Bildgebung zur Aufklaerung des In vivo -Verhaltens von polymeren Biomaterialien”.
Reference
1 Tronci G, Neffe AT, Piercea BF, Lendlein A. An entropy–elastic gelatin-based hydrogel system. J. Mater. Chem. 20, 8875–8884

Involved research facilities

  • PET-Center
  • Abstract in refereed journal
    Regenerative Medicine 8(2013), S201
  • Poster
    World Conference on Regenerative Medicine, 23.-25.10.2013, Leipzig, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-19759


Radiosynthesis of 5-(2-[18[F]fluoroethyl)-sunitinib as inhibitor of VEGFR-2 – first results

Kniess, T.; Kuchar, M.; Bergmann, R.; Steinbach, J.; Pietzsch, J.

Abstract

Aim:

Radiolabeled inhibitors of receptor tyrosine kinases (RTK) might be suitable probes for monitoring pathophysiological situations related to enhanced expression of the vascular endothelial growth factor receptor (VEGFR). Imaging of
angiogenesis with PET could facilitate for the individual patient the evaluation of e.g. the success of corresponding anti-angiogenic chemotherapy or monitoring the stimulation of the endogenous adaptive vessel growth after implantation of
bioMaterials. For this purpose we developed an 18F-radiolabeled probe, 5-(2-[18F]fluoroethyl)-sunitinib basing on the lead structure of sunitinib®, a multi-kinase inhibitor selective to VEGFR-2.

Materials and Methods:

The non-radioactive reference compound 5-(2-fluoroethyl)-sunitinib was synthesized by Knoevenagel condensation of 5-(2-fluoroethyl)-indoline-2-one with N-[2-(diethylamino)ethyl]-2,4-dimethyl-5-formyl-1H-pyrrole-3-carboxamide. Two suitable precursors for radiolabeling, A and B were obtained by reacting a 5-(2-bromoethyl)-substituted sunitinib derivative with silver 4-toluenesulfonate and silver methanesulfonate, respectively. [18F]Fluoride was produced by the 18O(p,n)18F reaction from [18O]H2O in a 18/9 cyclotron (IBA), separated by an anion exchange cartridge (QMA, Waters) and activated by azeotropic drying with acetonitrile in a stream of nitrogen before use. In a set of radiolabeling experiments 4 mg of precursor A or B were reacted with [18F]fluoride in 500μL of solvent at a scheduled temperature regime for 20 min. The yield of 5-(2-[18F]fluoroethyl)-sunitinib was determined by radio-TLC (silicagel, THF/TEA=9/1).

Results:

The non-radioactive 5-(2-fluoroethyl)-sunitinib was investigated in a competition binding assay against VEGFR-2; a Kd value of 9 nM is justifying its classification as specific inhibitor. The radiolabeling reaction of the precursors A and B was performed at temperatures varying from 60, 90, and 120°C in one of the following solvents: acetonitrile, DMF, and DMSO. As result it turned out that for both precursors in DMF and DMSO only poor labeling yields about 2% could be achieved, whereas by using acetonitrile at 90°C the yield of 5-(2-[18F]fluoroethyl)-sunitinib increased to 7-9%. Reaction temperatures higher than 90°C lead to fast and complete decomposition of the precursors as monitored by several non-radioactive by-products on TLC. Notably no difference in yield was observed by using the methanesulfonyl- or the 4-toluenesulfonyl-precursor.

Conclusions:

The new VEGFR-2 targeted radiolabeled probe 5-(2-[18F]fluoroethyl)-sunitinib was successfully synthesized by radiofluorination of the corresponding methanesulfonyl- or 4-toluenesulfonyl-substituted precursor with [18F]fluoride. First attempts to transfer the labeling method to a remote-controlled system were successful. By now a procedure for the purification of the radiotracer by semi-preparative HPLC and SPE is under development to enable the radiopharmacological evaluation.

Involved research facilities

  • PET-Center
  • Poster
    Annual Congress of the European Association of Nuclear Medicine, 19.-23.10.2013, Lyon, France
  • Abstract in refereed journal
    European Journal of Nuclear Medicine and Molecular Imaging 40(2013)Suppl. 2, S316
    DOI: 10.1007/s00259-013-2535-3

Permalink: https://www.hzdr.de/publications/Publ-19758


Pulmonary Blood Flow Increases in Damaged Regions Directly after Acid Aspiration in Rats

Richter, T.; Bergmann, R.; Knels, L.; Hofheinz, F.; Kasper, M.; Deile, M.; Pietzsch, J.; Ragaller, M.; Koch, T.

Abstract

Background: After gastric aspiration events, patients are at risk of pulmonary dysfunction and the development of severe acute lung injury and acute respiratory distress syndrome, which may contribute to the development of an inflammatory reaction. The authors' aim in the current study was to investigate the role of the spatial distribution of pulmonary blood flow in the pathogenesis of pulmonary dysfunction during the early stages after acid aspiration.
Methods: The authors analyzed the pulmonary distribution of radiolabeled microspheres in normal (n = 6) and injured (n = 12) anesthetized rat lungs using positron emission tomography, computed tomography, and histological examination.
Results: Injured regions demonstrate increased pulmonary blood flow in association with reduced arterial pressure and the deterioration of arterial oxygenation. After acid aspiration, computed tomography scans revealed that lung density had increased in the injured regions and that these regions colocalized with areas of increased blood flow. The acid was instilled into the middle and basal regions of the lungs. The blood flow was significantly increased to these regions compared with the blood flow to uninjured lungs in the control animals (middle region: 1.23 [1.1; 1.4] (median [25%; 75%]) vs. 1.04 [1.0; 1.1] and basal region: 1.25 [1.2; 1.3] vs. 1.02 [1.0; 1.05], respectively). The increase in blood flow did not seem to be due to vascular leakage into these injured areas.
Conclusions: The data suggest that 10 min after acid aspiration, damaged areas are characterized by increased pulmonary blood flow. The results may impact further treatment strategies, such as drug targeting.

Involved research facilities

  • PET-Center

Permalink: https://www.hzdr.de/publications/Publ-19757


Neutronics diagnostics for European ITER TBMs: Activation foil spectrometer for short measurement cycles

Klix, A.; Domula, A.; Fischer, U.; Gehre, D.; Pereslavtsev, P.; Rovni, I.

Abstract

An important aim of neutronics Test Blanket Module (TBM) experiments in ITER will be to check the prediction accuracy of nuclear responses in an environment closer to a future fusion power reactor than so far provided by existing facilities. The development of measurement methods suitable for the harsh environment in an ITER TBM has been addressed in several recent R&D programs supported by Euratom. Within this framework, KIT is developing an activation foil spectrometer for the measurement of local neutron flux densities in the TBM. We intend to establish a measurement method which allows to record the induced activities in small packages of activation foils simultaneously and to calculate the corre- sponding spectral neutron flux densities with moderate time resolution of tens of seconds immediately after extraction from the TBM. In the present work we propose a candidate set of activation foil materials which cover the neutron energy range from thermal to 14 MeV. In order to assess their basic suitability for such measurements, we have computed induced gamma-ray activities in the foils using a calculated neutron spectrum in a representative position in the European HCPB TBM assuming a short irradiation time of 30 s. In a further step we have investigated pulse height spectra which would be obtained in a typical gamma-ray measurement arrangement in a HPGe detector and concluded that the proposed set of activation foils should be basically suitable for such a measurement system but require improvement of relevant cross sections uncertainties.

Keywords: Neutron flux density; Activation foil; Neutron flux spectrometer; Test Blanket Module

Permalink: https://www.hzdr.de/publications/Publ-19756


Intersublevel dephasing in InAs/GaAs quantum dots below the Reststrahlen band

Teich, M.; Stephan, D. R.; Winnerl, S.; Schneider, H.; Wilson, L. R.; Helm, M.

Abstract

Using transient four-wave mixing in the terahertz range, we have measured the s-p inter-sublevel dephasing time in self-assembled InAs/GaAs quantum dots for transition energies below the Reststrahlen band. Dephasing times of up to 600 ps at a photon energy of 18 meV have been determined. By comparing pump-probe and four-wave mixing measurements, we show that there is no significant influence of any pure dephasing process at low temperature. The linear temperature dependence is consistent with acoustic phonon scattering.

Keywords: quantum dots; THz; FEL; dephasing

Involved research facilities

Related publications

Permalink: https://www.hzdr.de/publications/Publ-19755


Status of Development of the Reactor Dynamics Code DYN3D

Rohde, U.; Kliem, S.; Duerigen, S.; Bilodid, Y.

Abstract

The reactor dynamics code DYN3D has been developed in HZDR and its predecessor organizations over more than 20 years. Originally, the code was developed for the analysis of reactivity-initiated transients and accidents in Russian VVER type reactors and recommended by the IAEA as a reference code for the VVER-440/V213 reactor. In the meantime, the code became an advanced simulation tool for transients in Light Water Reactors with 16 users in 7 countries.
The DYN3D code comprises neutron statics and kinetics calculations, thermal hydraulics of the reactor core and modeling of transient fuel rod behavior. In the paper, an outline on the basic models is given.
3D neutronics is based on nodal expansion methods for hexagonal, square and trigonal geometry of the fuel assemblies. With respect to neutron energy resolution, two-group and multi-group versions are available. Besides of standard diffusion approximation, simplified P3 (SP3) transport approach for square and trigonal lattices is implemented. Neutronic calculations can be performed with resolution on fuel assembly or pin-wise level.
Neutronics is coupled to thermal hydraulics, where the reactor core is modeled by parallel coolant channels. One- and two-phase flow in the channels is described based on a four-equations model. The code comprises a simplified thermo-mechanical model of the transient fuel behavior.
Macroscopic neutronic cross section libraries containing the dependence of cross sections from fuel burn-up and thermal hydraulics feedback parameters like fuel temperature, moderator density and temperature or boron concentration can be linked to the code through various data interfaces.
Besides of the basic models, the code disposes of various special features like:

  • Zone-wise inner-nodal neutron flux reconstruction at pin level
  • Reactor poisson dynamics
  • Consideration of history effects in burn-up
  • Decay heat model with consideration of the power history before shut down
  • Calculation of steady states with external source
Comprehensive efforts have been made on verification and validation of DYN3D against numerical benchmarks, dedicated experiments on neutron kinetics and thermal hydraulics as well as real plant data. Some examples for verification of new models like history effects and SP3 method on trigonal lattice will be given.
Last but not least, examples on the application of DYN3D for the simulation of reactivity initiated accidents like control rod ejection will be shown. An advanced graphical tools for the visualization of the results of calculations will be demonstrated.

Keywords: reactor dynamics; transient simulation; neutron kinetics; thermo-hydraulics model; reactivity initiated accidents; computer code; VVER type reactors

  • Lecture (Conference)
    The 8th International Scientific and Technical Conference “Safety Assurance of NPP with WWER”, 28.-31.05.2013, Podolsk, Russia

Permalink: https://www.hzdr.de/publications/Publ-19754


Sensitivity Analysis o the Ranking of Input Uncertainties withe Respect to Peak Cladding temperature Uncertainty in a PWR LBLOCA Analysis

Rohde, U.; Kozmenkov, Y.

Abstract

An uncertainty analysis of a large break loss-of-coolant accident (LBLOCA) for a German PWR Konvoi was performed using a statistical method, which is based on the Wilks’ theory. The evaluated output parameter is the peak cladding temperature (PCT). The primary goal of this paper is a ranking of the input uncertainties, according to their contributions to the PCT uncertainty in the ATHLET simulation of PWR LBLOCA, by performing a sensitivity analysis. It was shown, that the starting (extended) set of varied parameters can be considerably reduced without any statistically significant influence on the uncertainty analysis results.
The statistical t-test was used to minimize the number of varied parameters. A set of uncertainty parameters with significant impact on the uncertainty of the PCT was identified. The main contribution to the uncertainty of the first cladding temperature maximum during the blowdown phase of the accident is produced by the core parameters that affect the fuel’s stored energy at the beginning of the accident. However, the major contributors to the uncertainty of the second PCT maximum are the uncertainties in the code models, and first of all the uncertainties in the heat transfer coefficients for dispersed and pure steam flows.

Keywords: statistical uncertainty analysis; sensitivity analysis; Large Break LOCA; peak cladding temperature

  • Lecture (Conference)
    23rd Symposium of AER on VVER Reactor Physics and Reactor Safety, 30.09.-04.10.2013, Strbske Pleso, Slovakia
  • Contribution to proceedings
    23rd Symposium of AER on VVER Reactor Physics and Reactor Safety, 30.09.-04.10.2013, Strbske Pleso, Slovakia
    Proceedings of the 23rd Symposium of AER on VVER Reactor Physics and Reactor Safety, Budapest: MTA Energoatom, 978-963-7351-21-1, 501-512

Permalink: https://www.hzdr.de/publications/Publ-19753


Current status and future perspectives of the COBRA experiment

Ebert, J.; Fritts, M.; Gößling, C.; Goepfert, T.; Gehre, D.; Hagner, C.; Heidrich, N.; Koettig, T.; Neddermann, T.; Oldorf, C.; Quante, T.; Rajek, S.; Reinicke, O.; Schulz, O.; Tebruegge, J.; Timm, J.; Wonsak, B.; Zuber, K.

Abstract

The aim of the COBRA experiment is to prove the existence of neutrinoless double-beta-decay (0v𝛽𝛽-decay) and to measure its half-life. For this purpose a detector array made of cadmium-zinc-telluride (CdZnTe) semiconductor detectors is operated at the Gran Sasso Underground Laboratory (LNGS) in Italy. This setup is used to investigate the experimental issues of operating CdZnTe detectors in low-background mode and to identify potential background components, whilst additional studies are proceeding in surface laboratories. The experiment currently consists of monolithic, calorimetric detectors of coplanar grid design (CPG detectors). These detectors are 1 × 1 × 1 cm3 and are arranged in 4 × 4 detector layers. Ultimately four layers will be installed by the end of 2013, of which two are currently operating. To date 82.3 kg⋅days of data have been collected. In the region of interest for 116 Cd around 2.8 MeV, the median energy resolution is 1.5% FWHM, and a background level near 1 counts/keV/kg/y has been reached. This paper gives an overview of the current status of the experiment and future perspectives.

Keywords: CZT COBRA double beta decay neutrino

Permalink: https://www.hzdr.de/publications/Publ-19752


First Experimental Results on the Azimuthal Magnetorotational Instability

Seilmayer, M.

Abstract

More than 50 years ago, Velikhov and Chandrasekhar discovered a hydromagnetic instability which was later coined magnetorotational instability (MRI). For an ideal fluid it implies that a Couette flow between two corotating cylinders in the presence of a magnetic field is only stable as long the angular velocity increases outwards, quite in contrast to Rayleigh's hydrodynamic stability condition which demands the angular momentum to increase outwards.
The experimental verification of the standard version of MRI, with only an axial field being applied, is difficult since it requires both the magnetic Reynolds and the Lundquist number to be in the order of 1. The helical version of MRI, with an azimuthal field applied in addition to the axial one, is much easier to investigate since it requires only a Reynolds number in the order of 1000 and a Hartmann number in the order of 10. Very similar requirements apply to the so-called azimuthal MRI (AMRI), a non-axisymmetric (m=1) version that occurs for purely or strongly dominant azimuthal magnetic fields.
We present first experimental results on the AMRI obtained at the PROMISE facility with an enhanced power supply which can deliver currents up to 20 kA. For this system, we discuss the elaborate measures that were needed to obtaine a reasonable signal-to-noise ratio of the ultrasonic measurement system. In dependence on various parameter variations, some typical features of the observed instability, such as the energy content, the wavelength, and the frequency are analysed and compared with theoretical predictions.

Keywords: AMRI; magnetorotational instability

  • Lecture (Conference)
    eGdR Symposium, 08.-12.07.2013, Ascona, Schweiz

Permalink: https://www.hzdr.de/publications/Publ-19751


Detecting Supernova Dust on the Earth's Sea Floor with AMS

Feige, J.; Wallner, A.; Breitschwerdt, D.; Fifield, L. K.; Korschinek, G.; Merchel, S.; Rugel, G.; Steier, P.; Tims, S.; Winkler, S. R.; Golser, R.

Abstract

An 60Fe anomaly was detected with accelerator mass spectrometry (AMS) - a very sensitive method to measure extremely low isotopic ratios - in a 2 Myr old layer of a ferromanganese crust (Knie et al., 2004). This signal is assumed to be of supernova origin and might be linked to the observation of our solar system being located in a Region of thin, hot interstellar medium. This region, called the Local Bubble, was presumably formed by multiple supernova explosions starting 14 Myr ago. Calculations suggest that at least one of these supernovae occured close enough to the solar system to leave a detectable 60Fe trace on Earth.
New AMS measurements are performed in deep-sea sediments from the Pacific Ocean. An international collaboration of different AMS facilities searches for signatures of the long-lived radionuclides 26Al, 53Mn, and 60Fe in a time range from 1.7 to 3.1 Myr. Magnetostratigraphic dating of the samples is confirmed by measurements of the cosmogenic radionuclide 10Be. All 10Be and 26Al measurements are finished, 53Mn and 60Fe is in progress. First results will be presented and discussed.

Keywords: accelerator mass spectrometry; AMS; supernova; cosmogenic radionuclide

Involved research facilities

Related publications

  • Lecture (Conference)
    Symposium "Fathoming Stellar Evolution with Laboratory Precision", DPG Frühjahrstagung des Arbeitskreises Atome, Moleküle, Quantenoptik und Plasmen (AMOP), 17.-21.03.2014, Berlin, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-19750


Evaluation of the Survey 2011/12 amongest doctoral student within the Helmholtz Association

Seilmayer, M.; Jose, D.; Thonicker, I.; Schmidt, L.

Abstract

The Helmholtz Juniors are the PhD students Network of the German Helmholtz-Association (Helmholtz-Gemeinschaft Deutscher Forschungszentren, HGF). Their main effort is an intensive collaboration between the PhD students of the different Helmholtz research centers and an improvement of the PhD education. They consist of elected or delegated members of the PhD representative teams of each center.
In order to represent the interest of the PhD 1 students to the Helmholtz Association, we need to have precise and up-to-date knowledge about the working conditions, problems and wishes of PhDs. This survey is a crucial basis therefore. After 2008 and 2010, this report refers to the third wave of the Helmholtz wide phd survey. Its results technically enable us to even describe developments over the last 4 years, which should be the aim of a separate, comprehensive report in the near future.
Within the Helmholtz-Juniors, the working group PhD-Survey developed, conducted, analyzed, and reported the survey and its data. The raw data is hold by the working group. The report is free to be used by the Helmholtz Centers as well as its PhDs. In the report, the centers are coded by a random number, while each center is told its own number only.
In the report, firstly we provide information about the background of the participants. Secondly we address four main topics of interest, namely PhD project planning, the income situation of PhD students, conditions for starting a family during the time as PhD student and the situation of students of foreign nationalities within the HGF. And thirdly we report results regarding the Helmholtz graduate schools. We do neither refer to every question in the survey nor do we present cross tables or indepth information. If one is interested in further analysis, she may contact the members of this working group. The complete questionnaire is appended.

Keywords: PhD Representation; Helmholtz Juniors; Survey; HeJu

  • Article, self-published (no contribution to HZDR-Annual report)
    Forschungszentrum Rossendorf 2013
    2011/12
    33 Seiten
    ISSN: 2191-8708, eISSN: 2191-8716

Permalink: https://www.hzdr.de/publications/Publ-19749


Historical Aspects of Subsecond Thermal Processing

Voelskow, M.; Yankov, R. A.; Skorupa, W.

Abstract

From atom bomb simulation to advanced semiconductor processing - what a bellicose - to peaceful bottom - up approach this research field experienced

Keywords: historical aspects; subsecond thermal processing

Involved research facilities

Related publications

  • Book chapter
    Wolfgang Skorupa, Heidemarie Schmidt: Subsecond Annealing of Advanced Materials: Annealing by Lasers, Flash Lamps and Swift Heavy Ions (Springer Series in Materials Science), Switzerland: Springer, 2014, 978-3-319-03130-9, 1-13
    DOI: 10.1007/978-3-319-03131-6_1
    Cited 6 times in Scopus

Permalink: https://www.hzdr.de/publications/Publ-19748


Entwicklung szintillatorbasierter Echtzeit-Detektoren für laserbeschleunigte Protonen

Metzkes, J.; Karsch, L.; Kraft, S. D.; Pawelke, J.; Richter, C.; Schürer, M.; Sobiella, M.; Stiller, N.; Zeil, K.; Schramm, U.

Involved research facilities

Related publications

  • Poster
    44. Jahrestagung der Deutschen Gesellschaft für Medizinische Physik, 18.-21.09.2013, Köln, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-19747


Reflective Optical Probing of the Critical Density Surface in Laser-Produced Plasmas

Metzkes, J.; Zeil, K.; Kraft, S. D.; Kluge, T.; Schramm, U.; Mondal, S.; Ravindra Kumar, G.

  • Lecture (Conference)
    Meeting Prof. G. Ravindra Kumar Tata Institute of Fundamental Research 2013, 30.08.2013, Mumbai, India

Permalink: https://www.hzdr.de/publications/Publ-19746


III-V Quantum Dots in Dielectrics Made by Ion Implantation and Flash Lamp Annealing

Prucnal, S.; Turek, M.; Gao, K.; Zhou, S.; Pyszniak, K.; Drozdziel, A.; Zuk, J.; Skorupa, W.

Abstract

Different semiconductor nanocrystals synthesized in dielectrics on silicon are very interesting for applications in non-volatile memories and photovoltaics. In this paper we present an overview of microstructural and opto-electronic properties of different III-V quantum dots embedded in SiO2 and Si3N4 made by sequential ion implantation and millisecond range flash lamp annealing. It is shown that within 20 ms post-implantation annealing high quality crystalline III-V quantum dots can be formed in different matrices. Formation of crystalline III-V quantum dots was confirmed by cross-section transmission electron microscopy, photoluminescence and mu-Raman spectroscopy. Flash lamp annealing is essentially a single-flash-single-wafer technique whose main attributes are the ease and control of processing over large wafer batches.

Keywords: III-V; quantum dots; silicon; FLA; ion implantation

Involved research facilities

Related publications

Permalink: https://www.hzdr.de/publications/Publ-19745


Conductivity type and crystal orientation of GaAs nanocrystals fabricated in silicon by ion implantation and flash lamp annealing

Prucnal, S.; Liedke, M. O.; Zhou, S.; Voelskow, M.; Mucklich, A.; Turek, M.; Zuk, J.; Skorupa, W.

Abstract

The integration of III-V semiconductor material within silicon technology is crucial for performance of advanced electronic devices. This paper presents the investigations of microstructural and opto-electronic properties of GaAs quantum dots (QDs) formed in silicon by means of sequential ion implantation and flash lamp annealing (FLA). Formation of crystalline GaAs QDs with well-defined crystal orientation and conductivity type was confirmed by high resolution transmission electron microscopy and mu-Raman spectroscopy. The influence of the post implantation millisecond-range annealing on the evolution of the nanoparticles size, shape, crystallographic orientation and doping type of GaAs QDs is discussed.

Keywords: GaAs; Quantum dots; Ion implantation; Flash lamp annealing; Silicon

Involved research facilities

Related publications

Permalink: https://www.hzdr.de/publications/Publ-19744


Short time thermal processing and defects: history and ideology

Skorupa, W.

Abstract

In this talk I will treat the fascinating world of defect engineering from the viewpoint of short time thermal processing in the millisecond range. Special focus will be devoted to ion implantation-related issues.

Keywords: millisecond range thermal processing; flash lamp annealing

Involved research facilities

Related publications

  • Invited lecture (Conferences)
    International Symposium on Semiconductors: Defects, Doping and Diffusion (IS2D3), 24.-25.10.2013, Oslo, Norway

Permalink: https://www.hzdr.de/publications/Publ-19743


Nanocrystalline approaches to electronic materials using subsecond thermal processing

Skorupa, W.

Abstract

This talk reviews the advances that subsecond thermal processing in the millisecond range using xenon-filled flash lamps brings to the processing of the most advanced semiconductor materials, thus enabling the fabrication of novel electronic structures and materials. It will be demonstrated how such developments can translate into important practical applications leading to a wide range of technological benefits. An important issue of our work was the formation and characterization of Si-based light electroluminescence from MOS structures with group-IV- and rare earth-containing dielectric layers. Recently we could demonstrate that germanium and silicon exhibit superconductivity at ambient pressure. Regarding photovoltaic applications, we dealt with the ion beam doping and thermal processing of PV silicon demonstrating a distinct improvement of the minority carrier diffusion length compared to RTP and furnace treatments. Whereas these examples base on solid phase processing the more sophisticated approach regards on working with the liquid phase at the surface of solid substrates. A recent example is the controlled formation of III-V nanocrystals (InAs, GaAs) in silicon after ion beam synthesis (NanoLett. 11, 2814 (2011)).
Moreover, a new approach of forming compound semiconductor nanocrystals inside a silicon nanowire will be demonstrated.

Keywords: Milliscond range annealing; flash lamp annealing; photovoltaics; electroluminescence; III-V nanocrystals; liquid phase processing; silicon nanowire

Involved research facilities

Related publications

  • Invited lecture (Conferences)
    223rd ECS Meeting, Symposium E3: Nanocrystal Embedded Dielectrics for Electronic and Photonic Devices, 12.-17.05.2013, Toronto, Canada

Permalink: https://www.hzdr.de/publications/Publ-19742


Single particle resuspension experiments in turbulent channel flows

Barth, T.; Preuß, J.; Müller, G.; Hampel, U.

Abstract

The resuspension of a monolayer of spherical glass and polypropylene particles from a channel floor by a dry and turbulent airflow was investigated. Special attention was given to the influence of the particle size, the particle and wall material, the wall surface roughness and the critical friction velocity. The experiments were performed in an air-driven small-scale test facility and the channel floor was made of interchangeable glass and steel wall segments. The turbulent channel flow was recorded using a planar Particle Image Velocimetry system. Prior to the experiments the spherical particles were classified using Scanning Electron Microscopy techniques. The particles on the channel floor were detected and classified by means of an optical microscope combined with a digital camera. A statistically sufficient particle monolayer was generated on the channel floor by dispersing the particles into the flow during a pure deposition regime. Afterwards, particle resuspension was induced by stepwise increase of the fluid velocity. The resuspension was quantified by the fraction of remaining particles against the friction velocity for a particle diameter range between 3 µm and 45 µm. It was found that particles instantly resuspend once a critical friction velocity is exceeded. Larger particles require lower fluid velocities for the removal than smaller particles. The wall surface roughness seems to scatter the resuspension process with respect to the friction velocity.

Keywords: aerosol particle; turbulent flow; resuspension

Permalink: https://www.hzdr.de/publications/Publ-19741


Enhanced feedback effects in sodium cooled fast reactors using moderating material – the effect of the plutonium content in the fuel

Merk, B.

Abstract

The use of fine distributed moderating material to enhance the negative feedback effects and to reduce the sodium void effecting sodium cooled fast reactor cores is described. The influence of the moderating material on the neutron spectrum is given and evaluated in comparison with the capture cross sections of major materials (U-238, Pu-239, and Pu-240). The influence of the variation of the Pu content on the efficiency of the enhancement of the Doppler effect and on the reduction of the positive coolant and sodium void effect in a representative SFR fuel assembly configuration is analyzed. Additionally the influence of the moderating material combined with the variation of the Pu content on the infinite multiplication factor is studied.

Keywords: Enhanced feedback effects; Fast reactor; SFR; Sodium void effect; Yttrium hydride; Varying PU content

  • Contribution to proceedings
    PHYSOR 2014, 28.09.-03.10.2014, Kyoto, Japan
    PHYSOR 2014 – The Role of Reactor Physics Toward a Sustainable Future
  • Lecture (Conference)
    PHYSOR 2014, 28.09.-03.10.2014, Kyoto, Japan

Permalink: https://www.hzdr.de/publications/Publ-19740


Phosphorus in-diffusion from a surface source by millisecond flash lamp annealing for shallow emitter solar cells

Normann, H. B.; Vines, L.; Privitera, V.; Skorupa, W.; Schumann, T.; Svensson, B. G.; Monakhov, E. V.

Abstract

We have investigated in-diffusion of phosphorus into monocrystalline silicon by depositing a phosphorus source on the surface followed by millisecond flash lamp annealing (FLA) to form shallow emitters for solar cells. By varying both the energy density of a 20 ms flash in the range from 62 to 132 J/cm(2) and the sample preheating, it is observed that FLA treatments can in-diffuse a high concentration of phosphorus atoms becoming electrically active. The most promising emitters are obtained after FLA in the energy range from 110 to 128 J/cm(2) including preheating at 300 degrees C with a peak concentration of 4 - 6 x 10(20) cm(-3). The emitter junction depth for these treatments is in the range of 100 nm to 200 nm, respectively.

Keywords: photovoltaics; solar cell; flash lamp annealing; millisecond annealing; doping; phosphorus; electrical activation

Involved research facilities

Related publications

Permalink: https://www.hzdr.de/publications/Publ-19738


New insights into the nuclear structure in neutron-rich 112,114,115,116,117,118Pd

Luo, Y.; Rasmussen, J.; Hamilton, J.; Ramayya, A.; Frauendorf, S.; Hwang, J.; Stone, N.; Zhu, S.; Brewer, N.; Wang, E.; Lee, I.; Liu, S.; Terakopian, G.; Daniel, A.; Oganessian, Y.; Stoyer, M.; Donangelo, R.; Ma, W.; Cole, J.; Shi, Y.; Xu, F.

Abstract

New level schemes of Pd-112,Pd-114,Pd-115,Pd-116,Pd-117,Pd-118 are established by means of gamma-gamma-gamma, gamma-gamma-gamma-gamma and gamma-gamma(theta) measurements of prompt fission gamma rays from Cf-252 using the Gammasphere multi-detector array. Spins/parities were assigned to levels based on gamma-gamma angular correlation measurements, level systematics and decay patterns. In the even-N isotopes Pd-112,Pd-114,Pd-116, two sets of odd-parity bands were identified and extended with spins measured in each band. The odd-parity bands with large level staggerings were interpreted as disturbed chirality with less pronounced triaxial deformations in the Pd isotopes than observed in the chiral symmetry breaking Ru-110,Ru-112 with maximum triaxiality.
Onset of wobbling motion was identified from the sign of the signature splitting in the gamma band of even-even Pd-114, and probably also in Pd-116, as first seen in the N = 68 isotone Ru-112. Maximal triaxiality in Ru and Pd isotopes is found to be reached for N = 68, Ru-112 and Pd-114, 4 neutrons more than predicted in the theoretical calculations.
The new data and TRS calculations allowed a systematic study of the band crossings in the even-N Pd-112,Pd-114,Pd-116 and odd-N Pd-115,Pd-117 isotopes. Now we find a new overall, more complex shape evolution than previously proposed from triaxial prolate in Pd-110 via triaxial oblate in Pd-112 to nearly oblate in Pd-114,Pd-116 with a large change of the triaxial deformation parameter gamma toward nearly oblate in the (pi
g(9/2))(2) alignment in Pd-114,Pd-115,Pd-116,Pd-117,Pd-118, and triaxial-prolate-triaxial-oblate shape coexisting bands in Pd-115.

Involved research facilities

Related publications

Permalink: https://www.hzdr.de/publications/Publ-19737


Hot electron effect on charge formation in SiO2 layer enriched by rare-earth based nanoclusters

Nazarov, A. N.; Tiagulskyi, S. I.; Tygulskyy, I. P.; Lysenko, V. S.; Rebohle, L.; Skorupa, W.

Abstract

Fowler-Nordheim (FN) hot electron injection in dielectгics is often used as a method which is alternative to x-ray irradiation. In this work charge trapping during FN еlесtrоп injection in SiO2 implanted bу various rаre-еаrth (RE) impurities (Се, Еu, Gd, Тb, Еr, Тm) with following high tеmреrаturе annealing is considered. Implanted doses correspond to a RE atomic concentration from 0.1 to 1.5 at. %. The charge trapping in Al-SiO2(RE)-n-Si struсturеs is mеаsurеd bу high-frequency (100 kHz) capacitance-voltage (C-V) characteristics and changing of the voltage applied to the structure during еlесtгоп injection at constant current regime. The RE impurity distribution and nanocluster formation in the Sio2 layer after high-temperature annealing (from 900 to 1100°C) are studied bу Rutherford buck sсаttеring (RBS) method and high-resolution transmission electron microscopy (HRTEM) correspondingly. Сhаrgе trаррing раrаmеtеrs (type of charge, capture cross-section, trapped charge concentration) аrе determined at hot electron injection frоm 10E14 to 10E21 e/cm2.

It was shown that at medium electron injection (from 10E15 to 10E18 е/сm2) for аll types of RE impurities negative charge trapping was observed. It was found that mахimum negative сhаrge trapping took place iп Eu implanted dielectrics which demonstrated mахimum size of the formed nanoclusters. A shell model of the defect generation and negative charge trapping around the nanoclusters was proposed. Qualitative calculations of dangling bonds, arоund the RE oxide nanoclusters were performed which confirmеd the obtained ехрегimепtаl results.

Keywords: rare earth; ion implantation; charge trapping MOS structure; electroluminescence

Involved research facilities

Related publications

  • Poster
    17th International conference on radiation effects in insulators, 30.06.-05.07.2013, Helsinki, Finland

Permalink: https://www.hzdr.de/publications/Publ-19736


Dipole strength of 181Ta for the evaluation of the 180Ta stellar neutron capture rate

Makinaga, A.; Massarczyk, R.; Schwengner, R.; Beard, M.; Dönau, F.; Anders, M.; Bemmerer, D.; Beyer, R.; Hannaske, R.; Junghans, A. R.; Kempe, M.; Kögler, T.; Röder, M.; Schmidt, K.; Wagner, A.

Abstract

The photoabsorption cross section of 181Ta up to the neutron-separation energy is deduced using bremsstrahlung produced with an electron beam of 9.6 MeV energy. The analysis of the measured gamma-ray spectra includes the quasicontinuum of levels at high energy. Simulations of gamma-ray cascades are performed to estimate intensities of inelastic transitions and branching ratios of the ground-state transitions. The resulting photoabsorption cross section shows enhanced dipole strength in the energy range from 5 to 8 MeV, which may be related to a pygmy dipole resonance. The results of the present experiment are compared with predictions of a quasiparticle-random phase approximation in a deformed basis. A combination of the present experimental data and (gamma,n) data is used as an input to the statistical code TALYS applied to calculate cross sections and reaction rates of
photonuclear reactions that are important for the nucleosynthesis of 180mTa.

Keywords: Nuclear resonance fluorescence; photon scattering; photoabsorption cross section; dipole strength function; astrophysical reaction rates; statistical reaction model; quasiparticle random phase approximation; nuclear deformation

Involved research facilities

Related publications

Permalink: https://www.hzdr.de/publications/Publ-19735


Development and first experimental tests of Faraday cup array

Prokůpek, J.; Kaufman, J.; Margarone, D.; Krůs, M.; Velyhan, A.; Krása, J.; Burris-Mog, T.; Busold, S.; Deppert, O.; Cowan, T. E.; Korn, G.

Abstract

A new type of Faraday cup, capable of detecting high energy charged particles produced in a high intensity laser-matter interaction environment, has recently been developed and demonstrated as a real-time detector based on the time-of-flight technique. An array of these Faraday cups was designed and constructed to cover different observation angles with respect to the target normal direction. Thus, it allows reconstruction of the spatial distribution of ion current density in the subcritical plasma region and the ability to visualise its time evolution through time-of-flight measurements, which cannot be achieved with standard laser optical interferometry. This is a unique method for two-dimensional visualisation of ion currents from laser-generated plasmas. A technical description of the new type of Faraday cup is introduced along with an ad hoc data analysis procedure. Experimental results obtained during campaigns at the Petawatt High-Energy Laser forHeavy Ion Experiments (GSI, Darmstadt) and at the Prague Asterix Laser System (AS CR) are presented. Advantages and limitations of the used diagnostic system are discussed.

Involved research facilities

Related publications

Permalink: https://www.hzdr.de/publications/Publ-19734


Internal characterisation of fresh agricultural products using traditional and ultrafast electron beam X-ray computed tomography imaging

Donis Gonzalez, I. R.; Guyer, D. E.; Pease, A.; Barthel, F.

Abstract

Currently, destructive techniques can be employed to evaluate the internal attributes of fresh fruits, vegetables and nuts. However, clearly not all produce can be evaluated. Thus, there is a need to develop an in vivo non-destructive technique able to assess fresh agricultural commodity internal components, especially disorders. In this study, medical grade computed tomography (CT) was used to obtain transversal two-dimensional (2D) Images from several fresh agricultural product phenomena. CT scanning was performed by placing and securing numbered samples onto a whole polyethylene sheet, placed on the CT scanner table. Phenomena included the internal decay of chestnuts (Castanea spp.), internal defects in pickling cucumbers (Cucumis sativus), translucency disorder in pineapples (Ananas comosus), pit presence in tart cherries (Prunus cerasus var. Montmorency) and plum curculio (Conotrachelus nenuphar ) infestation of tart cherries.
In addition, an ultrafast X-ray CT scanner was also used to visualise internal characteristics of fresh chestnuts. Chestnuts were labelled and packed in a thin plastic hose, which was pulled through the scanning plane. The 2D CT X-ray images and post-processing three-dimensional CT image recon-struction indicate that CT can be used as an accurate in vivo insight of fresh intact agri-cultural products. Results suggest that there is a potential for non-destructive inline sorting of the internal quality of several agricultural products.
The long-term objective is that the fresh and processing product industries will then be able to detect internal quality attributes of fresh agricultural commodities, at a relatively early stage, after validation under commercial conditions.

Permalink: https://www.hzdr.de/publications/Publ-19733


Temperature dependence of ion-beam mixing in crystalline and amorphous germanium isotope multilayer structures

Radek, M.; Bracht, H.; Posselt, M.; Liedke, B.; Schmidt, B.; Bougeard, D.

Abstract

Self-atom mixing induced by 310 keV gallium (Ga) ion implantation in crystalline and preamorphized germanium (Ge) at temperatures between 164 K and 623 K and a dose of 1x1015 cm-2 is investigated using isotopic multilayer structures of alternating 70Ge and natGe layers grown by molecular beam epitaxy. The distribution of the implanted Ga atoms and the ion-beam induced depth-dependent self-atom mixing was determined by means of secondary ion mass spectrometry. Three different temperature regimes of self-atom mixing, i.e., low-, intermediate-, and high-temperature regimes are observed. At temperatures up to 423 K, the mixing is independent of the initial structure, whereas at 523 K, the intermixing of the preamorphized Ge structure is about twice as high as that of crystalline Ge. At 623 K, the intermixing of the initially amorphous Ge structure is strongly reduced and approaches the mixing of the crystalline material. The temperature dependence of ion-beam mixing is described by competitive amorphization and recrystallization processes.

Keywords: germanium; isotope multilayer; ion-beam mixing; thermal spike model

Involved research facilities

Related publications

Permalink: https://www.hzdr.de/publications/Publ-19732


A spectroscopic study of uranyl hydrolysis

Drobot, B.

Abstract

Short overview of a time resolved laser induced fluorescence spectroscopy (TRLFS) study and mathematical analyzis (PARAFAC).

Keywords: U(VI); Uranium; TRLFS; spectroscopy; PARAFAC

  • Lecture (others)
    Annual PhD seminar, 07.-09.10.2013, Bautzen, Germany

Permalink: https://www.hzdr.de/publications/Publ-19731


Aspects of Fermiology in correlated metals

Wosnitza, J.

Involved research facilities

  • High Magnetic Field Laboratory (HLD)
  • Invited lecture (Conferences)
    Sino-German (International) Workshop On Kondo and Mott Physics in Correlated Matter, 13.-17.10.2013, Hangzhou, China

Permalink: https://www.hzdr.de/publications/Publ-19730


World Record Race - Research at High Magnetis Fields

Wosnitza, J.

Involved research facilities

  • High Magnetic Field Laboratory (HLD)
  • Invited lecture (Conferences)
    Symposium "10 Jahre Mikroaktorik", 11.10.2013, Freiburg, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-19729


The Dresden High Magnetic Field Laboratory - Recent Research Results

Wosnitza, J.

Involved research facilities

  • High Magnetic Field Laboratory (HLD)
  • Invited lecture (Conferences)
    Seminar at Niigata University, 12.08.2013, Niigata, Japan

Permalink: https://www.hzdr.de/publications/Publ-19728


Titration curves, column experiments, and reactive transport models

Britz, S. M.; Noseck, U.; Brendler, V.; Stockmann, M.

Abstract

Surface reactions related to e.g. transport and retardation processes in groundwater systems are correlated with geochemical conditions that vary in time and space. For longterm safety analysis of radioactive waste repositories it is of great interest to better understand and to realistically assess these geochemically driven surface and transport reactions, since they might strongly impact radiation exposure. To get an advanced insight into these processes column experiments are conducted and subsequently modeled with the geochemical speciation code PhreeqC, Version 2.18 (coupled with UCODE_2005). In order to set-up realistic reactive transport models so-called surface complexation parameters (SCP) such as surface site density, specific surface area, and protolysis constants need to be derived from titration experiments of relevant mineral phases. Two different titration techniques are conducted for muscovite and orthoclase: continuous and batch titration. Derived results are compared offering an insight into pHinfluencing reactions that contribute to surface reactions but also to cation exchange and mineral dissolution. In column experiments diffent solids are applied: natural sediments from the Gorleben site, Germany and pure mineral phases (orthoclase, muscovite, quartz). Parameters such as pH, ligands, ionic strength, and cation concentrations are varied in each experiment to reflect realistic enviromental conditions. Moreover, transient pH conditions are applied in selected columns.
Both types of experiments (titration, column experiments) including each geochemical variation provide data to model reactive transport processes of hazardous pollutants more realistically in groundwater-flow driven environments with PhreeqC. Calculations will be conducted and first results offered for discussion.
This project is funded by the German Federal Ministry of Economics and Technology (BMWi) under contract no. 02 E 11072A and 02 E 11072B.

  • Poster
    Goldschmidt 2013, 25.-30.08.2013, Florence, Italy

Permalink: https://www.hzdr.de/publications/Publ-19727


Technischer Zwischenbericht: Partikelentstehung und –transport im Kern von Druckwasserreaktoren

Kryk, H.; Hoffmann, W.; Kästner, W.; Alt, S.; Renger, S.; Seeliger, A.

Abstract

Im borsäurehaltigen Kühlmittelreislauf von Druckwasserreaktoren können nach einem postulierten Kühlmittelverluststörfall während des Sumpfumwälzbetriebs signifikante Konzentrationen an gelöstem Zink auftreten, welche durch Korrosion feuerverzinkter Einbauten des Containments verursacht werden. Bedingt durch die in Batch-Experimenten nachgewiesene abnehmende Löslichkeit der Zink-Korrosionsprodukte (Zink-Borate) mit zunehmender Temperatur ist eine Ausscheidung fester Korrosionsprodukte in heißen Zonen nicht auszuschließen. Die physikochemischen und thermofluiddynamischen Mechanismen der Korrosionsprodukt-Abscheidung wurden am HZDR im Labormaßstab bzw. an der Hochschule Zittau/Görlitz an halbtechnischen Versuchsanlagen untersucht.
Der Beitrag gibt einen Überblick über die bisher im BMWi-Verbundvorhaben „Partikelentstehung und –transport im Kern von Druckwasserreaktoren“ durchgeführten Untersuchungen, die erzielten Ergebnisse sowie die geplanten Arbeiten zur Modellierung der Korrosions- und Ablagerungsprozesse und zu Präventivmaßnahmen.

Keywords: loss-of-coolant accident; LOCA; pressurized water reactor; PWR; corrosion; zinc borate; reactor safety research

  • Other report
    Dresden: HZDR, 2013
  • Lecture (others)
    Sitzung des Projektkomitees „Transienten und Unfallabläufe“, 26.09.2013, Köln, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-19726


Partikelentstehung und –transport im Kern von Druckwasserreaktoren

Kryk, H.; Kästner, W.

Abstract

Im borsäurehaltigen Kühlmittelreislauf von Druckwasserreaktoren können nach einem postulierten Kühlmittelverluststörfall während des Sumpfumwälzbetriebs signifikante Konzentrationen an gelöstem Zink auftreten, welche durch Korrosion feuerverzinkter Einbauten des Containments verursacht werden. Bedingt durch die in Batch-Experimenten nachgewiesene abnehmende Löslichkeit der Zink-Korrosionsprodukte (Zink-Borate) mit zunehmender Temperatur ist eine Ausscheidung fester Korrosionsprodukte in heißen Zonen nicht auszuschließen. Die physikochemischen und fluiddynamischen Mechanismen der Korrosionsprodukt-Abscheidung wurden am HZDR im Labormaßstab bzw. an der Hochschule Zittau/Görlitz an halbtechnischen Versuchsanlagen untersucht.
Der Vortrag gibt einen Überblick über die bisher im BMWi-Verbundvorhaben „Partikelentstehung und –transport im Kern von Druckwasserreaktoren“ erzielten Ergebnisse als Unterstützung für Sicherheitsbewertungen durch die Reaktor-Sicherheitskommission und entsprechende Behörden.

Keywords: loss-of-coolant accident; LOCA; pressurized water reactor; PWR; corrosion; zinc borate; reactor safety research

  • Invited lecture (Conferences)
    RSK-Ausschuss Anlagen- und Systemtechnik, 28.11.2013, Bonn, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-19725


The effect of dual Fe+/He+ ion beam irradiation on microstructural changes in FeCrAl ODS alloys

Chen, C.; Richter, A.; Kögler, R.

Abstract

Nanostructured ferritic oxide dispersion strengthened (ODS) alloys contain a high density of Y-Al-Ti-O nanoparticles, high dislocation densities and fine grains. Structural analysis with HRTEM shows that the composition of the initial Y2O3 oxide is modified to perovskite YAlO3 (YAP), Y2Al5O12 garnet (YAG) and Y4Al2O9 monoclinic (YAM) particles.
Irradiation of these alloys was performed with a dual beam implantation of 2.5 MeV Fe+ and 350 keV He+, either simultaneously or sequentially.
Additionally, the He+ concentration was varied between 18 and 72 appm/dpa. Irradiation causes atomic displacements resulting in vacancy and self-interstitial lattice defects and dislocation loops. A clear hardness increase in the irradiated area is observed by nanoindentation in every ion implantation regime. Hardness ratios of irradiated relative to non-irradiated ODS materials and the appearance of hardness maxima close to the surface region are discussed in detail. The irradiation induced hardening effect is stronger for a heat treated HT-ODS alloy than for an as-received one. The large difference in the hardness data of as-received ODS for simultaneous and sequential implantation can be explained by point defect recombination at dislocations and grain boundaries occurring for sequential irradiation.

Involved research facilities

Related publications

Permalink: https://www.hzdr.de/publications/Publ-19724


Visualisierung neurodegenerativer Veränderungen in einem neuen Mausmodell der Alzheimer Erkrankung mittels (+)-[18F]flubatine.

Ullmann, C.

  • Master thesis
    Universität Leipzig, 2013
    102 Seiten

Permalink: https://www.hzdr.de/publications/Publ-19723


Search for supernova-produced 60Fe in the microfossil record

Ludwig, P.; Bishop, S.; Egli, R.; Chernenko, V.; Faestermann, T.; Famulok, N.; Fimiani, L.; Frederichs, T.; Gomez, J.; Hain, K.; Hanzlik, M.; Korschinek, G.; Merchel, S.; Rugel, G.

Abstract

Material distributed into the interstellar medium by supernova explosions can be incorporated into terrestrial archives. After the discovery of live 60Fe atoms in 2-3 Myr old layers of a Pacifc Ocean ferromanganese crust (Knie et al., 2004), a confirmation of this signal, as well as a mapping of the signal with high time-resolution is desireable. Another reservoir in which the 60Fe signature should have been incorporated in are the fossils of magnetotactic bacteria in ocean sediment. To this end, two sediment cores from the Eastern Equatorial Pacifc were obtained, iron was chemically extracted with high selectivity towards biogenic magnetite, and the extraction procedure was characterized using novel magnetic measurements. The samples were then measured with accelerator mass spectrometry in Garching. Preliminary results for both sediment cores will be reported.

Keywords: accelerator mass spectrometry; AMS; supernova; astrophysics

Involved research facilities

Related publications

  • Lecture (Conference)
    DPG-Frühjahrstagung der Sektion AMOP (SAMOP), 17.-21.03.2014, Berlin, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-19722


Investigation of heavy metals sorption behavior of isolated bacterial cell wall components of Gram-positive bacteria using ICP-MS and TRLFS

Viacava Romo, K. E.

Abstract

Attention for heavy metal removal and recovery has been increasing as their demand and scarcity increase. The property of certain types of biomass to remove heavy metals from the environment has encouraged the search of novel biosorbents for technology development. In this work the heavy metal biosorption of two Gram-positive bacteria strains Lysinibacillus sphaericus bacterial (JG-A12 and JG-B53) isolated from the uranium mining waste pile Haberland (Johanngeorgenstadt, Saxony) has been investigated. The metal binding capacities of the isolated main three cell wall components (peptidoglycan, lipids and surface-layer proteins) and the heavy metal uptake of the intact bacteria have been studied for eight different heavy metals (palladium, cadmium, platinum, gold, lead, europium and uranium). Lysinibacillus sphaericus JG-B53 probed to have higher heavy metal binding capacities and uptakes. The best biosorbent for both strains was the peptidoglycan and the higher binding capacities were observed for uranium, lead and europium. Finally in order to elucidate the mechanisms involved in the biosorption of metal ions, the Eu3+ was used as a fluorescent probe and investigated with time-resolved laser-induced fluorescence spectroscopy (TRLFS) as it interacted with the different biosorbents. The results although complexed to interpreted due to the inherent complexity of the biosorbents showed clearly the Eu3+-biosorbent binding and are an important basis for further complexation studies.

Keywords: Bacteria; sorption; heavy metals; S-layer; cell wall; lipids; peptidoglycan; ICP-MS; TRLFS

  • Master thesis
    TU Dresden, 2013
    120 Seiten

Permalink: https://www.hzdr.de/publications/Publ-19721


Direct Observation of Binary Vortex Core States in Magnetic Mutlilayers

Wintz, S.; Im, M.-Y.; Banholzer, A.; Weigand, M.; Raabe, J.; Mattheis, R.; Fischer, P.; Erbe, A.; Fassbender, J.

Abstract

Topological spin textures such as skyrmions or vortices are attracting significant attention because of their fundamentally interesting magnetostatic and dynamic properties. In particular, magnetic vortices have been studied intensively during the past decade. As shown in Fig. 1(a), such a spin vortex consists of a planar, flux-closing magnetization curl that tilts out of the plane in the central core. Vortices are typically found as the ground state of micron sized ferromagnetic thin film elements, whi- le their nanoscopic cores are being much smaller, with diameters on the order of 10 nm only. Along with fundamental investigations, proposals were also made to apply vortices for memory cells, or as oscillators in data communication devices. In this view, stacking of vortices via nonferromagnetic interlayers [cf. Fig. 1(b)] is an important issue to address, since such geometries allow for the exploitation of GMR/TMR as well as spin-torque effects.

Keywords: magnetic vortex core multilayer x-ray microscopy

  • Poster
    IEEE International Magnetics Conference 2014, 04.-08.05.2014, Dresden, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-19720


Synthesis and biological evaluation of a novel non-peptidic brain-penetrant F-18-labeled oxytocin receptor ligand

Wenzel, B.; Mollitor, J.; Kranz, M.; Deuther-Conrad, W.; Günther, R.; Teodoro, R.; Fischer, S.; Ludwig, F.-A.; Smits, R.; Steinbach, J.; Hoepping, A.; Brust, P.

Abstract

1. Introduction
Oxytocin is a neurohypophysial peptide hormone, synthesized in the hypothalamus and stored in the posterior pituitary gland for release into the bloodstream. It acts as neurotransmitter and neuromodulator to regulate a diverse range of CNS functions including emotional, parental, and sexual behaviors. Its receptor (OTR) is expressed in peripheral organs as well as in specific brain areas related to cognitive function and psychiatric diseases such as schizophrenia and depression. So far, investigation of the distribution of OTR in brain in vivo is hampered by the lack of suitable radiotracers. Thus, the development of a brain-penetrant PET ligand with high affinity and selectivity to the OTR would promote the development of non-invasive and quantitative imaging of OTR expression in healthy and diseased brain. Therefore, we synthesized a series of fluorinated non-peptidic OTR ligands and performed radiofluorination of one selected candidate to investigate its in vivo properties by organ distribution and dynamic PET imaging studies in mice and pigs.

2. Materials & Methods
Binding affinities of the novel compounds to the human OTR were determined by radioligand displacement studies using stably transfected hOTR-HEK293 cells and [3H]oxytocin. The radiosynthesis of the selected candidate [18F]ABX163 was performed in a two-step procedure using the methoxymethyl (MOM)-protected tosylate precursor ABX185. 18F was incorporated using K[18F]F-Kryptofix 222-carbonate complex at 90°C in ACN within 15 min followed by removal of the two MOM protecting groups with 1M HCl at 90°C within 15 min. The radiotracer was isolated by semi-preparative HPLC (Reprosil-Pur AQ column, 250x10mm), ACN/aqu. 20 mM NH4OAc) followed by final purification with a Sep-Pak C18 Plus light cartridge and formulation in isotonic saline containing 10% ethanol. Specific binding of [18F]ABX163 was assessed by in vitro autoradiography on mouse brain slices. Metabolism and organ distribution of the radiotracer were studied in female CD-1 mice at 30 and 60 min p.i. Dynamic PET scans were performed in mice (animal PET/MR; 60 min) and in one female piglet (PET; 120 min), the latter one accompanied by chromatographic analysis of plasma radio-metabolites.

3. Results
Based on the biphenyl-benzopyrrolodiazepine derivative WAY-162720, described as OTR selective and brain-penetrant ligand [1], three fluoro-containing reference compounds were synthesized which retained high affinity towards the OTR (Ki=14-22 nM). Radiolabeling of the selected candidate [18F]ABX163 was obtained in a two-step radiosynthesis with a RCY(DC) of 20-25%, radiochemical purity >98%, and specific activity of 35-133 GBq/µmol.[18F]ABX163 was stable for at least 60 min in saline, PBS, and pig plasma at 37°C. A logDoctanol/PBS value of 2.9 ± 0.2 (n=3) was determined by shake flask method.
Both organ distribution and dynamic PET imaging studies revealed limited uptake of the radiotracer in mouse brain (mean SUV value of 0.04). Besides, significant uptake in the pituitary gland was observed (SUV=0.85 at 55 min p.i.), which indicates target-specific binding of [18F]ABX163. By a dynamic PET study in one piglet, a mean SUV of 0.43 was estimated for whole brain at 120 min p.i. Most remarkable was the elevated uptake in the olfactory bulb with SUV120=0.73, a region with high expression of OTR. Metabolite analysis of pig plasma by radio-HPLC demonstrated moderate metabolism of [18F]ABX163 with non-metabolized tracer accounting for 44% of total radioactivity at 30 min p.i.

4. Discussion & Conclusion
Radiofluorination of a novel non-peptidic oxytocin receptor ligand [18F]ABX163 was achieved with appropriate radiochemical yield and specific activity. Evidence was obtained, that uptake of [18F]ABX163 in the pituitary gland of mouse brain and olfactory bulb of pig brain reflects target-specific binding. Differences in brain uptake between mice and pigs may be caused by species-specific expression of efflux transporters in the blood-brain barrier. With the development and evaluation of [18F]ABX163 we could demonstrate for the first time the potential of non-peptidic oxytocin receptor ligands for imaging of OTR in brain by PET. To further improve brain uptake, we are currently working on structural modifications of [18F]ABX163.

[1] Ring RH, Malberg JE, Potestio L, Ping J, Boikess S, Luo B, Schechter LE, Rosenzweig-Lipson S, [2006] Psychopharmacology 218-225.

  • Lecture (Conference)
    ESRR'2014 - 17th European Symposium on Radiopharmacy and Radiopharmaceuticals, 24.-27.04.2014, Pamplona, Spain

Permalink: https://www.hzdr.de/publications/Publ-19719


Comparative evaluation of two novel fluorine-18 PET radiotracers for the alpha7 nicotinic acetylcholine receptor (α7nAChR)

Teodoro, R.; Deuther-Conrad, W.; Rötering, S.; Scheunemann, M.; Patt, M.; Donat, C. K.; Wenzel, B.; Peters, D.; Sabri, O.; Brust, P.

Abstract

Objectives :

The α7nAChR plays an important role in mediating cholinergic transmission, and is considered as biomarker for inflammatory processes and certain types of cancer. [18F]NS14490 (1), and [18F]DBT10 (2) showed high in vitro binding affinity and selectivity (Ki,α7= 2.5 and 0.3 nM, Ki,α3β4= 102 and 5000 nM, respectively, and Ki,α3β2both > 800 nM). Here, we report automated radiosyntheses and in vivo PET evaluation in pigs of 1 and 2.

Methods : Syntheses of 1 and 2 were performed in one-step procedure using OTs and NO2 precursors, respectively, in automated module (Tracerlab FX F-N). Dynamic PET studies (4 h) were performed in anesthetized female juvenile pigs after injection with ~300-400 MBq of 1 or 2 (n=6 each). Blocking studies were performed in 3 pigs each by bolus injection/constant infusion of NS6740 (7 mg/kg), a highly selective α7nAChR ligand. Metabolite-corrected plasma input functions were used for 2-tissue-compartment modeling (2TCM) to determine binding parameters of 1 and 2 in 24 brain regions.

Results : 1 and 2 were synthesized in high radiochemical purities (>92%, >95%), and high specific activities (> 150 GBq/μmol, EOS) with a RCY of 24-36% and 45-50%, respectively. Maximum brain SUVs of 1 (0.54) and 2 (1.89) were reached at 3 and 11.5 min p.i., respectively. Metabolism of 1 and 2 is comparable. At 60 min p.i. about 25% of 1 and 24% of 2 accounted for total radioactivity in plasma. 2TCM of 1 and 2 allowed reliable estimates of k3 of 1 (-46%) and BP, respectively (Table). NS6740 significantly reduced (* p<0.05) mean k3 of 1 (-46%) and mean BP of 2 (-75%).

Conclusions : 1 and 2 are promising PET tracers for imaging α7nAChR. Because of higher affinity, brain uptake and specific binding [18F]DBT10 (2) is selected for further evaluation to obtain approval for translational clinical validation in human beings.

Research Support: DFG (DE 1165/2-1)

  • Poster
    SNMMI 2014 Annual Meeting, 07.-11.06.2014, St. Louis, Missouri, USA
  • Abstract in refereed journal
    Journal of Nuclear Medicine 55(2014)1, 1099

Downloads

Permalink: https://www.hzdr.de/publications/Publ-19718


Materials research at the Dresden High Magnetic Field Laboratory

Wosnitza, J.

Involved research facilities

  • High Magnetic Field Laboratory (HLD)
  • Invited lecture (Conferences)
    Seminar at the Départment de Physique, Université de Montréal, 22.07.2013, Montreal, Canada

Permalink: https://www.hzdr.de/publications/Publ-19717


Recent developments in superconductivity in organic materials

Wosnitza, J.

Involved research facilities

  • High Magnetic Field Laboratory (HLD)
  • Invited lecture (Conferences)
    10th International Symposium on Crystalline Organic Metals, Superconductors and Magnets (ISCOM 2013), 14.-19.06.2013, Montreal, Canada

Permalink: https://www.hzdr.de/publications/Publ-19716


Die Jagd nach dem Weltrekord - Materialforschung an der Grenze des Machbaren

Wosnitza, J.

Involved research facilities

  • High Magnetic Field Laboratory (HLD)
  • Invited lecture (Conferences)
    Dresdner Lange Nacht der Wissenschaften, 05.07.2013, Dresden, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-19715


Materials research at high magnetic fields

Wosnitza, J.

Involved research facilities

  • High Magnetic Field Laboratory (HLD)
  • Invited lecture (Conferences)
    Kick Off Meeting for the Helmholtz International Beamline for Extreme Fields (HIBEF), 02.-05.06.2013, Hamburg, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-19714


The Fulde-Ferrell-Larkin-Ovchinnikov state in quasi-two-dimensional organic superconductors

Wosnitza, J.

Involved research facilities

  • High Magnetic Field Laboratory (HLD)
  • Invited lecture (Conferences)
    IV International Symposium on Strong Nonlinear Vibronic and Electronic Interactions in Solids, 01.-03.05.2013, Tartu, Estonia

Permalink: https://www.hzdr.de/publications/Publ-19713


Probing magnetic exchange interactions in rare-earth intermetallic compounds by high-field measurments

Wosnitza, J.

Involved research facilities

  • High Magnetic Field Laboratory (HLD)
  • Invited lecture (Conferences)
    International Conference on Rare-Earth Materials: Advances in Synthesis, Studies and Applications, 26.-28.04.2013, Wroclaw, Poland

Permalink: https://www.hzdr.de/publications/Publ-19712


High-magnetic-field properties of frustrated magnets

Wosnitza, J.

Involved research facilities

  • High Magnetic Field Laboratory (HLD)
  • Invited lecture (Conferences)
    Kick-off meeting of the Helmholtz Virtual Institute "New States of Matter and their Excitations", 22.-24.04.2013, Berlin, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-19711


Infrared images of single electrons

Winnerl, S.; Helm, M.

Abstract

Scattering-type near-field optical microscopy (s-SNOM) is a powerful technique to image nano objects. It can be employed in a broad spectral range, namely the complete infrared region spanning from the terahertz range up to the visible range. In this article we describe a system which utilizes a free-electron laser as a spectrally narrow and widely tunable source of infrared radiation. This system was employed to study electrons confined in self-assembled InAs quantum dots. We spatially resolved single quantum dots upon resonant excitation of transitions between discrete energy levels of the confined electrons.

Keywords: near-field microscopy; terahertz nano-spectroscopy; single quantum dots

Involved research facilities

Related publications

  • Open Access Logo Imaging & Microscopy 15(2013)1, 40-42

Permalink: https://www.hzdr.de/publications/Publ-19709


The novel fluorine-18 PET radiotracer [18F]NS14490 allows in vivo investigation of alpha7 nicotinic acetylcholine receptor (α7-nAChR) expression on brain vasculature

Bucerius, J.; Rötering, S.; Deuther-Conrad, W.; Donat, C. K.; Fischer, S.; Xiong, G.; Mottaghy, F. M.; Wildberger, J. E.; Cumming, P.; Brust, P.

Abstract

Objectives :

The α7nAChR plays an important role in the pathophysiology of atherosclerosis, where it is known to mediate the deleterious effects of nicotine. Recently, [18F]NS14490 was described as radioligand with high in vitro binding affinity and selectivity towards α7nAChR (Ki, α7=2.5), Ki, α3β4=102, Ki, α4β2>800 nM) [BMC 21(2013), 2635]. Here, we report in vivo investigation of α7nAChR in brain blood vessels of pigs using [F]NS14490 and PET.

Methods : The synthesis of [18F]NS14490 and pig studies were performed as reported [Teodoro et al. this volume]. Baseline (n=3) and blocking studies with NS6740 (n=3) were done. Volumes of interest for the left carotid artery (LCA) and Circle of Willis (CW) were drawn with reference to T1-weighed MR images aligned to a summed PET image. Metabolite-corrected plasma input functions were used for 2-tissue-compartment (2TC) modelling to determine receptor parameters. Parametric maps of the distribution volumes (VT) were calculated for baseline and blocking conditions.

Results : Reduction of VT on brain vasculature was clearly visible in parametric maps of [18F]NS14490.
Maximum SUV in LCA (1.4±0.2) and CW (1.3±0.2) was reached at 4 and 2 min p.i., respectively. At 4 h after blockade, the SUV in LCA was reduced by 36%, with lesser declines in CW. Using an 2TC irreversible binding model, we found a [18F]NS14490 k3 of 0.0023 min-1 in LCA, which was 40% blocked by NS6740.

Conclusions :

The study provides first evidence for the detection of α7nAChRs by PET in the pig brain vasculature, notably in the LCA. This further elucidates the feasibility of PET to non-invasively image vascular image vascular α7nAChRs.

Research Support: Support from DFG (DE 1165/2-1, Dan Peters (DanPET AB) and Matthias Scheunemann is gratefully acknowledged.
References: 1.Rötering S., Scheunemann M., Fischer S. et al. (2013) Radiosynthesis and first evaluation in mice of [(18)F]NS14490 for molecular imaging of α7 nicotinic acetylcholine receptors. Bioorg Med Chem 21, 2635
2. Teodoro R, Deuther-Conrad W, Rötering S, et al. (2013) Comparative evaluation of two novel fluorine-18 PET radiotracers for the alpha7 nicotinic acetylcholine receptor (α7nAChR), submitted

  • Poster
    SNMMI 2014 Annual Meeting, 07.-11.06.2014, St. Louis, Missouri, USA
  • Abstract in refereed journal
    Journal of Nuclear Medicine 55(2014)1, 1695

Downloads

Permalink: https://www.hzdr.de/publications/Publ-19708


Broadband fast terahertz detector based on graphene

Mittendorff, M.; Winnerl, S.; Kamann, J.; Eroms, J.; Weiss, D.; Schneider, H.; Helm, M.

Abstract

Some sources of pulsed intense terahertz radiation such as free-electron lasers and gas lasers pumped by high-pressure CO2 lasers exist already for relatively long time. More recent developments like THz-generation via nonlinear processes in plasmas or lithiumniobate crystals as well as novel accelerator-based sources for coherent synchrotron radiation have greatly advanced the field of nonlinear terahertz optics [1,2]. Robust, simple and fast detectors are highly desirable for experiments at these sources, in particular if they are not naturally synchronized to a pulsed near-infrared laser. We present a graphene-based detector operated at room temperature featuring a rise time of 50 ps. It was tested at the free-electron laser FELBE in the frequency range from 1.3 THz to 38 THz.
The detector is based on an exfoliated graphene flake on Si/SiO2 coupled to a broadband logarithmic periodic antenna. The temporal resolution of the detector (rise time ~50 ps) is limited by the electronic circuitry. We show that high-resistive substrates are of crucial importance to keep RC-time constants short. The responsivity is about 5 nA/W in the investigated spectral range. While a linear dependence of the detector signal was found for small pulse energies, significant saturation occurred for larger pulse energies. We demonstrate that the nonlinearity provided by the saturation can be exploited in autocorrelation measurements. In this type of measurement the detector response is limited by the intrinsic carrier relaxation time but not by the electronic circuit, resulting in a temporal Resolution below 10 ps [3]. The high temporal resolution combined with room-temperature operation and high damage threshold makes the detector attractive for pulse diagnostics of intense THz sources. Furthermore the broadband response, which possibly can be extended towards the visible and UV spectral region by using different substrate materials, is ideal for characterizing the timing of pulses in multicolor experiments.
[1] M. C. Hoffmann and J. A. Fülöp, J. Phys. D: Appl. Phys. 44, 083001 (2011).
[2] H. Hirori, Hideki and K. Tanaka, IEEE J. Sel. Top. Quantum Electron. 19, 8401110 (2013).
[3] M. Mittendorff, S. Winnerl, J. Kamann, J. Eroms, D. Weiss, H. Schneider, and M. Helm, Appl. Phys. Lett. 103, 021113 (2013).

Keywords: fast detector; terahertz

Involved research facilities

Related publications

  • Lecture (Conference)
    6th Workshop on Terahertz Technology and Applications 2014, 11.-12.03.2014, Kaiserslautern, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-19707


Longitudinal fields in focused terahertz beams

Winnerl, S.; Hubrich, R.; Mittendorff, M.; Schneider, H.; Helm, M.

Abstract

In textbooks electromagnetic waves are often described as infinitely extended plane waves, which are of purely transverse character. For beams of finite size, however, also longitudinal fields are expected. In case of focused radially polarized beams, the longitudinal fields can actually be stronger as compared to the transverse components. This has been found in experiments recording the intensity of near-infrared beams. In our study we directly record the electric field of single cycle terahertz pulses of radial and linear polarization. This enables us to reveal the phase relation between longitudinal and transverse fields. The obtained value of pi/2 is of universal nature as it does not depend on the type of mode, frequency or focusing condition. Additionally we demonstrate that the longitudinal components of radially polarized beams exhibit superior focusing properties.

Keywords: radially polarized fields; longitudinal electromagnetic fields; terahertz radiation

  • Lecture (Conference)
    DPG-Frühjahrstagung, 10.-15.03.2013, Regensburg, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-19706


Relaxation dynamics in graphene close to the Dirac point

Winnerl, S.

Abstract

The carrier relaxation in graphene is of strong interest for understanding carrier-carrier and carrier-phonon interactions in this fascinating material as well as for optoelectronic applications such as detectors, and saturable absorbers. Here we give an overview on our investigations on the dynamics in the energetic vicinity of the Dirac point, which is explored by pump-probe experiments with mid-infrared and terahertz radiation [1]. We compare our experimental results with microscopic theory and discuss the role of optical phonons, acoustic phonons and carrier-carrier scattering. For excitations slightly above and below the Fermi edge an interesting change in sign of the pump-probe signals is observed, which can be explained by an interplay of intraband and interband excitation. Furthermore we present recent results on the dynamics in Landau quantized graphene, where a strong dependence of the pump-probe signals on the state of circular polarization of both pump and probe radiation is found. The results indicate the importance of Auger-type processes in this regime.
S. Winnerl et al., Phys. Rev. Lett. 107, 237401 (2011).

Keywords: graphene; carrier dynamics; ultrafast spectroscopy

Involved research facilities

Related publications

  • Invited lecture (Conferences)
    DPG-Frühjahrstagung, 10.-15.03.2013, Regensburg, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-19705


Relaxation dynamics in graphene in the terahertz spectral range

Winnerl, S.

Abstract

The relacation dynamics in graphene in the infrared spectral range is reviewed. In particular the range of terahertz energies, i.e. excitation in proximity of the Dirac point, is discussed.

Involved research facilities

Related publications

  • Lecture (others)
    SFB Kolloquium, 14.11.2013, Konstanz, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-19704


Graphene investigated in the THz range: ultrafast dynamics and device perspectives

Winnerl, S.; Mittendorff, M.; Schneider, H.; Helm, M.; Winzer, T.; Wendler, F.; Malic, E.; Knorr, A.

Abstract

The carrier relaxation dynamics in graphene in energetic proximity to the Dirac point is studied. In particular we discuss the role of optical phonon scattering and the interplay of interband and intraband excitations. The potential to make use of the ultrafast dynamics of graphene, in particular under terahertz excitation, in saturable absorbers and fast detectors is highlighted. A room-temperature operated ultra-broadband graphene-based detector is presented.

Involved research facilities

Related publications

  • Invited lecture (Conferences)
    21st International Conference on Applied Electromagnetics and Communications, 14.-16.10.2013, Dubrovnik, Croatia

Permalink: https://www.hzdr.de/publications/Publ-19703


Years: 2023 2022 2021 2020 2019 2018 2017 2016 2015


Pages: [1.] [2.] [3.] [4.] [5.] [6.] [7.] [8.] [9.] [10.] [11.] [12.] [13.] [14.] [15.] [16.] [17.] [18.] [19.] [20.] [21.] [22.] [23.] [24.] [25.] [26.] [27.] [28.] [29.] [30.] [31.] [32.] [33.] [34.] [35.] [36.] [37.] [38.] [39.] [40.] [41.] [42.] [43.] [44.] [45.] [46.] [47.] [48.] [49.] [50.] [51.] [52.] [53.] [54.] [55.] [56.] [57.] [58.] [59.] [60.] [61.] [62.] [63.] [64.] [65.] [66.] [67.] [68.] [69.] [70.] [71.] [72.] [73.] [74.] [75.] [76.] [77.] [78.] [79.] [80.] [81.] [82.] [83.] [84.] [85.] [86.] [87.] [88.] [89.] [90.] [91.] [92.] [93.] [94.] [95.] [96.] [97.] [98.] [99.] [100.] [101.] [102.] [103.] [104.] [105.] [106.] [107.] [108.] [109.] [110.] [111.] [112.] [113.] [114.] [115.] [116.] [117.] [118.] [119.] [120.] [121.] [122.] [123.] [124.] [125.] [126.] [127.] [128.] [129.] [130.] [131.] [132.] [133.] [134.] [135.] [136.] [137.] [138.] [139.] [140.] [141.] [142.] [143.] [144.] [145.] [146.] [147.] [148.] [149.] [150.] [151.] [152.] [153.] [154.] [155.] [156.] [157.] [158.] [159.] [160.] [161.] [162.] [163.] [164.] [165.] [166.] [167.] [168.] [169.] [170.] [171.] [172.] [173.] [174.] [175.] [176.] [177.] [178.] [179.] [180.] [181.] [182.] [183.] [184.] [185.] [186.] [187.] [188.] [189.] [190.] [191.] [192.] [193.] [194.] [195.] [196.] [197.] [198.] [199.] [200.] [201.] [202.] [203.] [204.] [205.] [206.] [207.] [208.] [209.] [210.] [211.] [212.] [213.] [214.] [215.] [216.] [217.] [218.] [219.] [220.] [221.] [222.] [223.] [224.] [225.] [226.] [227.] [228.] [229.] [230.] [231.] [232.] [233.] [234.] [235.] [236.] [237.] [238.] [239.] [240.] [241.] [242.] [243.] [244.] [245.] [246.] [247.] [248.] [249.] [250.] [251.] [252.] [253.] [254.] [255.] [256.] [257.] [258.] [259.] [260.] [261.] [262.] [263.] [264.] [265.] [266.] [267.] [268.] [269.] [270.] [271.] [272.] [273.] [274.] [275.] [276.] [277.] [278.] [279.] [280.] [281.] [282.] [283.] [284.] [285.] [286.] [287.] [288.] [289.] [290.] [291.] [292.] [293.] [294.] [295.] [296.] [297.] [298.] [299.] [300.] [301.] [302.] [303.] [304.] [305.] [306.] [307.] [308.] [309.] [310.] [311.] [312.] [313.] [314.] [315.] [316.] [317.] [318.] [319.] [320.] [321.] [322.] [323.] [324.] [325.] [326.] [327.] [328.] [329.] [330.] [331.] [332.] [333.] [334.] [335.] [336.] [337.] [338.] [339.] [340.] [341.] [342.] [343.] [344.] [345.] [346.] [347.] [348.] [349.] [350.] [351.] [352.]