Department of Biophysics


The Biophysics Department conducts interdisciplinary research at the interface of biomolecular function, physical chemistry and radiochemistry. The activities contribute to the Helmholtz Research Programmes Nuclear Safety and Cancer Research in the Helmholtz-Association. We are member of the Cluster of Excellence "Physics of Life" (PoL) in Dresden. 

We are particularly interested in:

  • structural and dynamic aspects of biomembranes
  • conformational transitions in membrane proteins
  • interactions between (radio)metals and biomolecules
  • effects of metals and radionuclides on the metabolism of microorganisms (Televised MDR report)


The Biophysics department participates in the Dresden International Graduate School for Biomedicine and Bioengineering (DIGS-BB) supported by the Excellence Initiative of the German federal and state governments.

Practicals on Molecular Spectroscopy and Calorimetry are offered. The following lectures are held at the technische Universität Dresden and are elgible for the Master Specialization "Soft Condensed Matter and Biological Physics":

  • Biological Thermodynamics (English, summer semester)
  • Biophysical Methods (German, winter semester)

Seminar lectures  for the International BIOTEC-Master Programme,

  • Vibrational Spectroscopy (English)
  • Absorption and Fluorescence Spectroscopy (English)

Experimental Methods

  • Fourier transform infrared spectroscopy
  • Circular dichroism
  • Static and time-resolved fluorescence spectroscopy
  • Calorimetry
  • Mass-Spectroscopy

Spectroscopic data are evaluated in combination with Density Functional Theory to understand photochemoical and photophysical properties of organic complexes of actinides

Latest Publication

Fate of Oxidation States at Actinide Centers in Redox-Active Ligand Systems Governed by Energy Levels of 5f Orbitals

Takeyama, T.; Tsushima, S.; Gericke, R.; Kaden, P.; März, J.; Takao, K.

We report the formation of a Np(IV) complex from the complexation of Np(VI)O22+ with the redox-active ligand tBu-pdiop2-=2,6-bis[N-(3,5-di-tert-butyl-2-hydroxyphenyl)iminomethyl]pyridine. To the best of our knowledge, this is the first example of the direct complexation-induced chemical reduction of Np(VI)O22+ to Np(IV). In contrast, the complexation of U(VI)O22+ with tBu-pdiop2- did not induce the reduction of U(VI)O22+, not even after the two-electron electrochemical reduction of [U(VI)O2(tBu-pdiop)]. This contrast between the Np and U systems may be ascribed to the decrease of the energy of the 5f orbitals in Np compared to those in U. The present findings indicate that the redox chemistry between U(VI)O22+ and Np(VI)O22+ should be clearly differentiated in redox-active ligand systems.


Foto: Gruppenbild der Abteilung

Group image of the "Biophysics" department


NameBld./Office+49 351 260Email
Prof. Dr. Karim Fahmy801/P3012952


NameBld./Office+49 351 260Email
Dr. Jana Oertel801/P3022978
Jenny Philipp801/P3033247
Prof. Dr. Satoru Tsushima801/P3022978

Other employees

NameBld./Office+49 351 260Email
Dr. Charlotte Kielar801/P3033247

Physical Chemistry of Biomolecular Condensates


NameBld./Office+49 351 260Email
Dr. Ellen Adams801/P3012911


NameBld./Office+49 351 260Email
Artur Czajkowski801/P3033375
Likhitha Chakra Priya Pulibandla801/P3033375