Porträt Dr. Kraus, Dominik; FWKH

Dr. Dominik Kraus
Head High Energy Density
Helmholtz Young Investigator Group leader
Phone: +49 351 260 3657

Diamond precipitation inside icy giant planets: - Martian snow and diamond rain: Wild weather in our solar system - CNN.

Eye catcher

Helmholtz Young Investigator Group - Dominik Kraus

Dynamic Warm Dense Matter Research with HIBEF

 "Warm Dense Matter" (WDM) is the name of the transition regime between cold solid or liquid matter and very hot plasmas. With temperatures from several thousand to several hundred thousand kelvins and densities around solid-state density, resulting in pressures from several thousand to several million atmospheres, a detailed investigation of matter under these extreme conditions is a young and highly evolving field of physics. 

WDM overview small

A better understanding of the WDM state is highly desirable for astrophysics to e.g. improve modeling of the internal structure and evolution of planets, brown dwarfs and stars. Particularly, chemical processes in warm dense mixtures of light elements in the interior of planets strongly influence the magnetic field and surface temperature, which are important observables for models of planets in our and other solar systems. Moreover, WDM conditions were present during giant impacts in the early stages of our solar system, which defined the planetary structure up to creating the environment necessary for life on our planet. Finally, WDM conditions can be found as a transient state in every laboratory experiment where a solid-state sample is transferred quickly to a plasma state, prominent examples being intense laser-matter interaction as well as high-performance material and radiation damage research.

Robust physical models with predictive capabilities of the WDM regime are very challenging for various reasons . On the one hand, the temperature is in the order of the Fermi energy and thus, WDM cannot be described with methods of classical solid state physics (T~0) or plasma physics (T>>TF). On the other hand, the thermal energy is similar to the ionization energy of valence electrons and chemical bonding energies, leading to partial ionization of the atoms. The resulting ions remain in a strongly coupled state with remnants of solid or liquid structure, given by highly complex ion-ion interaction potentials.

HIBEF ns-Experiment

The controlled creation and even more the precise diagnosis of dynamic processes in WDM is extremely challenging. High-quality experiments require homogeneous samples, extreme temporal resolution and need to cover a broad parameter space. Since WDM samples are usually opaque for optical light, most brilliant X-ray sources are required for high-quality experiments. For a complete characterization, “over-diagnosis”, i. e. determining the same observable with different methods at the same time, is highly desirable, since most methods to determine WDM quantities are based on assumptions or require sophisticated theoretical models. This is especially true for measurements in non-equilibrium conditions. The combination of X-ray free electron lasers with high-energy/high-power optical lasers has shown to be capable of WDM experiments of unprecedented quality in terms of precision and time resolution. The HED experimental area at European XFEL equipped with HIBEF will set new standards here and our group is working towards first experiments at this facility to gain unprecedented insights into the dynamic properties of Warm Dense Matter.

Warm Dense Matter: Investigating Planets and Stars in the Laboratory
(talk at UC Berkeley Physics Colloquium)

Group members

Dominik Kraus


Nicholas Hartley


Anja Schuster

PhD student

Katja Rohatsch

PhD student

Min Zhang

PhD student

Julian Lütgert

BSc student

+ great theory support from Jan Vorberger and co-workers. 

MSc / BSc positions available!

Contact Dominik Kraus for further information.


Media response

Selected publications

  • D. Kraus, B. Bachmann, B. Barbrel, R. W. Falcone, L. B. Fletcher, S. Frydrych, E. J. Gamboa, M. Gauthier, D. O. Gericke, S. H. Glenzer, S. Göde, E. Granados, N. J. Hartley, J. Helfrich, H. J. Lee, B. Nagler, A. Ravasio, W. Schumaker, J. Vorberger, T. Döppner
    Characterizing the ionization potential depression in dense carbon plasmas with high-precision spectrally resolved x-ray scattering
    Plasma Physics and Controlled Fusion 61, 014015 (2019)
  • N. J. Hartley, J. Vorberger, T. Döppner, T. Cowan, R. W. Falcone, L. B. Fletcher, S. Frydrych, E. Galtier, E. J. Gamboa, D. O. Gericke, S. H. Glenzer, E. Granados, M. J. MacDonald, A. J. MacKinnon, E. E. McBride, I. Nam, P. Neumayer, A. Pak, K. Rohatsch, A. M. Saunders, A. K. Schuster, P. Sun, T. van Driel, D. Kraus
    Liquid Structure of Shock-Compressed Hydrocarbons at Megabar Pressures
    Physical Review Letters 121, 245501 (2018)
  • D. Kraus, N. J. Hartley, S. Frydrych, A. K. Schuster, K. Rohatsch, M. Rödel, T. E. Cowan, S. Brown, E. Cunningham, T. van Driel, L. B. Fletcher, E. Galtier, E. J. Gamboa, A. Laso Garcia, D. O. Gericke, E. Granados, P. A. Heimann, H. J. Lee, M. J. MacDonald, A. J. MacKinnon, E. E. McBride, I. Nam, P. Neumayer, A. Pak, A. Pelka, I. Prencipe, A. Ravasio, R. Redmer, A. M Saunders, M. Schölmerich, M. Schörner, P. Sun, S. J. Turner, A. Zettl, R. W. Falcone, S. H. Glenzer, T. Döppner, J. Vorberger
    High-pressure chemistry of hydrocarbons relevant to planetary interiors and inertial confinement fusion
    Physics of Plasmas 25, 056313 (2018)

  • T. Döppner, D. C. Swift, A. L. Kritcher, B. Bachmann, G. W. Collins, D. A. Chapman, J. Hawreliak, D. Kraus, J. Nilsen, S. Rothman, L. X. Benedict, E. Dewald, D. E. Fratanduono, J. A. Gaffney, S. H. Glenzer, S. Hamel, O. L. Landen, H. J. Lee, S. LePape, T. Ma, M. J. MacDonald, A. G. MacPhee, D. Milathianaki, M. Millot, P. Neumayer, P. A. Sterne, R. Tommasini, R. W. Falcone
    Absolute Equation-of-State Measurement for Polystyrene from 25 to 60 Mbar Using a Spherically Converging Shock Wave
    Physical Review Letters 121, 025001 (2018)
  • D. Kraus, J. Vorberger, A. Pak, N. J. Hartley, L. B. Fletcher, S. Frydrych, E. Galtier, E. J. Gamboa, D. O. Gericke, S. H. Glenzer, E. Granados, M. M. MacDonald, A. J. MacKinnon, E. E. McBride, I. Nam, P. Neumayer, M. Roth, A. M. Saunders, A. K. Schuster, P. Sun, T. van Driel, T. Döppner, R. W. Falcone

    Formation of diamonds in laser-compressed hydrocarbons at planetary interior conditions

    Nature Astronomy 1, 606-611 (2017)

  • W. Cayzac, A. Frank, A. Ortner, V. Bagnoud, M. Basko, S. Bedacht, C. Bläser, A. Blazevic, S. Busold, O. Deppert, J. Ding, M. Ehret, P. Fiala, S. Frydrych, D. O. Gericke, L. Hallo, J. Helfrich, D. Jahn, E. Kjartansson, A. Knetsch, D. Kraus, G. Malka, N. Neumann, K. Pepitone, D. Pepler, S. Sander, G. Schaumann, T. Schlegel, N. Schroeter, D. Schumacher, M. Seibert, A. Tauschwitz, J. Vorberger, F. Wagner, S. Weih, Y. Zobus and M. Roth
    Experimental discrimination of ion stopping models near the Bragg peak in highly ionized matter
    Nature Communications 8, 15693 (2017)
  • D. Kraus, A. Ravasio, M. Gauthier, D. O. Gericke, J. Vorberger, S. Frydrych, J. Helfrich, L. B. Fletcher, G. Schaumann, B. Nagler, B. Barbrel, B. Bachmann, E. J. Gamboa, S. Göde, E. Granados, G. Gregori, H. J. Lee, P. Neumayer, W. Schumaker, T. Döppner, R. W. Falcone, S. H. Glenzer, M. Roth
    Nanosecond formation of diamond and lonsdaleite by shock compression of graphite
    Nature Communications 7, 10970 (2016)
  • D. Kraus, D. A. Chapman, A. L. Kritcher, R. A. Baggott, B. Bachmann, G. W. Collins, S. H. Glenzer, J. A. Hawreliak, D. H. Kalantar, O. L. Landen, T. Ma, S. Le Pape, J. Nilsen, D. C. Swift, P. Neumayer, R. W. Falcone, D. O. Gericke, T. Döppner
    X-ray scattering measurements on imploding CH spheres at the National Ignition Facility
    Physical Review E 94, 011202(R) (2016)
  • D. Kraus, J. Vorberger, J. Helfrich, D. O. Gericke, B. Bachmann, V. Bagnoud, B. Barbrel, A. Blazevic, D. C. Carroll, W. Cayzac, T. Döppner, L. B. Fletcher, A. Frank, S. Frydrych, E. J. Gamboa, M. Gauthier, S. Goede, E. Granados, G. Gregori, N. Hartley, B. Kettle, H. J. Lee, B. Nagler, P. Neumayer, M. M. Notley, A. Ortner, A. Otten, A. Ravasio, D. Riley, F. Roth, G. Schaumann, D. Schumacher, W. Schumaker, K. Siegenthaler, C. Spindloe, F. Wagner, K. Wuensch, S. H. Glenzer, M. Roth, R. W. Falcone
    The complex ion structure of warm dense carbon measured by spectrally resolved x-ray scattering
    Physics of Plasmas 22, 056307 (2015)
  • D. Kraus, J. Vorberger, D. O. Gericke, V. Bagnoud, A. Blazevic, W. Cayzac, A. Frank, G. Gregori, A. Ortner, A. Otten, F. Roth, G. Schaumann, D. Schumacher, K. Siegenthaler, F. Wagner, K. Wünsch, M. Roth
    Probing the complex ion structure of liquid carbon at 100 GPa
    Physical Review Letters 111, 255501 (2013)
  • A. Frank, A. Blazevic, V. Bagnoud, M. M. Basko, M. Börner, W. Cayzac, D. Kraus, T.  Heßling, D. H. H. Hoffmann, A. Ortner, A. Otten, A. Pelka, D. Pepler, D. Schumacher, An. Tauschwitz, M. Roth
    Energy Loss and Charge Transfer of Argon in a Laser-Generated Carbon Plasma
    Physical Review Letters 110, 115001 (2013)
  • T. Bartal, M. E. Foord, C. Bellei, M. H. Key, K. A. Flippo, S. A. Gaillard, D. T. Offermann, P. K. Patel, L. C. Jarrott, D. P. Higginson, M. Roth, A. Otten, D. Kraus, R. B. Stephens, H. S. McLean, E. M. Giraldez, M. S. Wei, D. C. Gautier, F. N. Beg
    Focusing of short-pulse high-intensity laser-accelerated proton beams
    Nature Physics 8, 139–142 (2012)


Dr. Dominik Kraus
Head High Energy Density
Helmholtz Young Investigator Group leader
Phone: +49 351 260 3657