Social Media

  Twitter-Logo         HZDR-Blog “ResearchIn’ the World” auf helmholtz.de    

Upcoming Events

Initiatives & Cooperation

HZDR: Partner at "Network Dresden - City of Science"

In 2006, the city of Dresden carried the title "City of Science", and founded the network Dresden - City of Science, which has been active ever since. One popular event supported by the network partners in Dresden is the Dresden Long Night of Sciences.


"Charter of Diversity"

HZDR is a member of the "Charter of Diversity", an initiative encouraging diversity in business companies and public institutions. It is supported by the German federal government, the chancellor of Germany being its patron.

Pressemitteilung vom 24. Juli 2020

Ein theoretischer Schritt zum Natrium-Akku

Deutsch-russische Studie weist neue Perspektiven für die Batterieforschung auf

Batterien für Smartphones, Laptops und Elektroautos basieren heute in der Regel auf der Lithium-Ionen-Technik. Doch rund um den Globus sucht die Fachwelt nach Alternativen für deutlich kostengünstigere Akkus. Eine Möglichkeit wäre, Lithium durch Natrium zu ersetzen, einem allgegenwärtigen und damit sehr preiswerten Element. Dafür sind aber noch diverse Hürden zu meistern. Unter anderem nimmt die Graphit-Anode der Batterie bisher zu wenig Natrium auf. Hoffnung verspricht nun eine theoretische Studie (DOI: 10.1016/j.nanoen.2020.104927) einer deutsch-russischen Arbeitsgruppe unter Federführung des Helmholtz-Zentrums Dresden-Rossendorf (HZDR): Sie legt nahe, dass Doppelschichten aus Graphen – hauchdünnem Kohlenstoff – deutlich mehr Natriumatome einlagern könnten als im Graphit.

Ein deutsch-russisches Team konnte mit Hilfe von Computer-Simulationen zeigen, dass sich Natrium (gelb) – anders als bislang vermutet – nicht als einzelne Atomschicht, sondern mehrlagig zwischen zwei Graphen-Schichten (grau) anordnet.

Ein deutsch-russisches Team konnte mit Hilfe von Computer-Simulationen zeigen, dass sich Natrium (gelb) – anders als bislang vermutet – nicht als einzelne Atomschicht, sondern mehrlagig zwischen zwei Graphen-Schichten (grau) anordnet.

Foto: M. Ghorbani-Asl

Download

Ende 2018 gelang einem Forschungsteam des Max-Planck-Instituts für Festkörperforschung in Stuttgart, der Universität Ulm und des HZDR ein bemerkenswertes Experiment: Als die Fachleute Lithium zwischen zwei dünne Graphen-Schichten einlagerten, bildete sich dazwischen nicht nur eine Lage von Lithiumatomen, sondern gleich mehrere Schichten. „Es ist so, als würde man kleine Bälle zwischen zwei Blatt Papier legen“, erläutert HZDR-Physiker Dr. Arkady Krasheninnikov. „Stopft man immer mehr Bälle hinein, werden die Papierblätter auseinandergedrückt und lassen mehr Platz zwischen sich.“

Ein durchaus unerwartetes Resultat. Denn bei Graphit – einem engen Verwandten von Graphen – ließ sich meist nur die Einlagerung einzelner Lithium-Lagen zwischen den hauchdünnen Kohlenstoffschichten beobachten. In einem Artikel, den das Fachmagazin Nature veröffentlicht hat, konnte das Team den Prozess mittels ausgefeilter Computersimulationen auch theoretisch beschreiben. Die Perspektive: Würde man statt den heute üblichen Graphit-Anoden künftig Graphen-Elektroden in Lithium-Akkus einbauen, ließen sich womöglich deutlich höhere Speicherkapazitäten erreichen.

Mehrfach statt einfach

Inspiriert von diesem Resultat widmete sich ein deutsch-russisches Team um Krasheninnikov nun einer neuen Frage: „Wenn die Sache mit der Mehrfach-Einlagerung bei Lithium funktioniert – könnte es dann auch bei anderen Alkalimetallen klappen, speziell bei Natrium?“ Schon länger gilt Natrium als vielversprechender Kandidat für die Akkutechnik: Da es viel häufiger als Lithium auf der Erde vorkommt, könnten sich damit deutlich preisgünstigere Batterien fertigen lassen. Das Problem: Bisherige Prototypen funktionieren unter anderem deshalb noch nicht besonders gut, weil sich Natrium nur widerwillig in die Graphitanoden begibt.

Um herauszufinden, ob Doppelschichten aus Graphen womöglich das Zeug haben, deutlich mehr Natrium einzulagern, initiierte die Arbeitsgruppe aus Dresden, Stuttgart und Moskau eine Reihe von aufwändigen Supercomputer-Simulationen. „Dank des immensen Wachstums der Rechenleistung und der Entwicklung effizienter Algorithmen haben wir heute sehr leistungsfähige Methoden zur Hand, um neue Materialien zu untersuchen“, erklärt der Physiker. „Sie erlauben es, detaillierte Materialstrukturen und Eigenschaften vorauszusagen, ohne allzu viele Annahmen in die Berechnungen hineinzustecken, und haben sich in ihrer Aussagekraft als sehr zuverlässig herausgestellt.“

Neue Hoffnung für den Natrium-Akku

Das Resultat dieser Computerexperimente: Ebenso wie Lithium sollte sich auch Natrium nicht nur als eine Schicht, sondern in mehreren Lagen übereinander zwischen den Graphen-Blättchen einlagern können. Für die Batterieforschung ist das eine potentiell frohe Botschaft: Womöglich weist das neue Resultat die Richtung, die die Entwicklung künftiger Anoden für preisgünstige Natrium-Akkus nehmen könnte. „Unsere Arbeit ist rein theoretischer Natur, und wir erheben nicht den Anspruch, dass auf der Grundlage unserer Ergebnisse in absehbarer Zeit eine neue Batterie-Generation entwickelt wird“, betont Krasheninnikov. „Aber vielleicht bringen unsere Resultate die Ingenieure ja auf neue, interessante Ideen.“

Ähnliches könnte für einen weiteres zweidimensionales Material gelten, das die Theoretiker in ihrer aktuellen Arbeit unter die Lupe nahmen – Molybdän-Disulfid (MoS2). Einerseits könnte es wie Graphen als künftiges Elektrodenmaterial für Akkus fungieren. „Andererseits lässt es sich mit Stoffen wie Lithium oder Natrium dotieren“, erläutert Krasheninnikov. „Und dadurch könnte man daran denken, die elektronischen Eigenschaften von Molybdän-Disulfid maßzuschneidern, zum Beispiel um das Material zu einem Supraleiter zu machen.“


Publikationen:

I. Chepkasov, M. Ghorbani-Asl, Z. Popov, J. Smet, A.V. Krasheninnikov: Alkali metals inside bi-layer graphene and MoS2: Insights from first-principles calculations, in Nano Energy, 2020 (DOI: 10.1016/j.nanoen.2020.104927)

 
M. Kühne, F. Börrnert, S. Fecher, M. Ghorbani-Asl, J. Biskupek, D. Samuelis, A.V. Krasheninnikov, U. Kaiser, J. Smet: Reversible superdense ordering of lithium between two graphene sheets, in Nature, 2018 (DOI: 10.1038/s41586-018-0754-2)


Weitere Informationen:

Dr. Arkady Krasheninnikov
Institut für Ionenstrahlphysik und Materialforschung am HZDR
Tel.: +49 351 260 3148 | E-Mail: a.krasheninnikov@hzdr.de

Medienkontakt:

Simon Schmitt | Wissenschaftsredakteur
Abteilung Kommunikation und Medien am HZDR
Tel.: +49 351 260 3400 | E-Mail: s.schmitt@hzdr.de