Publications Repository - Helmholtz-Zentrum Dresden-Rossendorf

"Online First" included
Without submitted and only approved publications
Only approved publications

34121 Publications

TOMOCON: A Marie Skłodowska-Curie European Training Network on Tomography-based Control in Industrial Processes

Hampel, U.; Wondrak, T.; Fjeld, M.; Mudde, R.; Portela, L. M.; Kenjeres, S.; Legendre, D.; Link, G.; Koiranen, T.; Hlava, J.; Babout, L.; Jackowska-Strumiłło, L.; Soleimani, M.; Vauhkonen, M.; Lähivaara, T.; Rymarczyk, T.; Trepte, M.; Voutilainen, A.; Rodriguez, M.; Bos, J.; Betz, S.; Hysky, J.; Pennerstorfer, P.; Goldammer, M.; Matten, C.; Hoffmann, R.; Gingras, J.-P.; van der Plas, D.; Veenstra, P.; Nurmi, J.; Pudack, C.; Da Silva, M. J.

The European Doctoral Training Network “Smart Tomographic Sensors for Advanced Industrial Process Control (TOMOCON)” gathers academic and industrial partners from different sectors with the mission to develop new fundamentals and technological solutions of advanced industrial control by tomographic sensors. It has received funding by the EU under the Marie Skłodowska-Curie scheme as an Innovative Training Network. It runs from September 2018 to August 2022 with 15 Early Stage Researchers, who are working as PhD students in 10 different European academic institutions. Within their research projects the doctoral students receive an extensive training in various fields of engineering and natural sciences being carried out in the frame of so called secondments at different industrial and academic partners as well as via three dedicated Summer Schools. The network is further supported by an Advisory Board with members from leading institutions in the field of process tomography.

Keywords: Marie Skłodowska-Curie Innovative Training Network; Process Tomography; Process Control; Process Modelling; Doctoral Education and Training

  • Lecture (Conference)
    9th World Congress on Industrial Process Tomography, 02.-06.09.2018, Bath, UK
  • Open Access Logo Contribution to proceedings
    9th World Congress on Industrial Process Tomography, 02.-06.09.2018, Bath, UK
    Proceeding of the 9th World Congress on Industrial Process Tomography

Permalink: https://www.hzdr.de/publications/Publ-28344
Publ.-Id: 28344


Simulation of the transient behavior of tubular solid oxide electrolyzer cells under fast load variations

Fogel, S.; Kryk, H.; Hampel, U.

Solid oxide electrolyzer cells pose a promising technology for the production of hydrogen gained from renewables, such as wind and PV. Due to the fluctuating nature of these sources, the transient behavior of SOEC under various load cases plays a crucial role in terms of their long-time stability, degradation behavior, conversion efficiency and application. This study presents a dynamic, 2D-FEM model of a single tubular SOEC. The transient operational behavior of the cell under fast load variations and different flow configurations is assessed based on the conducted simulations.

Keywords: Tubular SOEC; Load variation; Dynamic simulation; Proton conducting SOEC; Fast transient response

Downloads:

Permalink: https://www.hzdr.de/publications/Publ-28343
Publ.-Id: 28343


Leaching of U(VI) and Cm(III) doped calcium (aluminum) silicate hydrate gel (C-(A)-S-H) and tobermorite in saline brines

Wolter, J. M.; Schmeide, K.; Huittinen, N.; Bok, F.; Weiss, S.; Brendler, V.; Stumpf, T.

To evaluate the retention potential of concrete inside a nuclear waste repository for actinides under saline and hyperalkaline conditions, leaching experiments with actinide doped cementitious phases were performed in repository-relevant brines. Therefore, U(VI) and Cm(III) doped calcium silicate hydrate (C-S-H) phases with different calcium-to-silicon (C/S) ratios (1.0−2.0) were synthesized directly in presence of either U(VI) or Cm(III) and characterized by time-resolved laser-induced luminescence spectroscopy (TRLFS), infrared (IR) spectroscopy, powder X-ray diffraction (XRD), Raman spectroscopy, and scanning electron microscopy (SEM). The time-dependent release of Ca, Si, U or Cm from CSH phases into brines that contained either 2.5 M NaCl, 2.5 M NaCl/0.02 M Na₂;SO₄, 2.5 M NaCl/0.02 M NaHCO₃ or 0.02 M NaHCO₃ for U(VI) doped CSH phases or 2.5 M NaCl/0.02 M NaHCO₃ or 0.02 M NaHCO₃ for Cm(III) doped CSH phases was monitored in batch leaching experiments for 30 to 60 days. Subsequently, leaching induced changes of the C-S-H structure and of the U(VI) or Cm(III) coordination environment were investigated with TRLFS, IR spectroscopy and XRD. Results indicated that the U(VI) retention by C-S-H phases is maintained in the presence of NaCl rich solutions due to the formation of uranophane [1]. The presence of carbonate in saline leaching solutions increased the U(VI) mobility due to formation of Ca₂UO₂(CO₃)₃(aq) at moderate alkaline pH values [1]. Furthermore, an influence of the secondary CaCO₃ phases calcite, vaterite and aragonite was detected. Calcite contributed to the U(VI) retention which was shown with TRLFS [1]. The binding study of Cm(III) incorporated into C-S-H gel revealed at least two Cm(III) species: (i) Cm(III) substituted against Ca2+ from the C-S-H interlayer and (ii) Cm(III) incorporated in the polyhedral CaO plane of the C-S-H structure. Additionally, a luminescence line narrowing effect was observed indicating variations of the local surrounding of Cm(III) in C-S-H gel. Leaching experiments showed that Cm(III) is not mobilized by carbonate but becomes partially incorporated into secondary CaCO₃ phases. Recently, we started to investigate the Al and U(VI) incorporation into C-S-H phases at different Al/Si ratios (0.025−0.2) and synthesis temperatures (25°C or 200°C). The obtained phases were investigated with ² ⁷Al NMR, TRLFS, XRD and Raman microscopy. First results indicated an influence of the Al starting material and synthesis temperature on the Al incorporation.

Keywords: C-S-H; Aluminum; TRLFS; XRD; Raman; IR; Leaching; Saline; Carbonate

  • Contribution to proceedings
    5th International Workshop on Mechanisms and Modelling of Waste/Cement interactions, 25.-27.03.2019, Karlsruhe, Deutschland
    Proceedings of the 5th International Workshop on Mechanisms and Modelling of Waste/Cement interactions
  • Poster
    5th International Workshop on Mechanisms and Modelling of Waste/Cement interactions, 25.-27.03.2019, Karlsruhe, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-28342
Publ.-Id: 28342


Lattice relaxation effects of the spin-ice Dy2Ti2O7

Stoeter, T.; Nomura, T.; Granovsky, S.; Doerr, M.; Petrenko, O. A.; Balakrishnan, G.; Zherlitsyn, S.; Wosnitza, J.

Dy2Ti2O and Ho2Ti2O7 have attracted enormous scientific interest because of the unusual spin-ice ground state and exotic excitations – magnetic monopoles. In this work, we investigated how the lattice reacted to the change of the monopole density from the spin-ice through the Kagome ice to the saturated monopole phase and whether the very slow monopole dynamics predicted in theory were also detectable in lattice effects. We have performed magnetostriction and thermal-expansion measurements with a capacitive dilatometer on Dy2Ti2O7 at temperatures down to 0.28 K to explore the lattice effects in the different regimes: Indeed, we have observed a field-dependent lattice anomaly and have found lattice relaxation effects which could be related to previously proposed monopole dynamics. This research has been supported by the DFG within project C01 of SFB 1143.

  • Lecture (Conference)
    DPG-Frühjahrstagung der Sektion Kondensierte Materie (SKM) gemeinsam mit der European Physical Society (CMD), 11.-16.03.2018, Berlin, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-28341
Publ.-Id: 28341


Magnetic ground state of the cubic perovskite Ba3NiNb2O9

Yamamoto, S.; Aslan Cansever, G.; Gottschall, T.; Uhlarz, M.; Blum, C. G. F.; Wolter-Giraud, A.; Aswartham, S.; Wurmehl, S.; Herrmannsdörfer, T.; Seiro, S.

We investigated the magnetic spin-1 perovskite Ba3NiNb2O9 by means of complex ac susceptibility measurements at extreme sample conditions. Ba3NiNb2O9 with cubic perovskite structure (Pm-3m) has a random occupation of Nb(66 %)/Ni(33 %) at the center of the cubic perovskite unit cell. Different from the isostoichiometric sister compound, Ba3NiNb2O9 with P-3m1 structure which shows both uud-spin configuration and multiferroicity, the magnetic properties of the investigated system have not been studied below 2 K yet. For our single crystals, we observe a spin freezing transition at around 0.7 K. Furthermore, the peak of 𝜒’ is suppressed by applying an external dc field of 200 mT and 𝜒” shows a sudden onset near the freezing temperature.

  • Poster
    DPG-Frühjahrstagung der Sektion Kondensierte Materie (SKM) gemeinsam mit der European Physical Society (CMD), 11.-16.03.2018, Berlin, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-28340
Publ.-Id: 28340


Thermal and thermal-Hall conductivity study of SrCu2(BO3)2

Arsenijevic, S.; Dabkowska, H.; Gaulin, B.; Stern, R.; Wosnitza, J.

We present measurements of the thermal and the thermal-Hall conductivity as a function of temperature and magnetic field in the twodimensional dimer spin system SrCu2(BO3)2. The thermal conductivity in zero magnetic field shows a pronounced peak around 4 K which is ascribed to a spin-gap opening. The low-temperature maximum is strongly suppressed by the application of magnetic field. This result implies that the majority of heat is conducted by phonons which interact with the magnetic excitations. Furthermore, a theoretical study predicted a strong thermal Hall signature due to anisotropies originating from the Dzyaloshinskii-Moriya interactions which lead to a topological character of triplon excitations [1]. Our detailed experimental investigation did not reveal such effect disproving the existence of topological transitions in the triplon band structure.

  • Poster
    DPG-Frühjahrstagung der Sektion Kondensierte Materie (SKM) gemeinsam mit der European Physical Society (CMD), 11.-16.03.2018, Berlin, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-28339
Publ.-Id: 28339


Inverted hysteresis within the antiferromagnetic all-in-allout state of the pyrochlore Nd2Hf2O7

Opherden, L.; Bilitewski, T.; Hornung, J.; Herrmannsdörfer, T.; Samartzis, A.; Islam, A. T. M. N.; Anand, V. K.; Lake, B.; Moessner, R.; Wosnitza, J.

We report the observation of an anisotropic and inverted hysteresis loop in the antiferromagnetic all-in-all-out ordered phase of Nd2Hf2O7 having a negative remnant magnetization. The hysteresis emerges once exceeding a characteristic magnetic-field strength 𝐻(𝑇) below the Neél temperature. The very unusual appearance of a negative remnant magnetization is observed for a field parallel to the [111] and [110] direction. However, for field parallel to [001] no hysteresis can be seen. For this orientation the projection of the field onto all four local spin directions is equal and, hence, both realizations of the all-in-all-out state gaining equal Zeeman energy through a canting of their spins. We show further, that the underlying all-in-all-out phase is established in Nd2Hf2O7 for temperatures below 𝑇𝑁 = 0.48 K and persists up to fields of 0.27 T. We account for the inverted hysteresis in terms of a theory of uncompensated domain-wall spins of spherical Domains forming inside a fully polarized single-domain state.

  • Poster
    DPG-Frühjahrstagung der Sektion Kondensierte Materie (SKM) gemeinsam mit der European Physical Society (CMD), 11.-16.03.2018, Berlin, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-28338
Publ.-Id: 28338


Electronic structure of the B20 compound CrGe

Klotz, J.; Götze, K.; Bruin, J.; Geibel, C.; Weber, K.; Schmidt, M.; Rosner, H.; Wosnitza, J.

CrGe is a nonmagnetic transition-metal germanide with the B20 noncentrosymmetric cubic structure. In contrast, the isostructural MnGe and FeGe both show a helical spin order. We present dHvA-effect data on CrGe that were obtained employing capacitive torque Magnetometers in a 18 T/30 mK and a 33 T/340 mK system. In combination with our fplo calculations, we provide a detailed picture of the Fermisurface topology of CrGe. Furthermore, by comparing the calculated band structures of CrGe and MnGe, we discuss possible reasons for the absence of magnetic order in CrGe. Finally, our calculations indicate that substituting Ge by As or Sn will not lead to magnetic order.

  • Poster
    DPG-Frühjahrstagung der Sektion Kondensierte Materie (SKM) gemeinsam mit der European Physical Society (CMD), 11.-16.03.2018, Berlin, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-28337
Publ.-Id: 28337


Reversibility of minor hysteresis loops in magnetocaloric Heusler alloys

Gottschall, T.; Stern-Taulats, E.; Manosa, L.; Planes, A.; Skokov, K. P.; Gutfleisch, O.; Skourski, Y.; Wosnitza, J.

The unavoidable existence of thermal hysteresis in these magnetocaloric materials is one of the central challenges limiting their implementation in cooling devices. Transforming the material in minor loops of the thermal hysteresis, however, allows achieving significant reversible effects even when the hysteresis is relatively large. In this work, we focus on the magnetocaloric properties of Heusler alloys under cycling. We compare thermometric measurements of the adiabatic temperature change in low magnetic fields and pulsed field experiments with calorimetric measurements of the isothermal entropy change when moving in minor hysteresis loops driven by magnetic fields [1, 2].

  • Poster
    DPG-Frühjahrstagung der Sektion Kondensierte Materie (SKM) gemeinsam mit der European Physical Society (CMD), 11.-16.03.2018, Berline, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-28336
Publ.-Id: 28336


Exploring the Quantum Limit of Weyl semimetal candidates

Förster, T.; Klotz, J.; Wosnitza, J.; Shekhar, C.; Yan, B.; Felser, C.

Non-centrosymmetric transition-metal mono-pnictides such as NbAs, NbP and TaAs attracted a lot of attention because their bandstructures show linear non-degenerate band crossings, dubbed Weyl nodes [1,2]. Additionally, for certain magnetic-field orientations, the highest de Haas-van Alphen frequencies observed are smaller than 50 T. For that reason, all bands are expected to be in the quantum limit at fields easily reachable by pulsed magnetic fields. Thus, these semimetals constitute an ideal playground to study the quantum limit by electric transport and magnetic-torque measurements. Our first results for NbP show an unexpected linear increase in magnetic-torque measurements. In our contribution we show the results of our magnetic-torque measurements on NbP, NbAs, TaP and TaAs in pulsed fields up to 70 T.

  • Poster
    DPG-Frühjahrstagung der Sektion Kondensierte Materie (SKM) gemeinsam mit der European Physical Society (CMD), 11.-16.03.2018, Berlin, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-28335
Publ.-Id: 28335


NMR of the two-dimensional 𝑆 = 1/2 Heisenberg antiferromagnet CuPOF

Dmytriieva, D.; Zhang, Z. T.; Uhlarz, M.; Landee, C. P.; Wosnitza, J.; Kühne, M.

The metal-organic compound [Cu(pz)2(2-OHpy)2](PF6)2 (CuPOF) is a molecular-based analog of the two-dimensional quantum 𝑆 = 1/2 Heisenberg antiferromagnet (2D QHAF) with well-isolated Cu(pz) layers and a very low 𝑘𝐵𝑇𝑁/𝐽 = 0.21 ratio (𝐽/𝑘𝐵 = 6.8 K, 𝑇𝑁 = 1.38 K). We present a focus study of the low-temperature phase transition to long-range order performed via 1H and 31P nuclear magnetic resonance (NMR), as well as high-field magnetometry. A low-temperature Minimum of the temperature-dependent local and uniform magnetizations at 𝑇𝑚𝑖𝑛 indicates a presence of the magnetic order. Within the ordered state, a splitting of the 1H NMR spectra reveals commensurate AF order, presumably of checkerboard type. The phase transition, manifested as a sharp maximum of the temperature-dependent 31P nuclear spin-lattice relaxation rate 1/𝑇1, occurs at temperatures slightly lower than 𝑇𝑚𝑖𝑛, indicating an easy-plane anisotropy as well as a crossover between isotropic and XY behavior.

  • Poster
    DPG-Frühjahrstagung der Sektion Kondensierte Materie (SKM) gemeinsam mit der European Physical Society (CMD), 11.-16.03.2018, Berlin, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-28334
Publ.-Id: 28334


Exploring the magnetic phase diagram of a metal-organic S = 1 triangular spin system.

Chattopadhyay, S.; Herrmannsdörfer, T.; Kanungo, S.; Zvyagin, S.; Uhlarz, M.; Manna, K.; Schnelle, W.; Sannigrahi, J.; Wosnitza, J.; Patra, R.

We report on magnetic properties of a novel metal-organic S = 1 antiferromagnetic triangular spin compound with isolated Ni2+ triangles entitled as BHAP-Ni3. Specific heat measurements reflect an onset of magnetic correlation at low temperatures without any long-range order down to 300 mK, indicating the presence of an unusual magnetic ground state. ESR measurements performed at 1.5 K advocate this ground state to be a gapped one. Field-dependent magnetization measured on the single crystal shows anisotropic behavior with field applied parallel and perpendicular to the triangle plane. However, a clear plateau-like region is seen in both directions above 8 T which corresponds to half of the fully polarized value of Ni2+ moment. The presence of such half-magnetization plateau is quite unusual in the family of triangular magnets. High-field magnetization measurements using pulsed magnet show another field-induced plateau above 30 T corresponding to the fully polarized state of S = 1 triangles.

  • Poster
    DPG-Frühjahrstagung der Sektion Kondensierte Materie (SKM) gemeinsam mit der European Physical Society (CMD), 11.-16.03.2018, Berlin, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-28333
Publ.-Id: 28333


High-field ESR studies of the honeycomb-lattice material 𝛼-RuCl3

Ponomaryov, A. N.; Schulze, E.; Wosnitza, J.; Lampen-Kelley, P.; Banerjee, A.; Yan, J. Q.; Bridges, C. A.; Mandrus, D. G.; Nagler, S. E.; Kolezhuk, A. K.; Zvyagin, S.

We present high-field electron spin resonance (ESR) studies of the honeycomb-lattice material 𝛼-RuCl3, a prime candidate to exhibit Kitaev physics. Two modes of antiferromagnetic resonance were detected in the zigzag ordered phase, with magnetic field applied in the 𝑎𝑏 plane. A very rich excitation spectrum was observed in the field-induced Quantum paramagnetic phase. The obtained data are compared with results of recent numerical calculations, strongly suggesting a very unconventional multiparticle character of the spin dynamics in 𝛼-RuCl3. The frequency-field diagram of the lowest-energy ESR mode is found consistent with the behavior of the field-induced energy gap, revealed by thermodynamic measurements. This work was supported by DFG (project ZV 6/2-2).

  • Poster
    DPG-Frühjahrstagung der Sektion Kondensierte Materie (SKM) gemeinsam mit der European Physical Society (CMD), 11.-16.03.2018, Berlin, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-28332
Publ.-Id: 28332


A brief discussion of the magnetocaloric effect in thin films of manganite doped with chromium.

Campillo, G.; Figueroa, A. I.; Arnache, O.; Osorio, J.; Marín Ramírez, J. M.; Fallarino, L.

In this work we report on the magnetocaloric effect of La2/3Ca1/3MnO3 (LCMO) and La2/3Ca1/3Mn0.94Cr0.06O3 (LCMCrO) manganite thin films grown by DC magnetron sputtering on LaAlO3 (100) substrates. X-ray diffraction shows that both doped and undoped films crystallize in the orthorhombic structure. Magnetic measurements show a decrease in both the Curie temperature, TC, and the saturation magnetization, MS, for the LCMCrO sample. The change in the magnetic entropy (deltaSm) was extracted from hysteresis loops at different temperatures around the ferromagnetic to paramagnetic transition, displaying a maximum of entropy change (deltaSm)max near TC in both films. Moreover, a shift in (deltaSm)max toward temperatures above TC with increasing magnetic field and a broadening of the entropy change curve were observed. Results of refrigeration cooling power show a lower efficiency for LCMCrO. In order to obtain a local insight into the magnetic interactions of these films, measurements of X-ray absorption spectroscopy and X-ray magnetic circular dichroism (XMCD) were performed. XMCD suggests that an antiferromagnetic coupling between Mn4+ - Mn3+ is favored with Cr3+ incorporation, which reduces the Mn L2,3 XMCD signal and results in a decrease of MS and (deltaSm)max in LCMCrO films.

Keywords: Magnetocaloric effect; epitaxial La2/3Ca1/3MnO3 (LCMO) thin films; epitaxial La2/3Ca1/3Mn0.94Cr0.06O3 (LCMCrO) thin films

  • Open Access Logo Contribution to proceedings
    VI Congreso Nacional de Ingeniería Física, 22.-26.10.2018, Bucaramanga, Colombia
    Journal of Physics: Conference Series (JPCS).: IOP
    DOI: 10.1088/1742-6596/1247/1/012013

Permalink: https://www.hzdr.de/publications/Publ-28331
Publ.-Id: 28331


Magnetoelastic phenomena in antiferromagnetic uranium intermetallics: The UAu2Si2 case

Valiska, M.; Saito, H.; Yanagisawa, T.; Tabata, C.; Amitsuka, H.; Uhlirova, K.; Prokleska, J.; Proschek, P.; Valenta, J.; Misek, M.; Gorbunov, D. I.; Wosnitza, J.; Sechovsky, V.

Thermal expansion, magnetostriction, and magnetization measurements under magnetic field and hydrostatic pressure were performed on a UAu2Si2 single crystal. They revealed a large anisotropy of magnetoelastic properties manifested by prominent length changes, leading to a collapse of the unit-cell volume accompanied by breaking the fourfold symmetry (similar to that in URu2Si2 in the hidden-order state) in the antiferromagnetic state as consequences of strong magnetoelastic coupling. The magnetostriction curves measured at higher temperatures confirm a bulk character of the 50K weak ferromagnetic phase. The large positive pressure change of the ordering temperature predicted from Ehrenfest relation contradicts the more than an order of magnitude smaller pressure dependence observed by the magnetization and specific heat measured under hydrostatic pressure. A comprehensive magnetic phase diagram of UAu2Si2 in magnetic field applied along the c axis is presented. The ground-state antiferromagnetic phase is suppressed by a field-induced metamagnetic transition that changes its character from second to first order at the tricritical point

Permalink: https://www.hzdr.de/publications/Publ-28330
Publ.-Id: 28330


Chronic low dose ethanol induces an aggressive metastatic phenotype in TRAMP mice, which is counteracted by parthenolide

Morel, K.; Ormsby, R.; Solly, E.; Tran, L.; Sweeney, C.; Klebe, S.; Cordes, N.; Sykes, P.

Despite advances in prostate cancer therapy, dissemination and growth of metastases results in shortened survival. Here we examined the potential anti-cancer effect of the NF-B inhibitor parthenolide (PTL) and its water soluble analogue dimethylaminoparthenolide (DMAPT) on tumour progression and metastasis in the TRansgenic Adenocarcinoma of the Mouse Prostate (TRAMP) model of prostate cancer. Six-week-old male TRAMP mice received PTL (40mg/kg in 10% ethanol/saline), DMAPT (100mg/kg in sterile water), or vehicle controls by oral gavage thrice weekly until palpable tumour formation. DMAPT treatment slowed normal tumour development in TRAMP mice, extending the time-to-palpable prostate tumour by 20%. PTL did not slow overall tumour development, while the ethanol/saline vehicle used to administer PTL unexpectedly induced an aggressive metastatic tumour phenotype. Chronic ethanol/saline vehicle upregulated expression of NF-B, MMP2, integrin 1, collagen IV, and laminin, and induced vascular basement membrane degradation in primary prostate tumours, as well as increased metastatic spread to the lung and liver. All of these changes were largely prevented by co-administration with PTL. DMAPT (in water) reduced metastasis to below that of water-control. These data suggest that DMAPT has the potential to be used as a cancer preventive and anti-metastatic therapy for prostate cancer. Although low levels of ethanol consumption have not been shown to strongly correlate with prostate cancer epidemiology, these results would support a potential effect of chronic low dose ethanol on metastasis and the TRAMP model provides a useful system in which to further explore the mechanisms involved.

Keywords: Parthenolide; DMAPT; Metastasis; TRAMP; Prostate cancer; Ethanol

Permalink: https://www.hzdr.de/publications/Publ-28329
Publ.-Id: 28329


Investigations on potential methods for the long-term monitoring of the state of fuel elements in dry storage casks

Hampel, U.; Kratzsch, A.; Rachamin, R.; Wagner, M.; Schmidt, S.; Fiß, D.; Reinicke, S.

Extended dry storage of spent nuclear fuel is a relevant issue in many countries operating nuclear power plants. Beside regulatory and security aspects there are questions with respect to the long-term integrity of the spent fuel as this is of relevance for final transportation and reloading to final waste repository casks. Within the frame of the BMWi project DCS-MONITOR, we investigate the potentials of different methods for non-intrusive monitoring of dry cask storage containers with spent nuclear fuel. These are thermography, radiation-based methods, and acoustic methods. For all of them we study the sensitivity and cross-sensitivity with respect to defined changes in the nuclear fuel distribution inside the containers. The analyses are mainly based on numerical simulations but also include some dedicated experimental studies.

Keywords: extended storagy; spent fuel; monitoring

  • Open Access Logo Kerntechnik 83(2018)6, 513-522
    DOI: 10.3139/124.110949
  • Lecture (Conference)
    2nd Workshop on Safety of Extended Dry Storage of Spent Nuclear Fuel, 06.-08.06.2018, Garching, Deutschland
  • Contribution to proceedings
    2nd Workshop on Safety of Extended Dry Storage of Spent Nuclear Fuel, 06.-08.06.2018, Garching, Germany
    Proceedings of 2nd Workshop on Safety of Extended Dry Storage of Spent Nuclear Fuel

Downloads:

Permalink: https://www.hzdr.de/publications/Publ-28328
Publ.-Id: 28328


Effect of neutron flux on the microstructure of irradiated RPV steels

Ulbricht, A.; Bergner, F.

This invited talk about the effect of neutron flux on the microstructure of irradiated RPV steels was given to the participants of a Training School in the Framework of the European project SOTERIA.

Keywords: Pressure vessel steels; neutron irradiation; neutron flux; microstructure

  • Invited lecture (Conferences)
    International SOTERIA Training School, 03.07.-07.09.2018, Valencia, Spain

Permalink: https://www.hzdr.de/publications/Publ-28327
Publ.-Id: 28327


Metallische Verbundwerkstoffe mit funktionellen Eigenschaften

Weissgärber, T.; Schubert, T.; Hutsch, T.; Hilger, I.; Bergner, F.; Kieback, B.

Der Vortrag umfasst Aspekte der Herstellung, Mikrostruktur, Eigenschaften und Anwendung von pulvermetallurgisch hergestellten Werkstoffen. Als Beispielsysteme werden ODS-Fe-Cr-Legierungen, Verbundwerkstoffe für die Elektronikkühlung und Aluminiumverbundwerkstoffe betrachtet.

Keywords: ODS Legierungen

  • Invited lecture (Conferences)
    7. Dresdner Werkstoffsymposium 2018, 06.-07.12.2018, Dresden, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-28326
Publ.-Id: 28326


Cm(III) retention by calcium silicate hydrate (C-S-H) gel and secondary alteration phases in carbonate solutions with high ionic strength: A site-selective TRLFS study

Wolter, J.-M.; Schmeide, K.; Huittinen, N.; Stumpf, T.

We studied the Cm(III) retention by calcium silicate hydrate (C-S-H), portlandite (Ca(OH)2) and their alteration products calcite, vaterite, and aragonite in high ionic strength carbonate-containing solutions representing specific formation waters. For this, we synthesized C-S-H gels with calcium to silicon (C/S) ratios of 1.0 and 2.0 in the absence and presence of Cm(III), resulting in Cm(III)-free and Cm(III) doped C-S-H gel, respectively. For phase identification purposes we applied X-ray diffraction (XRD) while for the identification of the Cm(III)/C-S-H binding mode we applied site-selective time-resolved laser-induced luminescence spectroscopy (TRLFS). The stability of Cm(III) doped phases under repository-relevant conditions was evaluated by studying the time-dependent release of Cm(III) from the Cm(III) doped C-S-H gel into leaching solutions containing 0.02 M NaHCO3 or 2.5 M NaCl/0.02 M NaHCO3 over 60 d. Speciation changes of Cm(III) due to leaching were followed with TRLFS while C-S-H structure alterations and secondary phase formation were monitored with XRD. From the results it could be concluded that Cm(III) is not mobilized by aqueous carbonate but either remains incorporated in the C-S-H structure and portlandite or becomes partially re-immobilized into secondary CaCO3 phases. The presence of NaCl led to an accelerated conversion of metastable secondary CaCO3 phases into calcite.

Keywords: curium; C-S-H; portlandite; calcite; site-selective TRLFS; luminescence line narrowing effect; high ionic strength

Permalink: https://www.hzdr.de/publications/Publ-28325
Publ.-Id: 28325


Comparative assessment of different image processing methods to determine the gas-liquid interfacial area in froth regimes of sandwich packings from ultrafast X-ray tomography image data

Sohr, J.; Bieberle, M.; George, G. R.; Flechsig, S.; Kenig, E. Y.; Schubert, M.; Hampel, U.

Sandwich packings consist of alternatingly stacked structured packing layers of different specific surface area. In such packings froth two-phase flow appears when the packing is operated between the loading limits of the layers. For this highly agitated flow regime, there is a lack of hydrodynamic data, in particular on gas-liquid interfacial area. Ultrafast X-ray tomography, a cross-sectional imaging technique with a frame rate of more than 1000 cross-sectional images per second, is applied to visualize the gas-liquid flow and to extract the gas-liquid interfacial area data via image post-processing methods. For that, we assessed different segmentation methods, that are, level set and gray level contour techniques.

Keywords: Sandwich packing; ultrafast X-ray tomography; image segmentation; gas-liquid interfacial area

Permalink: https://www.hzdr.de/publications/Publ-28324
Publ.-Id: 28324


Machbarkeitsstudie zur MRT-integrierten Protonentherapie: Strahlablenkung, Sekundärteilchen und Bildqualität

Schellhammer, S. M.; Gantz, S.; Lühr, A.; Pawelke, J.; Karsch, L.; Smeets, J.; Quets, S.; Burigo, L. N.; Oborn, B.; Bussmann, M.; Hoffmann, A. L.

Einleitung
Ungefähr 50% der Krebspatienten werden durch Strahlentherapie behandelt, und die Protonentherapie (PT) bietet hier aufgrund der begrenzten Eindringtiefe und des steilen Dosismaximums eine sehr gezielte Behandlungsform mit potentiell reduzierten Nebenwirkungen. Die Treffgenauigkeit der Protonentherapie kann jedoch durch Bewegungen und anatomische Veränderungen während der Therapie stark kompromittiert werden. Eine gleichzeitige Bildgebung mittels Echtzeit-Magnetresonanztomographie (MRT) wäre deshalb ideal. Bis heute existieren jedoch keine kombinierten Systeme für MRT und PT. Ziele dieser Studie waren die erste Integration eines MR-Scanners in eine PT-Strahlführung, die experimentelle Verifizierung der Ablenkung des Strahls und der Sekundärteilchen im Magnetfled des MRT-Scanners, die Überprüfung der Machbarkeit einer gleichzeitigen MR-Bildgebung und Bestrahlung, und die Kontrolle der MR-Bildqualität mit und ohne Strahleinfluss.

Material & Methoden
Ein offener MR-Scanner mit einem vertikalen Magnetfeld von 0.22 T (MRJ2200, Paramed Medical Systems SpA) wurde an einer strahldüsenlosen horizontalen Strahlführung (Ion Beam Applications SA) installiert, und durch einen kompakten Faraday-Käfig von Hochfrequenz-Interferenzen abgeschirmt (Abb. 1). Die Strahlablenkung und der Einfluss des Magnets auf die Sekundärteilchen im Strahl wurden mithilfe an einem PMMA-Phantom befestigter radiochromischer Filme (EBT3, Ashland) in einem 1 T Magneten gemessen und mit Monte-Carlo-simulationsbasierten Vorhersagen verglichen. Zur Überprüfung der MR-Bildgebung wurden anatomische MR-Bilder eines Probanden bei ausgeschalteter Strahlführung sowie MR-Bilder eines Gewebephantoms und eines dedizierten Bildqualitätsphantoms mit und ohne Strahleinfluss (bei 125 MeV und 5 nA) aufgenommen.

Ergebnisse
Die gemessene Ablenkung des Strahls sowie lokale Dosiserhöhung durch Sekundärteilchen im Magnetfeld waren gering (< 1 cm bzw. 2%) und zeigten sehr gute Übereinstimmung mit simulationsbasierten Vorhersagen. Die MR-Aufnahmen (Abb. 2) zeigten die für den verwendeten Scanner übliche Bildqualität. Es wurde keine Veränderung der Bildqualität durch die Strahlführungsmagneten und den Protonenstrahl beobachtet, jedoch eine gleichförmige, korrigierbare Bildverschiebung (< 1 mm) in Frequenzkodierrichtung.

Diskussion
Die Integration eines offenen MR-Scanners in den experimentellen Strahlengang einer Protonentherapie-Anlage war erfolgreich. Die Einflüsse des Magnetfelds des MRT-Scanners auf den Strahl sind vorhersagbar und eine gleichzeitige MR-Bildgebung und Bestrahlung ohne Bildverzerrung ist möglich. Dies rechtfertigt die Entwicklung eines ersten Prototyps für die MRT-integrierte Protonentherapie.

  • Poster
    1. Deutscher KrebsForschungsKongress (DKFK) | 1st German Cancer Research Congress (GCRC), 04.-05.02.2019, Heidelberg, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-28323
Publ.-Id: 28323


Including anatomical variations in robust optimization for head and neck proton therapy can reduce the need of adaptation

Cubillos-Mesías, M.; Troost, E. G. C.; Lohaus, F.; Agolli, L.; Rehm, M.; Richter, C.; Stützer, K.

Background and purpose: Classical robust optimization considers uncertainties in patient setup and particle range. However, anatomical changes occurring during the treatment are neglected. Our aim was to compare classical robust optimization (cRO) with anatomical robust optimization (aRO), to quantify the influence of anatomical variations during the treatment course, and to assess the need of adaptation.
Materials and methods: Planning CT and weekly control CTs (cCTs) from 20 head and neck patients were analysed. Three intensity-modulated proton therapy (IMPT) plans were compared: conventional PTV-based plan; cRO, using solely the planning CT, and aRO, including additionally the first 2 cCTs in the optimization. Weekly and total cumulative doses, considering anatomical variations during the treatment, were calculated and compared with the nominal plans.
Results: Nominal plans fulfilled clinical specifications for target coverage (D98% ≥ 95% of prescribed dose). The PTV-based and cRO approaches were not sufficient to account for anatomical changes during the treatment in 10 and 5 patients, respectively, resulting in the need of plan adaptation. With the aRO approach, in all except one patient the target coverage was conserved, and no adaptations were necessary.
Conclusion: In 25% of the investigated cases, classical robust optimization is not sufficient to account for anatomical changes during the treatment. Adding additional information of random anatomical variations in the optimization improves plan robustness.

Keywords: Robust optimization; head and neck cancer; proton therapy; treatment planning; anatomical variations; dose accumulation; plan adaptation

Downloads:

Permalink: https://www.hzdr.de/publications/Publ-28322
Publ.-Id: 28322


McSAFE - High Performance Monte Carlo methods for safety demonstration

Vocka, R.; Sanchez, V.; Mercatali, L.; Malvagi, F.; Smith, P.; Dufek, J.; Seidl, M.; Milisdorfer, L.; Leppänen, J.; Hoogenboom, E.; Kliem, S.; van Uffelen, P.; Kerkar, N.

The main objective of the McSAFE project is the development of the Monte Carlo based multiphysics coupled methodologies for reactor analysis and safety investigations of different reactor systems. Key-research areas are e.g. advanced depletion methods, optimal coupling of MC-codes to thermalhydraulic solvers, time-dependent Monte Carlo and methods and algorithms for massively parallel simulations. The project has started in September 2017 under the coordination of KIT. Among the other partners are European research institutes and technical support organizations (VTT, JRC, CEA, HZDR, NRI, KTH,WOOD), electricity providers (CEZ, PreussenElektra) and consultants (DNC). The software developed within the project should allow for the high precision evaluation of core safety parameters and will be applicable also to VVER reactor types.

  • Contribution to proceedings
    28. Symposium of AER, 08.-12.10.2018, Olomouc, Czech Republic
    Proceedings of the 28. Symposium of AER, Budapest: MTA EK, 9789637351303, 237-238

Permalink: https://www.hzdr.de/publications/Publ-28321
Publ.-Id: 28321


Development of highly affine 18F-labelled radiotracers for PET imaging of the adenosine A2A receptor

Lai, T. H.; Schröder, S.; Ludwig, F.-A.; Fischer, S.; Moldovan, R.-P.; Scheunemann, M.; Dukic-Stefanovic, S.; Deuther-Conrad, W.; Steinbach, J.; Brust, P.

Objectives: The adenosine A2A receptor (A2AR) is a G-protein-coupled-receptor which is mainly expressed in the basal ganglia (including striatum) of the brain and in cells of the immune system. Radiotracers for A2AR imaging have emerged as promising candidates for the diagnosis of neurodegenerative and neurooncological diseases. Aiming at the development of such radiotracer with improved molecular imaging properties, a library of 21 fluorinated pyrazolo[2,3-d]pyrimidine derivatives was synthesized based on a recently published lead compound [1]. Among those, the highly affine 4 fluorobenzyl derivate 1 (Ki(hA2A) = 5.3 nM; Ki(hA1) = 220 nM) and the 2 fluorobenzyl derivate 2 (Ki(hA2A) = 2.1 nM; Ki(hA1) = 147 nM) were chosen for 18F isotopoic labelling although the introduction of 18F at non-activated aromatic positions is challenging. Herein, we report on the radiosyntheses of [18F]1 and [18F]2 via an alcohol-enhanced copper-mediated one-step radiofluorination and their first biological evaluation.

Methods: Three different labelling strategies for the synthesis of [18F]1 have been investigated (Fig. 1). The first two were using [18F]fluorobenzaldehyde ([18F]B) as intermediate, which was produced by nucleophilic radiofluorination of a trimethylammonium precursor of type A (step a). Compound [18F]B was used either in a reductive amination reaction (step b) or it was further reduced to the corresponding alcohol (step c) followed by an Appel bromination to get [18F]C (step d) which was finally used in a benzylation reaction (step e). The third strategy, a one-step approach, started from the boronic acid pinacol ester precursor of type D employing [18F]TBAF and Cu(OTf)2(py)4 in n-BuOH/DMA (step f). The specific binding of [18F]1 and [18F]2 was evaluated in vitro by autoradiography of mice brain slices using 1, 2 and ZM241385 as different blocking agents.

Results: The two- and four-step labelling strategies resulted in an overall radiochemical yield of only 1.4% and 10%, respectively for [18F]1 (non-isolated). Therefore, [18F]1 and [18F]2 were prepared by an alcohol-enhanced copper-mediated one-step radiolabelling approach starting from the corresponding boronic acid pinacol ester precursor D. Compound [18F]1 was obtained with a radiochemical yield of 52+7% (n = 5, EOB), a molar activity of 135+64 GBq/µmol (n = 4, EOS) and a radiochemical purity of >98%. Compound [18F]2 was synthesized with a radiochemical yield of 9+1% (n = 2, EOB), a molar activity of 132 GBq/µmol (n = 1, EOS) and a radiochemical purity of >98%. In vitro autoradiography performed with [18F]2 showed high binding in the striatum, which could be blocked by selective A2AR ligands thus proving the specificity of the new radiotracer (Fig. 1).

Conclusions: An efficient copper-mediated one-step radiolabelling procedure was established for two new highly affine A2AR radiotracers. In a first in vitro study on mice brain slices, [18F]2 demonstrated excellent imaging properties. Further biological in vitro and in vivo investigations are needed to completely evaluate the potential of both A2AR radiotracers.

Acknowledgments: This work has been supported by the the European Regional Development Fund and Sächsische Aufbaubank (project no. 100226753).

References: [1] Gillespie et al., Bioorg. Med. Chem. Lett. 2008, 18, 2924-2929.

Keywords: adenosine; A2A; PET; 18F; radiofluorination

  • Lecture (Conference)
    The 23rd International Symposium on Radiopharmaceutical Sciences (ISRS2019), 26.-31.05.2019, Peking, China

Permalink: https://www.hzdr.de/publications/Publ-28320
Publ.-Id: 28320


Synthesis, Receptor Affinity, and Antiallodynic Activity of Spirocyclic σ Receptor Ligands with Exocyclic Amino Moiety

Bergkemper, M.; Kronenberg, E.; Thum, S.; Börgel, F.; Daniliuc, C.; Schepmann, D.; Nieto, F. R.; Brust, P.; Reinoso, R. F.; Alvarez, I.; Wünsch, B.

In order to detect novel σ receptor ligands, the rigit spiro [[2]benzopyran-1,1'-cyclohexan]-4'-one was connected with amino moieties derived from σ2 receptor preferring lead compounds resulting in mixtures of trans- and cis-configured amines 6, 18, and 27. In a four step synthesis the methyl acetals 6 were converted into fluoroethyl derivatives 13 and 30. The most promising σ2 receptor ligand is the methyl acetal 6a bearing a 2,4-dimethylbenzylamino moiety. The fluoroethyl derivatives 13c and 13d reveal high σ1 affinity but moderate selectivity over the σ2 subtype. In mice 13c and 13d showed antiallodynic activity that is stronger than that of the reference σ1 antagonist BD-1063 (34). Since the antiallodynic activity of 13c could only be partially reversed by the σ1 agonist PRE-084 (35), it is postulated that a second mechanism contributes to its overall antiallodynic effect. In contrast, the antiallodynic effect of its diastereomer 13d can be totally explained by a σ1 antagonism.

Downloads:

Permalink: https://www.hzdr.de/publications/Publ-28319
Publ.-Id: 28319


The Serial Interface Package -- v2.0

Seilmayer, M.

The 'serial' package as an extension to the programming language R enables reading and writing binary and ASCII data to RS232/RS422/RS485 or any other virtual serial interfaces of the computer.

Keywords: serial interface; RS232; RS422; RS485; R

  • Software in external data repository
    Publication year 2018
    Programming language: R
    System requirements: Windows, Mac, Unix
    License: GPL-2
    Hosted on r-project.org: Link to location

Permalink: https://www.hzdr.de/publications/Publ-28318
Publ.-Id: 28318


Characterization and beneficiation of pyrolyzed black mass from lithium ion batteries

Vanderbruggen, A.; Gilbricht, S.; Möckel, R.; Rudolph, M.

The lithium-ion battery (LiB) market is growing rapidly. Consequently, LiB wastes will increase in the future and LiB components such as Co, Li, but also graphite, are forecast to be critical materials. These critical materials are contained in the black mass produced by LiBs recycling. This original research focuses on graphite beneficiation from cathode lithium metal oxides by flotation. Detailed characterization of the pyrolyzed black mass (inculding MLA, XRF and XRD) shows that the graphite particles are fully liberated from the copper foils, and the organic layer PVDF is removed. Batch flotation shows that pretreatment, such as attritioning, improves process efficiency while preserving the shape of spheriodized graphite. Concentrate impurities mainly comprise fine particles from cathode active materials, which can be removed with desliming and flotation cleaner stages. As an outlook, this reasearch is expected to bring about an innovative and useful process for the recycling industry.

Keywords: Attritionning; black mass; characterization; flotation; graphite; mineral liberation analysis (MLA); pre-treatment; recycling; spent lithium ion battery; surface analysis

  • Poster
    Minerals Engineering International (MEI) conference: Process Mineralogy '18, 19.-21.11.2018, Cape Town, South Africa

Permalink: https://www.hzdr.de/publications/Publ-28316
Publ.-Id: 28316


Serpent solution of the X2 VVER-1000 benchmark fresh core experiments

Bilodid, Y.; Fridman, E.

The X2 VVER-1000 benchmark describes first 4 fuel cycles of the Khmelnitsky NPP 2nd unit with VVER-1000 reactor as well as some operational transients. The benchmark specifications contain description of the reactor core material, geometry and operational history supplemented by measured operational data and startup experiments. In this work, the hot zero power experiments conducted during the fresh core startup are modelled with the Serpent-2 Monte Carlo code. The numerical results are validated against the available measured core data. The calculated and measured values of a critical boron concentration, temperature reactivity effect, and control rod worth are in a very good agreement while the deviations lay within the measurement uncertainties. Since the power distribution was not measured at the hot zero power state, the obtained Serpent solution could be used as a reference for a deterministic codes verification.

Keywords: X2 benchmark; VVER-1000; Serpent

  • Contribution to proceedings
    PHYSOR 2018: Reactor Physics Paving The Way Towards More Efficient Systems, 22.-26.04.2018, Cancun, Mexico, 1982-1989

Permalink: https://www.hzdr.de/publications/Publ-28315
Publ.-Id: 28315


Doping issues in silicon nanowires by ion implantation and flash lamp annealing

Berencen, Y.; Prucnal, S.; Wang, M.; Rebohle, L.; Helm, M.; Zhou, S.; Skorupa, W.

Semiconducting nanowires (NWs) hold promises for functional nanoscale devices. Although several applications have been demonstrated in the areas of electronics, photonics and sensing, the doping of NWs remains challenging. Ion implantation is a standard doping method in top-down semiconductor industry, which offers precise control over the areal dose and depth profile as well as allows for the doping of all elements of the periodic table even beyond their equilibrium solid solubility. Yet its major disadvantage is the concurrent material damage. A subsequent annealing process is commonly used for the healing of implant damage and the electrical activation of dopants. This step, however, might lead to the out-diffusion of dopants and eventually the degradation of NWs because of the low thermal stability caused by the large surface–area-to-volume ratio.

In this work, we report on non-equilibrium processing (flash lamps) for controlled doping of drop-casted Si/SiO2 core/shell NWs with shallow- and deep-level dopants below and above their equilibrium solid solubility. The approach lies on the implantation of either shallow-level dopants, such as B and P, or deep-level dopants like Se followed by millisecond flash lamp annealing. In case of amorphization upon high-fluence implantation, recrystallization takes place via a bottom-up template-assisted solid phase epitaxy. Non-equilibrium Se concentrations lead to intermediate-band Si/SiO2 core/shell NWs that have room-temperature sub-band gap photoresponse when configured as a photoconductor device [1]. Alternatively, the formation of a cross-sectional p-n junction is demonstrated by co-implanting P and B in individual NWs at different depth along the NW core.
[1] Y. Berencén, et al. Adv. Mater. Interfaces 2018, 1800101

Keywords: doping; nanowires; semiconductor; silicon; ion implantation; flash lamp annealing

  • Lecture (Conference)
    22nd International Conference on Ion Implantation Technology, 16.-21.09.2018, Würzburg, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-28313
Publ.-Id: 28313


Hydrodynamics, mixing and mass transfer in a pilot-scale bubble column with dense internals

Möller, F.; Lavetty, C.; Schleicher, E.; Löschau, M.; Hampel, U.; Schubert, M.

Bubble column reactors with exothermic reactions are often equipped with dense tube bundle heat exchangers. While there is some knowledge about the impact of such internals on hydrodynamics and mass transfer for narrow columns, its role in pilot-scale columns is less clear. In this paper we report on a study of hydrodynamics and mass transfer in a BCR of 4.2 m height and 0.392 m diameter. We investigated different tube arrangements with triangular and square pitch and tube diameters of 32×10-3 m and 45×10-3 m at the same cross-sectional coverage (~25%). The column was operated at homogeneous and heterogeneous flow conditions. A customized three-layer wire-mesh sensor was utilized to visualize gas phase dynamics and liquid mixing characteristics in the column’s cross-section. We found that sub-channel size is the most crucial geometric design parameter. Tracer mixing experiments reveal that internals enhance the liquid dispersion due to induction of large-scale liquid circulation. Mass transfer was studied with the oxygen stripping method. Here we found, that the effect of the internals on the gas-liquid mass transfer is almost negligible. Eventually, correlations for gas holdup, axial liquid dispersion and the volumetric gas-liquid mass transfer coefficient are given, which take the internals’ geometry into account.

Keywords: Pilot-scale bubble column; Heat exchanger internals; Hydrodynamics; Liquid mixing; Mass transfer; Wire-mesh sensor

Downloads:

Permalink: https://www.hzdr.de/publications/Publ-28312
Publ.-Id: 28312


Advanced doping issues using nonequilibrium processing

Skorupa, W.; Rebohle, L.; Prucnal, S.; Berencen, Y.; Zhou, S.; Helm, M.

In this talk I will introduce with a short view on the background of the transistor invention as a key element driving the topic of semiconductor doping. After that I will discuss examples of advanced doping including ion beam based and other methods: doping and alloying of germanium, hyperdoping of silicon, doping from deposited layers, doping of silicon nanowires, doping from deposited layers. In all cases the experiments were performed in correlation to nonequilibrium thermal processing using flash lamps in the millisecond time range.

Keywords: semiconductor doping; ion beam based methods; flash lamp annealing

  • Lecture (others)
    Eingeladener Seminarvortrag an der Marie-Curie-Universität Lublin/Polen, 11.10.2018, Lublin, Polen

Permalink: https://www.hzdr.de/publications/Publ-28311
Publ.-Id: 28311


Dataset on characterization, ion irradiation and nanoindentation of ODS Fe14Cr-based alloys

Bergner, F.

The dataset comprises raw data of the nanoindentation tests and processed data on the ion irradiations and irradiation-induced hardness changes. File formats are excel, word, origin and ascii.

Related publications

  • Reseach data in the HZDR data repository RODARE
    Publication date: 2018-12-04
    DOI: 10.14278/rodare.72

Downloads:

Permalink: https://www.hzdr.de/publications/Publ-28310
Publ.-Id: 28310


Bonding and stability analysis of tetravalent f-element complexes with mixed N-, O-donor ligands

Kloditz, R.; Radoske, T.; Patzschke, M.; Stumpf, T.

The contribution of the f-orbitals leads to a very rich chemistry of the f-elements[1] where it is known that this contribution is less important for lanthanides. Of special interest is the influence of these orbitals on the bonding character of actinides and lanthanides with organic ligands re- flecting natural bonding motifs.
This study shows the different bonding behaviour of tetravalent f-elements with Schiff bases, like salen (see Fig. 1) and derivatives, by means of real-space bonding analysis. This includes the popular quantum theory of atoms in molecules (QTAIM), plots of the non-covalent inter- actions (NCI)[2] and density differences complemented by natural population analysis (NPA). Thermodynamic calculations on the stability of these complexes are presented. The obtained results are a direct consequence of the different interaction strengths of the f-elements.
First studies reveal a strong interaction of the actinides, i.e. Th to Pu, with the oxygen of salen characterized by a high electron density concentration between the atoms. In contrast, the inter- action between the actinides and the nitrogen of salen is much weaker.
By acquiring knowledge about the different behaviours of bonding and complexation it is possi- ble to understand the chemical properties of the f-elements and predict yet unknown complexes.

Keywords: Bonding analysis; Theoretical Chemistry; DFT; QTAIM; Actinides

  • Poster
    Symposium on Theoretical Chemistry, 17.-20.09.2018, Halle, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-28309
Publ.-Id: 28309


Nanoindentation of single- (Fe) and dual-beam (Fe and He) ion-irradiated ODS Fe-14Cr-based alloys: Effect of the initial microstructure on irradiation-induced hardening

Heintze, C.; Hilger, I.; Bergner, F.; Weissgärber, T.; Kieback, B.

Although the view that nm-sized oxide particles modify and essentially improve the irradiation resistance of Fe-Cr-based alloys is widely accepted, the correctness of this view has only been demonstrated in singular cases. An extension of the field of considered microstructures, irradiation conditions, and measures of irradiation resistance is required. The present study is focused on nanostructured ferritic Fe-14%Cr-based alloys, with and without the addition of 0.6 wt% Y2O3, produced via mechanical alloying and consolidation by spark plasma sintering. The materials were exposed to single-beam (Fe) and dual-beam (Fe+He) ion irradiations at room temperature. The initial microstructures were characterized, bimodal grain size distributions were observed and nanoindentation was applied to measure irradiation hardening for fine-grained and coarse-grained areas separately. We have found that grain size governs irradiation hardening for single-beam irradiation, while oxide nanoparticles play a dominant role for dual-beam irradiations. This sheds a light on the role of particle-matrix interfaces on helium management.

Keywords: Nanostructured ferritic alloys; oxide dispersion strengthening; ion irradiation; dual-beam irradiation; helium; nanoindentation; irradiation hardening

Related publications

Downloads:

Permalink: https://www.hzdr.de/publications/Publ-28308
Publ.-Id: 28308


Bonding and stability analysis of tetravalent actinide and lanthanide complexes with N,O-donor ligands

Kloditz, R.; Radoske, T.; Patzschke, M.; Stumpf, T.

The contribution of the f-orbitals leads to a very rich chemistry of the f-elements[1] where it is known that this contribution is less important for lanthanides. Of special interest is the influence of these orbitals on the bonding character of actinides and lanthanides with organic ligands reflecting natural binding motifs.
This study shows the different bonding behaviour of tetravalent actinide and lanthanide complexes with Schiff bases, like salen (see Fig. 1) and derivatives, by means of real-space bonding analysis. This includes the popular quantum theory of atoms in molecules (QTAIM), plots of the non-covalent interactions (NCI)[2] and density differences complemented by natural population analysis (NPA). Thermodynamic calculations on the stability of these complexes are done being a direct consequence of the different interaction strengths of the f-elements.
First studies reveal a strong interaction of the actinides, i.e. Th to Pu, with the oxygen of salen characterized by a high electron density concentration between the atoms. In contrast, the interaction between the actinides and the nitrogen of salen is much weaker.
By acquiring knowledge about the different behaviours of bonding and complexation it is possible to understand the chemical properties of the f-elements and predict yet unknown complexes.

Keywords: Bonding; Salen; Actinides; theoretical chemistry; DFT; QTAIM

  • Lecture (Conference)
    International Symposium on Nano and Supramolecular Chemistry, 09.-12.07.2018, Dresden, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-28307
Publ.-Id: 28307


The Study and Development of Pulsed High-field Magnets for Application in Laser-plasma Physics

Kroll, F.

The thesis at hand addresses design, characterization and experimental testing of pulsed high-field magnets for utilization in the field of laser-plasma physics. The central task was to establish a technology platform that allows to manipulate laser-driven ion sources in a way that the accelerated ions can be used in complex application studies, e.g. radiobiological cell or tumor irradiation.

Laser-driven ion acceleration in the regime of target normal sheath acceleration (TNSA) offers the unique opportunity to accelerate particles to kinetic energies of few 10MeV on the micrometer scale. The generated bunches are short, intense, show broad exponentially decaying energy spectra and high divergence. In order to efficiently use the generated particles, it is crucial to gain control over their divergence directly after their production. For most applications it additionally is favorable to reduce the energy spread of the beam. This work shows that the developed pulsed high-field magnets, so-called solenoids (cylindrical magnets), can efficiently capture, transport and focus laser-accelerated protons. The chromaticity of the magnetic lens thereby provides for energy selection.

Three prototype solenoids, adapted to fit different application scenarios, and associated current pulse drivers have been developed. The magnets generate fields of several 10 T. Pulse durations are of the order of one millisecond and thus the fields can be considered as quasi-static for laser-plasma interaction processes taking place on the ps- to ns-scale. Their high field strength in combination with abandoning magnetic cores make the solenoids compact and light-weight.

The presented experiments focus on a solenoid magnet designed for the capture of divergent laser-driven ion beams. They have been carried out at the 6MV tandetron accelerator and the laser acceleration source Draco of Helmholtz-Zentrum Dresden – Rossendorf as well as at the PHELIX laser of GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt. The results show that the developed technology platform breaks ground for a variety of practical applications of laser ion acceleration. It is shown that laser-driven ion beams can be efficiently injected into conventional accelerator structures to allow for phase space modulation. Furthermore, first practical studies on medical beam guidance systems are presented. Hence, the developed magnets allow to investigate feasibility and potential of the frequently proposed laser-based ion beam therapy of tumor diseases. The pulsed high-field magnets bring us one step closer to the realization of this ambitious endeavor, as they pave the way for compact and efficient beam guidance toward the patient but also, in the phase of translational research, allow to study the radiobiological properties of the novel particle source. In this context, worldwide first irradiation studies with laser-accelerated protons on volumetric tumors in the mouse model have been prepared and their feasibility studied, identifying already met radiobiological criteria and hurdles yet to overcome.

Keywords: Pulsed magnets; high-field magnets; beam transport; laser-acceleration; laser acceleration; TNSA; laser particle acceleration; laser-radiooncology

  • Open Access Logo Wissenschaftlich-Technische Berichte / Helmholtz-Zentrum Dresden-Rossendorf; HZDR-094 2018
    ISSN: 2191-8708, eISSN: 2191-8716

Downloads:

Permalink: https://www.hzdr.de/publications/Publ-28306
Publ.-Id: 28306


Photo-induced THz response of VO2 under high pressures

Braun, J. M.; Schneider, H.; Helm, M.; Mirek, R.; Boatner, L. A.; Marvel, R. E.; Haglund, R. F.; Pashkin, A.

We apply ultrafast optical pump – THz probe spectroscopy in order to investigate the nature of the high pressure metallic state of VO2 single crystal. The pump excitation was performed using near-infrared pulses at the wavelength of 800 nm. The probe pulses with a frequency of 30 THz were generated by difference frequency mixing and focused on the sample mounted inside a diamond anvil pressure cell. Using the probe photon energy far below the bandgap of VO2 we were able to explore the response of free charge carriers near the Fermi level.

  • Lecture (Conference)
    Non-equilibrium Dynamics of Condensed Matter in the Time Domain, 03.-06.09.2018, Kerkrade, Netherlands

Permalink: https://www.hzdr.de/publications/Publ-28305
Publ.-Id: 28305


Photoinduced non-thermal insulator-to-metal transition in NbO2 epitaxial thin films

Rana, R.; Klopf, M. J.; Grenzer, J.; Schneider, H.; Helm, M.; Pashkin, A.

Ultrafast insulator-to-metal transition in the correlated oxides such as vanadium dioxide (VO2) has been extensively explored for rich physics and potential applications. In this regard, its isovalent counterpart niobium dioxide (NbO2) with considerably higher transition temperature (Tc = 1080 K) can be envisaged as a potential candidate. We have performed time-resolved optical pump – terahertz (THz) probe measurements on NbO2 epitaxial thin at room temperature.
The onset of the THz conductivity is followed by an exponential decay on a timescale of 400 fs. The photoinduced change in THz transmission at later delay times exhibits excitation threshold of 17.5 mJ/cm2. Notably, in contrast to VO2, the pump energy required for the switching into a metastable metallic state is smaller than the energy necessary for heating NbO2 up to Tc providing a strong evidence for the non-thermal character of the photoinduced insulator-to-metal transition in this system. The transient optical conductivity in the metastable state can be modelled using the Drude model confirming its metallic character.

  • Lecture (Conference)
    DPG-Frühjahrstagung 2018, 11.-16.03.2018, Berlin, Germany

Permalink: https://www.hzdr.de/publications/Publ-28304
Publ.-Id: 28304


Development of a new 18F-labeled radioligand for imaging of sigma2 receptors by positron emission tomography

Ludwig, F.-A.; Fischer, S.; Moldovan, R.-P.; Deuther-Conrad, W.; Kranz, M.; Schepmann, D.; Jia, H.; Wünsch, B.; Brust, P.

Objectives: Sigma2 receptors (S2R) have been found in CNS, liver, kidney, as well as endocrine glands and are suggested to play important roles in the regulation of cell differentiation. Besides their overexpression in various tumor cell lines, derived from e.g. breast, brain, colon, lung, pancreas, and prostate, they show a 10-fold higher expression in the proliferating vs quiescent status and thus are possible markers of solid tumor’s proliferative status. To quantify the S2R availability in living subjects, we aim for the development of a new class of S2R ligands that could be labeled by fluorine-18.
Methods: Starting from structural motifs known for S2R ligands [1, 2], we modified the indole ring system in A and synthesized a novel series of fluorine containing indole and aza-indole derivatives (1a-d and 2-6 in Fig. 1). Their binding affinities towards sigma2 and sigma1 receptors were determined by radioligand-binding assays, and 2 was selected for synthesis of a boronic acid pinacol ester precursor for radiolabeling. Synthesis of [18F]2 was optimized starting from 100-500 MBq of 18F-fluoride, using Kryptofix (K2.2.2.)/ K2CO3 (0.18-1.8 µmol/ 0.04-0.35 µmol) as well as TBAHCO3 (2.3 and 7.5 µmol) and 2-4 mg of precursor 7, in the presence of Cu(OTf)2py4 (0.4-6.8 eq.) in various solvent systems at 80-135 °C, monitored for 5-20 min. For monitoring, several analytical methods (radio-UHPLC, -HPLC, and -TLC) have been established, e.g. on the basis of RP18 und RP8 stationary phases for LC systems. Besides, different techniques for purification and isolation were investigated, including a substitution of semi-preparative HPLC by time-saving cartridge systems.
Results: By altering the heterocyclic system of A, a small series of fluorinated aza-indoles was synthesized (Fig. 1), of which 2 showed most promising binding affinity and selectivity (Ki(S2R) = 1.6 nM; Ki(S1R) = 691 nM). Radiosynthesis of [18F]2 was achieved with RCYs in a range of 20-45% (n = 2, all non-isolated, radio-UHPLC) by use of 2.0 mg of precursor 7 (4.1 µmol) and 3.6 eq. of Cu(OTf)2py4 at 115 °C within 10 min. The reaction was accompanied by the formation of a by-product (bp) which increased over time. Using the K2.2.2./ K2CO3 system resulted in RCYs of 21.5% (bp 5.5%) and 27.7 % (bp 4.6%), in DMF and DMA/ n-BuOH, respectively. Application of TBAHCO3 showed further increased conversions, represented by a RCY of 44.8% (bp 9.1%) in DMA/ n-BuOH. For subsequent semi-preparative HPLC, separation conditions were optimized, but still lack from low recoveries. As an alternative, SPE procedures using cartridge systems (SiO2, RP18) are being established and could be used as a time saving technique for the isolation of [18F]2.
Conclusions: A novel S2R-affine aza-indole derivative 2 was synthesized and radiofluorination of the appropriate boronic acid pinacol ester precursor afforded [18F]2 in RCYs of up to 45% (non-isolated). The optimal parameters for the radiosynthesis, conducted in a synthesis automat or module, have to be determined to setup a procedure for the production of [18F]2, which enables detailed preclinical in vitro and in vivo studies of this promising radioligand.
Acknowledgement: The authors would like to thank the Deutsche Forschungsgemeinschaft (DFG) for financial support (BR 1360/13-1).
References:
[1] Georgiadis, M.-O. et al. Molecules 2017, 22, 1408;
[2] Wang, L. et al. Bioorg Med. Chem. 2017, 25, 3792-3802

Keywords: Positron emission tomography; PET; fluorine-18; sigma2; indole; aza-indole

  • Poster
    23. International Symposium on Radiopharmaceutical Sciences (ISRS 2019), 26.-31.05.2019, Peking, China
  • Abstract in refereed journal
    Journal of Labelled Compounds and Radiopharmaceuticals 62(2019), 181

Permalink: https://www.hzdr.de/publications/Publ-28303
Publ.-Id: 28303


Electron dynamics in InxGa1-xAs shells around GaAs nanowires probed by terahertz spectroscopy

Fotev, I.; Balaghi, L.; Schmidt, J.; Schneider, H.; Helm, M.; Dimakis, E.; Pashkin, A.

We present the electrical properties of GaAs/InxGa1-xAs core/shell nanowires measured by ultrafast optical pump - terahertz probe spectroscopy.
This contactless technique was used to measure the photoconductivity of nanowires with shell compositions of x = 0.20, 0.30 and 0.44. The results were fitted with the model of localized surface plasmon in a cylinder in order to obtain electron mobilities, concentrations and lifetimes in the InxGa1-xAs NW shells.
The estimated lifetimes are about 80 - 100 ps and the electron mobility reaches 3700 cm2/Vs at room temperature. This makes GaAs/InGaAs nanowires good candidates for the near-future realization of InGaAs based high-electronmobility transistor.

Keywords: GaAs nanowires; terahertz spectroscopy; ultrafast dynamics; electron mobility; plasmon; carrier lifetime

Permalink: https://www.hzdr.de/publications/Publ-28302
Publ.-Id: 28302


Nonthermal nature of photo-induced insulator-to-metal transition in NbO2

Rana, R.; Klopf, J. M.; Grenzer, J.; Schneider, H.; Helm, M.; Pashkin, A.

We study the photo-induced metallization process in niobium dioxide NbO2. This compound undergoes the thermal insulator-to-metal transition at the remarkably high temperature of 1080 K. Our optical pump ¬– terahertz probe measurements reveal the ultrafast switching of the film on a sub-picosecond timescale and the formation of a metastable metallic phase when the incident pump fluence exceeds the threshold of ~10 mJ/cm2. Remarkably, this threshold value corresponds to the deposited energy which is capable of heating NbO2 only up to 790 K, thus, evidencing the non-thermal character of the photo-induced insulator-to-metal transition. We also observe an enhanced formation of the metallic phase above the second threshold of ~17.5 mJ/cm2 which corresponds to the onset of the thermal switching. The transient optical conductivity in the metastable phase can be modeled using the Drude-Smith model confirming its metallic character. The present observation of non-thermal transition in NbO2 can serve as an important test bed for understanding photo-induced phenomena in strongly correlated oxides.

Keywords: metal-insulator transition; pump-probe spectroscopy; transition metal oxides

Downloads:

Permalink: https://www.hzdr.de/publications/Publ-28301
Publ.-Id: 28301


Optical Pump – THz Probe Response of VO2 under High Pressure

Braun, J. M.; Schneider, H.; Helm, M.; Mirek, R.; Boatner, L. A.; Marvel, R. E.; Haglund, R. F.; Pashkin, A.

We present the ultrafast THz response of VO2 under high pressures. A clear anomaly is observed around 8 GPa indicating a pressure-induced phase transition. Our observations can be interpreted in terms of a bandwidth-controlled Mott-Hubbard transition.

Keywords: metal-insulator transition; high pressure; VO2; pump-probe spectroscopy

  • Open Access Logo Contribution to proceedings
    XXI International Conference on Ultrafast Phenomena, 15.-20.07.2018, Hamburg, Deutschland
    Proceedings of Ultrafast Phenomena XXI, 91944 Les Ulis cedex A - France: EDP Sciences Web of Conferences
    DOI: 10.1051/epjconf/201920504003

Permalink: https://www.hzdr.de/publications/Publ-28300
Publ.-Id: 28300


Optical Pump – THz Probe Response of VO2 under High Pressure

Braun, J. M.; Schneider, H.; Helm, M.; Mirek, R.; Boatner, L. A.; Marvel, R. E.; Haglund, R. F.; Pashkin, A.

We present the ultrafast THz response of VO2 under high pressures. Pump-probe signals and a photoexcitation threshold are detected even in a metallic state. Our observations can be described as a pressure-driven Mott-Hubbard transition.

Keywords: vanadium dioxide; high pressure; pump-probe spectroscopy

  • Lecture (Conference)
    XXI. International Conference on Ultrafast Phenomena, 15.-20.07.2018, Hamburg, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-28299
Publ.-Id: 28299


Freie Software in der Wissenschaft: Prototypen, Reproduzierbarkeit, Infrastruktur

Huebl, A.

Beitrag zur Ringvorlesung der FSFW im Wintersemester 2018 an der HTW, TU Dresden und Bürgeruniversität.

Keywords: open science; open source; open infrastructure; open data

  • Lecture (others)
    Ringvorlesung WS2018: Freie Software und Freies Wissen als Beruf, 27.11.2018, Dresden, Germany
    DOI: 10.5281/zenodo.1884442

Permalink: https://www.hzdr.de/publications/Publ-28298
Publ.-Id: 28298


Measurement of torsional and sloshing modes in Rayleigh-Bénard convection using contactless inductive flow tomography

Wondrak, T.; Stefani, F.; Galindo, V.; Eckert, S.

Flows driven by temperature differences play an important role in geo- and astrophysics as well as in many metallurgical applications. The dynamics of the large scale circulation (LSC) of Rayleigh-Bénard (RB) convection include azimuthal reorientations, cessations, torsional and sloshing modes. In this presentation we will show that the contactless inductive flow tomography (CIFT) is able to visualise these features. This will be shown using numerical simulations as well as measurements at a small model filled with GaInSn.

Keywords: contactless inductive flow tomography; liquid metal; flow measurement; Rayleigh-Bénard convection

  • Lecture (Conference)
    MHD Days and GDRI Dynamo Meeting, 26.-28.11.2018, Dresden, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-28297
Publ.-Id: 28297


Contactless inductive flow tomography for a Rayleigh-Bénard setup with aspect ratio 0.5

Wondrak, T.; Galindo, V.; Stefani, F.; Schindler, F.; Vogt, T.; Eckert, S.

The contactless inductive flow tomography (CIFT) allows the reconstruction of the three-dimensional flow field in liquid metals by applying one or more primary magnetic fields to the melt and measuring the flow induced perturbation of those fields outside the melt. From these measurements, the flow is then reconstructed by solving a linear inverse problem using Tikhonov regularisation technique [1].
In recent experiments, CIFT was able to reconstruct the dynamics of the large scale circulation (LSC) in a small modified Rayleigh-Bénard convection cell which was filled with the eutectic alloy GaInSn and consists of a cylindrical vessel with a diameter and a height of 87 mm [2]. Typical time dependent features of the LSC like azimuthal rotations, cessations as well as torsional modes could be visualised by CIFT. Numerical simulations suggest that a sensor arrangement of 8 sensors in azimuthal direction in 3 planes equally spaced over the height of the vessel is a good choice [3]. The developed CIFT configuration allows for measurement times longer than 12 hours with an accuracy of about 20 nT.
Encouraged by these promising results, the measurement system will be adapted to a larger cylindrical Rayleigh-Bénard cell with diameter of 320 mm and height of 640 mm. It is planned to use simultaneously CIFT and UDV in order to reconstruct the global flow while selected flow components are measured in high temporal and spatial resolution with UDV.
In this paper we will present the first design of the arrangement of the excitation coils and the magnetic field sensors. Based on this new setup first reconstructions will be shown. Figure 1 shows a preliminary simulation of the flow in the cylindrical vessel as well as the flow induced magnetic field outside the vessel for a constant primary field in vertical direction with the strength of 1mT.

Keywords: contactless inductive flow tomography; liquid metal; Rayleigh-Bénard convection; flow measurement

  • Lecture (Conference)
    11th PAMIR international conference fundamental and applied MHD, 01.-05.07.2019, Reims, France
  • Contribution to proceedings
    11th Pamir International Conference Fundamental and Applied MHD, 01.-5.7.2019, Reims, France

Permalink: https://www.hzdr.de/publications/Publ-28296
Publ.-Id: 28296


AER Working Group Meeting on VVER safety analysis - report of the 2018 meeting

Kliem, S.

The AER Working Group D on VVER reactor safety analysis held its 27th meeting in Rossendorf, Germany, during the period 12-13 June, 2018. The meeting was hosted by Helmholtz-Zentrum Dresden-Rossendorf. Altogether 19 participants from nine AER member organizations attended the meeting of the working group D. The co-ordinator of the working group, Mr. S. Kliem, served as the chairperson of the meeting.
The meeting started with a general information exchange about the recent activities in the participating organizations.
The given 13 presentations and the discussions can be attributed to the following topics:
• Safety analyses methods and results
• Code development and benchmarking
• Severe accident analyses
• Future activities
The Working Group decided to include also in future the severe accident analyses into the scope of the activities.
A list of the participants and a list of the handouts distributed at the meeting are attached to the report. The corresponding PDF-files of the handouts can be obtained from the chairperson.

  • Contribution to proceedings
    28. Symposium of AER, 08.-12.10.2018, Olomouc, Czech Republic
    Proceedings of the 28. Symposium of AER, Budapest: MTA EK Budapest, 9789637351303, 665-671
  • Lecture (Conference)
    28. Symposium of AER, 08.-12.10.2018, Olomouc, Czech Republic

Permalink: https://www.hzdr.de/publications/Publ-28295
Publ.-Id: 28295


Aerosol particle deposition and resuspension in turbulent air channel flows

Lecrivain, G.; Hampel, U.

The deposition of aerosol graphite particles in a turbulent channel flow obstructed with periodic steps is here investigated et experimentally at Reynolds number Re = 8,000. Particles in the size range d = 1...100µm deposit non-uniformly on the various wall surfaces and eventually form a fairly thick layer of dust. The build-up of the dust layer affects the air flow which in turn affects the deposition rate of the conveyed particles. To numerically reproduce the growth of the dust layer an interdisciplinary study involving the dynamic coupling of fluid simulation, Lagrangian particles, mesh deformation and granular bed is carried out. The numerical results compare well with the experimental data.

  • Invited lecture (Conferences)
    Workshop on particle resuspension, 04.09.2018, Nice, France

Permalink: https://www.hzdr.de/publications/Publ-28294
Publ.-Id: 28294


Numerical Models for the DRESDYN Precession Dynamo Experiment

Giesecke, A.; Vogt, T.; Gundrum, T.; Stefani, F.

More than 100 years ago, Henri Poincare in his pioneering study showed that the inviscid base flow in a precessing spheroid is described by a constant vorticity solution, the spin-over mode. Since then there have been repeated discussions whether the geodynamo is driven (or at least influenced) by precession. More recently, precession has also been considered as an important mechanism for the explanation of the ancient lunar dynamo.

Experiments with precessing fluids in cylindrical and in spherical geometry showed that precession indeed is an efficient mechanism to drive substantial flows even on the laboratory scale without making use of propellers or pumps. A precession dynamo experiment is currently under construction within the project DRESDYN (DREsden Sodium facility for DYNamo and thermohydraulic studies) at Helmholtz-Zentrum Dresden-Rossendorf (HZDR) in which a precession driven flow of liquid sodium will be used to drive dynamo action.

In the present study we address related numerical and experimental examinations in order to identify parameter regions where the onset of magnetic field excitation will be possible. Preliminary kinematic dynamo models using a prescribed flow field from hydrodynamic simulations, exhibit magnetic field excitation at critical magnetic Reynolds numbers around Rm_c ≈ 430, which is well within the range of the planned liquid sodium experiment. Our results show that large scale inertial modes excited by precission are able to excite dynamo action when their structure is sufficient complex, i.e. the forcing is sufficient strong.

More advanced models that take into account the container's finite conductivity show that boundary conditions may play an important role, but the critical magnetic Reynolds number will still be achievable in the planned experiment. Finally, we discuss the role of turbulent flow fluctuations for the occurrence of dynamo action.

Keywords: Dynamo; DRESDYN

  • Poster
    AGU Fall Meeting 2018, 09.-14.12.2018, Washington DC, USA
  • Open Access Logo Contribution to proceedings
    AGU Fall Meeting 2018, 09.-14.12.2018, Washington DC, USA

Permalink: https://www.hzdr.de/publications/Publ-28293
Publ.-Id: 28293


Numerical simulations for the DRESDYN precession dynamo

Giesecke, A.; Vogt, T.; Gundrum, T.; Stefani, F.

More than 100 years ago, Henri Poincar{\'e} in his pioneering study showed that the inviscid base flow in a precessing spheroid is described by a constant vorticity solution, the spin-over mode. Since then there have been repeated discussions whether the geodynamo is driven (or at least influenced) by precession. More recently, precession has also been considered as an important mechanism for the explanation of the ancient lunar dynamo.

Experiments with precessing fluids in cylindrical and in spherical geometry showed that precession indeed is an efficient mechanism to drive substantial flows even on the laboratory scale without making use of propellers or pumps. A precession dynamo experiment is currently under construction within the project DRESDYN (DREsden Sodium facility for DYNamo and thermohydraulic studies) at Helmholtz-Zentrum Dresden-Rossendorf (HZDR) in which a precession driven flow of liquid sodium will be used to drive dynamo action.

Here we address related numerical and experimental examinations in order to identify parameter regions where the onset of magnetic field excitation will be possible. Preliminary kinematic dynamo models using a prescribed flow field from hydrodynamic simulations, exhibit magnetic field excitation at critical magnetic Reynolds numbers around ${\rm{Rm}}_{\rm{c}} \approx 430$, which is well within the range of the planned liquid sodium experiment. Our results show that large scale inertial modes excited by precession are able to excite dynamo action when their structure is sufficiently complex, i.e. the forcing is sufficiently strong.
More advanced models that take into account the container's finite conductivity show that boundary conditions may play an important role, but the critical magnetic Reynolds number will still be achievable in the planned experiment.

Keywords: Dynamo; DRESDYN

  • Lecture (Conference)
    MHD Days 2018, 26.-29.11.2018, Dresden, Germany

Permalink: https://www.hzdr.de/publications/Publ-28292
Publ.-Id: 28292


Kopplung von CFD, Elektrochemie und Elektrodynamik am Beispiel Flüssigmetallbatterie

Weber, N.; Personnettaz, P.; Weier, T.

Flüssigmetallbatterien (FMB) werden seit etwa 10 Jahren als preisgünstige stationäre Speicher für die Energiewende diskutiert. Der Aufbau aus zwei flüssigen Metallen, welche nur durch eine dünne Salzschmelze getrennt sind, erlaubt extreme Stromdichten und eine potentiell sehr hohe Lebensdauer. Für einen optimalen Wirkungsgrad muss die Salzschicht möglichst dünn sein – ohne jedoch einen Kurzschluss zuzulassen. Weiterhin ist effektiver Massetransport durch Konvektion von zentraler Bedeutung.

Im ersten Teil des Vortrags soll Aufbau und Funktionsweise einer FMB kurz erklärt werden. Anschließend werden verschiedene physikalische Phänomene an Hand von OpenFOAM-Simulationen diskutiert (thermische und solutale Konvektion, magnetohydrodynamische Instabilitäten, Elektrochemie, Stromverteilung in der Zelle). Im letzten Teil des Vortrags wird auf die Kopplung von CFD mit Elektrodynamik sowie von Massetransport mit der Potential- und Stromverteilung detailiert eingegangen.

  • Lecture (Conference)
    Jahrestreffen der ProcessNet-Fachgruppe Computational Fluid Dynamics mit OpenFOAM Workshop, 19.03.2019, Frankfurt, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-28291
Publ.-Id: 28291


Liquid Metal Batteries: coupling electrochemistry, heat and mass transfer with magnetohydrodynamics

Weber, N.; Herreman, W.; Horstmann, G. M.; Nore, C.; Personnettaz, P.; Weier, T.

Liquid metal batteries (LMBs) are discussed as cheap stationary energy storage. Built as a stable density stratification of two liquid metals separated by a molten salt, such cells offer extreme current densities at a potentially unlimited life time. Beyond that, it is especially the low price which makes LMBs an ideal candidate for balancing highly fluctuating renewable energy sources. The efficiency of LMBs is mainly determined by two aspects. Most importantly, the electrolyte layer must be as thin as possible as it has a high ohmic resistance. Still, it needs to be thick enough to prevent a short-circuit. Secondly, efficient mass transfer needs to be ensured. Optimising an LMB means therefore understanding the interplay of thermal and solutal convection, mass transfer, electrochemistry and electrodynamically driven flow with the current distribution in the cell. The talk will start with an introduction to built-up and operation of LMBs. The different physical effects will be discussed using simulations performed in OpenFOAM. Numerical details will be provided on coupling hydro- and electrodynamics, magnetic field calculation as well as the coupling of electrochemistry with current and potential distributions.

  • Lecture (Conference)
    Congress on Numerical Methods in Engineering, 01.07.2019, Guimarães, Portugal

Permalink: https://www.hzdr.de/publications/Publ-28290
Publ.-Id: 28290


Antihypertensive drug classes, not blood pressure, are associated with cerebral perfusion. Results from the PREvention of Dementia by Intensive VAscular care (PREDIVA) study

van Dalen, J.; Mutsaerts, H.; Petr, J.; van Charante, M. E.; van Gool, W.; Nederveen, A.; Richard, E.

Background: Constant cerebral blood flow (CBF) is fundamental to cerebral function. With aging and chronic hypertension, arteriolar damage may disrupt the CBF autoregulatory capacity. This might cause CBF to fluctuate with blood pressure (BP) levels, low BP and antihypertensive medication (AHM), potentially evoking hypoperfusion. We investigated the cross-sectional and longitudinal relations of BP and AHM with cerebral perfusion using arterial spin labeling (ASL).
Methods: In 186 community-dwelling individuals with hypertension (77±3 years, 53% female), 125 (67%) with 3-year follow-up (Figure 1), we assessed grey matter (GM) and white matter (WM) CBF (ml/100g/min) and the spatial coefficient of variation (CoV; SD CBF/mean CBF). Cross-sectional associations were assessed combining baseline and follow-up data using mixed models, longitudinal associations using linear regression assessing change, adjusted for baseline. We additionally adjusted for age, sex, AHM, stroke and parenchymal fraction.
Results: Cross-sectionally, higher diastolic BP was associated with lower GM and WM CBF (Table 1). AHM were associated with lower GM CBF and higher spatial CoV. Since calcium channel blockers (CCB) and angiotensin receptor blockers (ARB) in our main study were specifically associated with lower dementia risk compared to other AHM, we assessed these separately. Other AHM were associated with lower GM and WM CBF, while CCBs and ARBs were not. There were no correlations between BP change and perfusion changes (Table 2). We observed no J-shaped relationships.
Discussion: We found no evidence for any direct relation between BP and cerebral perfusion. Possibly, higher diastolic BP was associated with lower CBF by being a marker of more severe long-standing hypertension evoking vascular damage. Our finding that ARBs and CCBs are relatively protective of CBF compared to other AHM is consistent with findings of a protective effect of these AHM classes on dementia incidence, and could influence future treatment.

  • Contribution to proceedings
    VasCog 2018 - The 9th International Conference of The International Society of Vascular Behavioural and Congnitive Disorders, 14.11.2018, Hong-Kong, China
  • Poster
    VasCog 2018 - The 9th International Conference of The International Society of Vascular Behavioural and Congnitive Disorders, 14.11.2018, Hong-Kong, China

Permalink: https://www.hzdr.de/publications/Publ-28289
Publ.-Id: 28289


Cognitive complaints associated with spatial coefficient of cerebral blood flow in community-dwelling older people in the PREvention of Dementia by Intensive VAscular care (PREDIVA) study

van Dalen, J.; Mutsaerts, H.; Petr, J.; van Charante, M. E.; van Gool, W.; Nederveen, A.; Richard, E.

Background: Low cerebral perfusion is cross-sectionally associated with dementia and predicts accelerated dementia progression. Hypothetically, impaired cerebral autoregulation, associated with aging and hypertension, and consequent cerebral hypoperfusion may contribute to the development of old-age cognitive decline. We investigated the cross-sectional and longitudinal relation between cognition and cerebral perfusion in older people without dementia using arterial spin labeling (ASL).
Methods: We included 186 community-dwelling individuals with hypertension (77 ±3 years, 53% female), 125 (67%) with 3-year follow-up neuroimaging (Figure 1). Cognitive measures included the mini-mental state examination (MMSE), visual association test (VAT) and subjective memory complaints (SMC) assessed using one question. Perfusion measures included grey matter (GM) cerebral blood flow (CBF, ml/100g/min), white matter (WM) CBF and spatial coefficient of variation (CoV; SD CBF/mean CBF, a potential proxy of vascular insufficiency). Cross-sectional analyses combined baseline and follow-up data using mixed models. Longitudinal analyses comprised linear regression of follow-up values adjusted for baseline. We additionally adjusted for age, sex, antihypertensives, WM hyperintensity volume and brain parenchymal fraction.
Results: Participants with memory complaints had a significantly higher CoV (Table 1). Furthermore, participants with better VAT scores had lower CoV, although this was attenuated after adjustment. Cerebral perfusion did not predict change in cognition (Table 2) but increasing CoV was associated with declining MMSE and, to a lesser extent, VAT scores. There were no significant relations between CBF and cognition.
Discussion: Our results suggest that higher CoV is associated with worse cognitive function and CoV changes concordantly with cognitive function. Spatial CoV may be a more sensitive cerebral hemodynamic parameter related to cerebral function compared to CBF. None of the cerebral perfusion parameters predicted future cognitive decline, suggesting that low perfusion does not precede cognitive decline in non-demented older people or that the perfusion measures employed were insufficiently sensitive.

  • Contribution to proceedings
    VasCog 2018 - The 9th International Conference of The International Society of Vascular Behavioural and Congnitive Disorders, 14.11.2018, Hong-Kong, China
  • Poster
    VasCog 2018 - The 9th International Conference of The International Society of Vascular Behavioural and Congnitive Disorders, 14.11.2018, Hong-Kong, China

Permalink: https://www.hzdr.de/publications/Publ-28288
Publ.-Id: 28288


ASL-vascular insufficiency parameters can differentiate healthy controls from Alzheimer’s and Parkinson’s diseases

Ingala, S.; Petr, J.; Pålhaugen, L.; Gajdos, M.; Fladby, T.; Selnes, P.; Barkhof, F.; Bjørnerud, A.; Rektorova, I.; Mutsaerts, H.

Decreased/Poor vascular health - e.g. increased vascular resistance, tortuosity - may lead to a delayed arrival of labelled blood to brain tissue causing vascular artefacts on arterial spin labeling (ASL) images [Figure 1]. Although these artefacts are traditionally treated as a nuisance, their presence can be quantified by the spatial coefficient of variance (CoV) parameter and used as an indication of vascular insufficiency. . Here, the goal was to investigate the ability of spatial CoV to assess the vascular health by comparing it between healthy controls and subjects with Alzheimer’s (AD) and Parkinson’s (PD) diseases.

Methods: We analyzed the MRI scans of 143 APGeM study participants, including healthy controls (HC, n=56) and subjects with AD- (n=41) or PD-related (n=46) mild cognitive impairment or dementia [Table]. We calculated CBF, spatial CoV, and WMH volume using ExploreASL [ref]. Pearson’s correlations of spatial CoV with age and WMH volume were investigated, as well as a t-test for the relation between spatial CoV and sex. A linear regression model was used to evaluate whether spatial CoV was able to discriminate HC vs. AD, HC vs. PD, and AD vs. PD after correction for age and sex.

Results: Spatial CoV measures showed a positive correlation with age (cor=0.35, p <0.001 and with WMH volume (cor=0.38, p <0.001 [Figure 2A], and differed between sexes (p <0.001). Differences in spatial CoV values were detected between HC and AD and between HC and PD subjects (p<0.05 in both cases) [Figure 2B]. With our model, spatial CoV was not able to discriminate between AD and PD.

Conclusions: These findings suggest that spatial CoV can provide insight in the vascular component of AD and PD pathologies. Validation of these results in larger cohorts and across a wider range of disorders might provide further insight in the relation between cerebrovascular health and neurodegeneration.

  • Contribution to proceedings
    VasCog 2018 - The 9th International Conference of The International Society of Vascular Behavioural and Congnitive Disorders, 14.11.2018, Hong-Kong, China
  • Poster
    VasCog 2018 - The 9th International Conference of The International Society of Vascular Behavioural and Congnitive Disorders, 14.11.2018, Hong-Kong, China

Permalink: https://www.hzdr.de/publications/Publ-28287
Publ.-Id: 28287


Effects of intracranial stenosis on brain perfusion and cognitive performance in a memory clinic population

Hilal, S.; Mutsaerts, H.; Ferro, D.; Petr, J.; Kuijf, H.; Biessels, G.; Chen, C.

Background: Intracranial stenosis (ICS) contributes to cognitive dysfunction possibly via decreased cerebral blood flow (CBF). However, CBF measurements by Arterial Spin Labelling (ASL) are affected by vascular artefacts making it difficult to apply in elderly with large vessel disease. Recently, spatial coefficient of variance (CoV) is proposed as a robust estimate to quantify vascular artifacts and may be used as a proxy marker of large vessel insufficiency. We investigate the association of ICS with ASL measurements and its eventual effects on cognition in a memory clinic population.
Methods: We included 403 participants (mean age=72.3±7.9years, women=53.7%). ICS was graded as ≥50% stenosis in any intracranial vessel on 3D Time of Flight Magnetic Resonance Angiography. Gray matter spatial CoV and gray matter CBF were analyzed with ExploreASL from 2D EPI pseudo-continuous ASL images. Global cognition was assessed by a detailed neuropsychological test.
Results: ICS was present in 70 (17.4%) individuals. Persons with ICS had higher GM spatial CoV (mean difference (β)= 0.17, 95%CI: 0.07; 0.28, p=0.001) and lower CBF (β= -0.21, 95%CI: -0.33; -0.09), p=<0.001). This association persisted after partial volume correction of spatial CoV and CBF. The lateralization of spatial CoV and CBF (asymmetry index) (β for CoV: 0.23, 95%CI: 0.05; 0.40, p=0.013 and β for CBF: -0.22, 95%CI: -0.33; -0.11, p=<0.001) were correlated with ipsilateral stenosis. Spatial CoV was associated with worse cognition independent of CBF (β= -0.76, 95%CI: -1.09; -0.43, p=<0.001). Moreover, ICS was associated with global cognition, independent of gray matter CoV and CBF, although this effect attenuated in the presence of cortical microinfarcts (β= -0.23, 95%CI: -0.49; 0.02, p=0.072).
Conclusion: These findings suggest an association of ASL perfusion with ICS and cognition, which has a predominant component of large vessel insufficiency. Moreover, cortical microinfarcts mediate the link between ICS and cognition independent of large vessel insufficiency.

  • Contribution to proceedings
    VasCog 2018 - The 9th International Conference of The International Society of Vascular Behavioural and Congnitive Disorders, 14.11.2018, Hong-Kong, China
  • Poster
    VasCog 2018 - The 9th International Conference of The International Society of Vascular Behavioural and Congnitive Disorders, 14.11.2018, Hong-Kong, China

Permalink: https://www.hzdr.de/publications/Publ-28286
Publ.-Id: 28286


Tissue inhibitor of proteinase-1 and cerebral blood flow in predementia

Pålhaugen, L.; Selnes, P.; Kirkeby, E.; Tecelao, S.; Ingala, S.; Petr, J.; Bjørnerud, A.; Mutsaerts, H.; Fladby, T.

Background
Cerebrovascular disease (CVD) can increase the risk of dementia and is frequently seen in Alzheimer’s disease. Tissue inhibitor of proteinase-1 (TIMP-1) measured in cerebrospinal fluid (CBF) is considered a promising biomarker of subcortical small vessel disease (SSVD). In addition to inhibition of matrix metalloproteases, it occurs in several biological processes, such as protection of the blood brain barrier. This study explores how TIMP-1 is associated with CBF in amyloid and non-amyloid pre-dementia cases as well as in controls.

Methods
Cases and controls, aged 40-80, were included from the Norwegian multi-site study “DDI” (n=69, age=63.2 +/- SD, m/f=26/43). Participants underwent cognitive assessment, MRI and lumbar puncture. Cases were staged as Subjective Cognitive Decline (SCD) or Mild Cognitive Impairment (MCI). We stratified by A1-42 pathology (A+/-) using an amyloid-PET verified CSF cutoff. Cerebral blood flow (CBF) was measured with arterial spin labeling and analyzed using ExploreASL. Linear regression analysis was performed with TIMP-1 and CBF in total gray matter (GM), total white matter (WM) and several GM regions (frontal, temporal, insula, parietal, occipital, thalamus, putamen and caudate nucleus), adjusting for age and sex. CBF was log-transformed.

Results
In the A- group (n=50, age=61.6, m/f=17/33, Controls/SCD/MCI=21/22/7) there was a significant positive relationship between TIMP-1 and CBF in total GM (=-0.46, p=0.001), total WM (=-0.44, p=0.002), frontal (=-0.41, p=0.004), temporal (=-0.45, p=0.001), insula (=-0.39, p=0.006), parietal (=-0.48, p<0.001), occipital (=-0.45, p=0.001), thalamus (=-0.53, p<0.001), putamen (=-0.41, p=0.004) and caudate nucleus (=-0.48, p=0.001) GM regions. There were no significant associations in the A+ group (n=19, age=67.4, m/f=9/10, Controls/SCD/MCI=2/7/10) or in the whole sample.

Conclusion
We found that TIMP-1 correlates positively with CBF in the A- group, whereas there were no significant association in the A+ group. Putatively, this may reflect different mechanisms for vascular pathology in the two groups.

  • Contribution to proceedings
    VasCog 2018 - The 9th International Conference of The International Society of Vascular Behavioural and Congnitive Disorders, 14.11.2018, Hong-Kong, China
  • Poster
    VasCog 2018 - The 9th International Conference of The International Society of Vascular Behavioural and Congnitive Disorders, 14.11.2018, Hong-Kong, China

Permalink: https://www.hzdr.de/publications/Publ-28285
Publ.-Id: 28285


Cortical microinfarcts in memory clinic patients are associated with reduced cerebral perfusion

Ferro, D.; Mutsaerts, H.; Hilal, S.; Kuijf, H.; Petersen, E.; Petr, J.; van Veluw, S.; Venketasubramanian, N.; Biessels, G.; Chen, C.

Background: Cerebral cortical microinfarcts (CMIs) are small ischemic lesions visible on autopsy and structural MRI. As CMIs occur/are observed more frequently in the cortical watershed areas, we hypothesize that hypoperfusion plays a role in their development. We investigated whether CMI presence is associated with decreased cerebral perfusion using arterial spin labeling (ASL).
Methods: We have analyzed 180 memory clinic patients (mean age 72 ± 9y, 51% male, 72% CMIs present ) with pCASL acquired at 3T MRI (PLD=xx ms, labeling duration=xx ms). Cerebral blood flow (CBF) was quantified (in ml/100g/min) and mean CBF and spatial coefficient of variation (CoV, quantitative proxy of transit time, expressed as SD of the CBF/mean CBF) was calculated in gray matter in each vascular territory. Vascular artefacts were observed in 33 patients due to prolonged transit time, and these were excluded from the CBF but not CoV analysis. CMIs were rated according to previously established criteria.
Results: In this cohort, CMIs presence was associated with a higher burden of cerebrovascular disease (Table 1). Patients with CMIs had lower CBF and a higher spatial CoV in the anterior circulatory territory, indicating a decreased perfusion and a delayed transit time (Table 1, Figure 1). The total number of CMIs was correlated to a lower CBF and a higher spatial CoV (p<.02). A sub-analysis in patients with unilateral CMI presence revealed no significant inter-hemisphere differences in CBF (n=27, .56 ±.7 ml/100g/min) or in CoV (n=36, .05 ±.25).
Conclusion: This is the first study to demonstrate that CMIs presence is associated with reduced global cerebral perfusion. Further research should identify at which level of the vascular tree the cause of hypoperfusion originates.

  • Contribution to proceedings
    VasCog 2018 - The 9th International Conference of The International Society of Vascular Behavioural and Congnitive Disorders, 14.11.2018, Hong-Kong, China
  • Lecture (Conference)
    VasCog 2018 - The 9th International Conference of The International Society of Vascular Behavioural and Congnitive Disorders, 14.11.2018, Hong-Kong, China

Permalink: https://www.hzdr.de/publications/Publ-28284
Publ.-Id: 28284


µTRLFS: Spatially-resolved sorption studies of Eu(III) on Eibenstock granite with time-resolved laser fluorescence spectroscopy

Molodtsov, K.; Schymura, S.; Rothe, J.; Dardenne, K.; Krause, J.; Schmidt, M.

Finding a safe long-term repository for high-level nuclear waste is a highly relevant global issue. To that end, the interaction of radionuclides with mineral phases contained in possible host rocks and construction materials must be understood. On a time scale of up to one million years, especially the scenario of a water intrusion into the repository and thus dissolution of radionuclides has to be considered.

To investigate the sorption behaviour of actinides (e.g. Cm(III) and U(VI)O22+) and lanthanides (e.g. Eu(III)), time-resolved laser fluorescence spectroscopy (TRLFS) is a widely used method, because of its trace concentration sensitivity and capability to distinguish multiple species in complex systems. On the one hand this method gives the spectral information of the emitted fluorescence light, which allows determining the symmetry and the grade of complexation of the sorbed Ln/An. On the other hand the lifetimes of the excited electronic states provide information about the surrounding quenchers, mainly water. Typically, TRLFS investigations will focus on the interaction of an actinide with one relevant mineral phase. For a real rock formation, e.g. granite, sorption will however be a competitive process involving multiple mineral phases at the same time.

In this study a new method called µTRLFS is introduced, which will add a spatial dimension to TRLFS. By doing so, it is possible to separate the multi-phase system into discrete single-phase systems and therefore to make a step beyond model systems by investigating, for example whole natural granite rock with TRLFS. Because of its advantageous fluorescence properties, we use Eu(III) as an analogue for the trivalent actinides Am and Cm. Spatially resolved sorption experiments with Eu(III) on granite samples from Eibenstock, Germany are presented. These samples are excited by a focused laser beam at a wavelength of 394 nm, and scanned through the laser’s focal point by an XYZ-stage with a resolution of approximately 20 µm. Through this approach it becomes possible to characterize Eu(III) sorption on single grains of the complex material by mapping fluorescence intensity, F2/F1-band ratios, as well as fluorescence lifetimes.

A combination of spatially-resolved X-ray fluorescence spectroscopy (µXRF) and electron probe microanalysis (EPMA) is used to reveal the mineral phase composition in each point of measurement which can then be correlated to the µTRLFS maps. In addition, these methods provide impurity distributions of e.g. Fe or Mn as additional quenchers. By doing so, µTRLFS mapping of sorption capacity, complexation strength and surrounding quenchers can be correlated to phase distribution mappings and thus provide information about the sorption behaviour of each phase within the complete multi-phase system. The µTRLFS data can be directly compared to single phase TRLFS data of the main granite components quartz, feldspar, and mica. For verification, the Eu(III) distribution obtained from µTRLFS data will be compared to autoradiography images.

Keywords: µTRLFS; europium; sorption; granite

  • Poster
    10th International Conference on f-elements, 03.-06.09.2018, Lausanne, Schweiz
  • Lecture (Conference)
    Advanced Techniques in Actinide Spectroscopy, 06.-09.11.2018, Nice, France

Permalink: https://www.hzdr.de/publications/Publ-28283
Publ.-Id: 28283


µTRLFS: Spatially- and time-resolved laser fluorescence spectroscopy with Eu(III) as a fluorophore on Eibenstock granite

Molodtsov, K.; Schmidt, M.

Time-resolved laser fluorescence spectroscopy (TRLFS) is a widely used method to obtain information about the surrounding chemical environment of fluorophores with trace concentration sensitivity. This method allows determining the symmetry and grade of complexation of the fluorophore and provides information about the surrounding quenchers, mainly water as well. For highly heterogeneous systems however distinguishing and separating multiple binding species becomes an unsolvable problem. In this study a new method called µTRLFS is introduced, which will add a spatial dimension to TRLFS, giving the possibility to separate a multi-phase system into discrete single-phase systems. Because of its advantageous fluorescence properties we use europium as an analogue for Am(III) and Cm(III) to study the sorption behaviour of granite as a possible host rock for high-level nuclear waste repositories. Spatially resolved sorption experiments with Eu(III) on granite samples from Eibenstock, Germany are presented. These samples are excited by a focused and pulsed UV laser beam, and scanned with a resolution of 20 µm. Through this approach it becomes possible to characterize Eu(III) sorption on single grains of the complex material by mapping fluorescence intensity, band ratios, as well as lifetimes.

Keywords: µTRLFS; europium; sorption; granite

  • Lecture (Conference)
    Deutsche Physikalische Gesellschaft Frühjahrstagung, 04.-09.03.2018, Erlangen, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-28282
Publ.-Id: 28282


The muon flux in the Felsenkeller shallow underground laboratory

Ludwig, F.; Wagner, L.; Al-Abdullah, T.; Barnaföldi, G. G.; Bemmerer, D.; Degering, D.; Surányi, G.; Zuber, K.

The muon intensity and angular distribution in the shallow-underground laboratory Felsenkeller in Dresden, Germany
have been studied using a portable muon detector based on the closed cathode chamber design. Data has been taken at
four positions in Felsenkeller tunnels VIII and IX, where a new 5 MV underground ion accelerator is being installed, and
in addition at four positions in Felsenkeller tunnel IV, which hosts a low-radioactivity counting facility. At each of the
eight positions studied, seven different orientations of the detector were used to compile a map of the upper hemisphere
with 0.85 ◦ angular resolution. The muon intensity is found to be suppressed by a factor of 40 due to the 45 m thick rock
overburden, corresponding to 140 meters water equivalent.
The angular data are matched by two different simulations taking into account the known geodetic features of the
terrain: First, simply by determining the cutoff energy using the projected slant depth in rock and the known muon
energy spectrum, and second, in a GEANT4 simulation propagating the muons through a column of rock equal to the
known slant depth. The present data are instrumental for studying muon-induced effects at these depths and also in the
planning of an active veto for accelerator-based underground nuclear astrophysics experiments.

Keywords: Muon intensity; Underground laboratories; GEANT4; nuclear astrophysics; wire chambers; muon tomography; muon radiography

Permalink: https://www.hzdr.de/publications/Publ-28281
Publ.-Id: 28281


Trivalent Actinide Incorporation into Zirconium(IV) oxide – Eu3+ and Cm3+ luminescence spectroscopic studies

Eibl, M.; Shaw, S.; Morris, K.; Hennig, C.; Stumpf, T.; Huittinen, N.

In a final repository for spent nuclear fuel (SNF), the mobilization of actinides from the UO2 matrix is a great concern for safety considerations. The SNF rods are surrounded by zircalloy cladding material, which, similarly to the UO2 waste matrix, has a very low solubility in aqueous solution. Despite the very good corrosion resistance of the cladding material, corrosion and dissolution are expected to occur together with the leaching of radionuclides from the SNF over geological timescales. Therefore, the dissolution of zircalloy and the formation of a corrosion layer mainly composed of zirconia (ZrO2) on the cladding surface may be accompanied by reactions with dissolved, long-lived radionuclides from the SNF matrix.
At ambient conditions zirconium oxide has a monoclinic (m) crystal structure. However, the incorporation of metal cations can stabilize the high-temperature zirconia phases, i.e. the tetragonal (t) and the cubic (c) phases, leading to the formation of stable structures at ambient conditions.[1] Such phase transformation may be expected when actinides from the SNF become incorporated and thus, immobilized within the zirconia corrosion layer.
In the present study the incorporation of aliovalent actinides in zirconia, and their stabilizing influence on the crystal structure, have been investigated. The crystallinity and structural properties of the resultant actinide-doped zirconia solids were investigated with powder x-ray diffraction (PXRD), while the local structure around the incorporated dopant was studied with laser-induced luminescence spectroscopy (TRLFS). Cm3+ and Eu3+ were taken as representatives for the trivalent actinides.
The PXRD results of calcined Eu3+ doped zirconia samples show that a systematic transformation of the monoclinic to the cubic phase via the tetragonal structure occurs as a function of increasing Eu3+ doping (Fig. 1, left) whilst the Eu3+ TRLFS results show a 7F1, 7F2 emission band splitting corresponding to a low symmetry environment despite the cubic bulk symmetry (Fig. 1, middle).

The Cm3+ co-doped luminescence spectra show strong red-shifts of the emission spectra in the cubic bulk system with a peak maximum of 643.9 nm (Fig. 1, right) which have been observed before.[2] Both spectroscopic methods point towards a strongly distorted local structure, caused by the effect of oxygen vacancies and lattice stress induced by the largely oversized dopant ions.

  • Lecture (Conference)
    4th International Workshop on Advanced Actinide Spectroscopy, 06.-09.11.2018, Nice, France

Permalink: https://www.hzdr.de/publications/Publ-28280
Publ.-Id: 28280


Pressure-tuning of the magnetic properties of the Heusler compound Mn2PtGa

Salazar Mejia, C.; Najak, A. K.; Felser, C.; Nicklas, M.

We report on the pressure-tuning of the magnetic properties of the Heusler alloy Mn2PtGa. At ambient pressure, Mn2PtGa orders ferrimagnetically below TC ≈ 222 K, followed by a first-order ferrimagnetic to antiferromagnetic transition around TFI-AF ≈ 102 K upon cooling. Magnetization measurements up to 1.2 GPa evidence a stabilization of the ferrimagnetic phase, i.e., TC increases while TFI-AF decreases upon application of pressure. The magnetic properties in the ferromagnetic phase are not altered upon increasing pressure. However, the fraction of the ferrimagnetic phase present in the inhomogeneous antiferromagnetic low-temperature phase increases with pressure.

Permalink: https://www.hzdr.de/publications/Publ-28279
Publ.-Id: 28279


Entwicklung einer alternativen Methode zur selektiven Laugung von Seltenen Erden aus Zirkonsilikaten

Balinski, A.; Scharf, C.

Zirkonsilikate spielen als Quelle für Seltene Erden trotz der geringen Belastung mit Uran und Thorium, des günstigeren Verhältnisses von schweren zu leichten Seltenen Erden und der Anwesenheit von wertvollen Begleitelementen immer noch eine untergeordnete Rolle. Eine industriell rentable Gewinnung von Seltenen Erden aus dieser Rohstoffgruppe hat sich trotz vieler initiierter Projekte bis auf eine Lagerstätte in Russland bisher nicht durchgesetzt. Der Grund dafür liegt in den geringen Konzentrationen der Zielelemente, der Kieselgelbildung während der Laugung und der Entstehung von komplexen Multielement-Laugungslösungen begründet. Die Arbeit beschäftigt sich mit der Entwicklung einer alternativen Methode zur Gewinnung von Seltenen Erden und der relevanten Begleitelemente unter Anwendung des unterschiedlichen Verhaltens der Sulfate der beiden Metallgruppen. Als Zwischenprodukte werden wässrige Phasen angereichert mit jeweils wertvollen Metallen beziehungsweise Seltenen Erden zur weiteren Raffination erzeugt.

  • Poster
    Jahrestreffen der Processnet-Fachgruppen Extraktion und Rohstoffe, 12.-13.03.2018, Frankfurt am Main, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-28278
Publ.-Id: 28278


SE-FLECX-Projekt: alternative Ansätze zur Gewinnung von Seltenen Erden

Balinski, A.; Scharf, C.

Seltene Erden (Lanthanoide), eine Gruppe von 17 Elementen mit ähnlichen Eigenschaften, sind aus einer Vielzahl heutiger Produkte nicht mehr wegzudenken. Dazu gehören sowohl Gegenstände des täglichen Bedarfs wie z.B. LCD-Bildschirme oder Akkus für Laptops als auch hochspezifische Anwendungen wie z.B. Dauermagneten in Windkraftanlagen.
Um eine sichere Versorgung mit Seltenen Erden zu gewährleisten, müssen neue und innovative Methoden sowohl zur Aufbereitung von Erzen und Konzentraten als auch zur Verbesserung der weiteren Prozesskette durch Entwicklung von neuartigen Extraktionsmitteln gefunden werden. Das Forscherteam von „SE-FLECX“ nimmt die beiden Herausforderungen an, wobei drei Hauptziele im Fokus stehen: die Aufbereitung von unkonventionellen Rohstoffen, die Abtrennung der Actinoide und die selektive Auftrennung einzelner Seltenen Erden. Aufgrund der ähnlichen Eigenschaften der Elemente und der steigenden Komplexität der Erze ist die Bewältigung dieser Aufgaben entscheidend für die Erarbeitung von zukünftig durchsetzbaren Prozessen.

Keywords: Seltene Erden; Calixarene; unkonventionelle Rohstoffe; Flüssig-Flüssig-Extraktion

  • Lecture (Conference)
    r4-Clusterworkshop 2018, 10.-11.10.2018, Hannover, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-28277
Publ.-Id: 28277


A Parallel Cellular Automata Lattice Boltzmann Method for Convection-Driven Solidification

Kao, A.; Krastins, I.; Alexandrakis, M.; Shevchenko, N.; Eckert, S.; Pericleous, K.

This paper presents a novel coupling of numerical techniques that enable 3D convection-driven microstructure simulations to be conducted on practical time scales appropriate for small size components or experiments. On the microstructure side, the cellular automata method is efficient for relatively large-scale simulations, while the lattice Boltzmann method provides one of the fastest transient hydrodynamic CFD solvers. Both of these methods have been parallelized and coupled in a single code, allowing resolution of large-scale convection-driven solidification problems. The numerical model is validated against benchmark cases, extended to capture solute plumes in directional solidification and finally used to model alloy solidification of an entire differentially heated cavity capturing both microstructural and meso/macro-scale phenomena.

Keywords: Lattice Boltzmann method; large-scale simulations; convection-driven solidification; fluid flow

Permalink: https://www.hzdr.de/publications/Publ-28276
Publ.-Id: 28276


SE-FLECX: Selektive Flüssig-Flüssig-Extraktion von Lanthanoiden und Actinoiden durch präorganisierte Calixarene

Balinski, A.; Scharf, C.

Zur Gewährleistung der sicheren Versorgung mit Seltenen Erden (Sc, Y und Lanthanoide) müssen innovative Methoden sowohl zur Aufbereitung von Rohstoffen als auch zur Verbesserung der weiteren Prozesskette durch Entwicklung von neuartigen Extraktionsmitteln gefunden werden. Im SE-FLECX-Projekt sollen diese Ziele durch die Anwendung der besonderen Eigenschaften von Calix[4]arenen und eine gezielte Aufbereitung der unkonventionellen Rohstoffquellen erreicht werden.
Die Entwicklung neuartiger Extraktionsmittel erfolgte durch die gezielte Substitution an makrocyclischen Calix[4]arenen. Zwei Typen von Liganden wurden für die effiziente Trennung der Actinoide (Typ A) und der Seltenen Erden (Typ B) synthetisiert, charakterisiert und erprobt.
Im Laufe des Projektes wurden zwei Vertreter gefunden, die aus einfach zusammengesetzten Systemen (Modelllösungen) sowohl Seltene Erden quantitativ in einer Stufe extrahieren (FG20) als auch U(VI) sehr effizient abtrennen können (AJ46).
Bei AJ46 wurde neben der Fähigkeit zur Uranabtrennung ebenso eine starke Affinität zu Schweren Seltenen Erden festgestellt. Sein industrieller Einsatz wurde jedoch aufgrund der hohen Synthesekosten als unwirtschaftlich bewertet. Diese konnten durch die Entwicklung einer alternativen Syntheseroute signifikant reduziert werden.

Keywords: Seltene Erden; Calixarene; Flüssig-Flüssig-Extraktion

  • Lecture (Conference)
    r4-Statuskonferenz, 31.01.-01.02.2018, Berlin, Deutschland
  • Poster
    r4-Statuskonferenz 2018, 31.01.-01.02.2018, Berlin, Deutschland
  • Poster
    24 Stunden für Ressourceneffizienz", Ressourceneffizienz-Kongress für Nachwuchsforscherinnen und Nachwuchsforscher, 14.-15.02.2017, Pforzheim, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-28275
Publ.-Id: 28275


X-ray visualisation of melt flow effects on dendritic solidification

Shevchenko, N.; Keplinger, O.; Grenzer, J.; Rack, A.; Eckert, S.

X-ray radiography is an effective tool for investigating flow phenomena and solidification processes in opaque metallic alloys. This work is devoted to complex interaction between dendritic growth and melt flow during solidification of Ga-In alloys under natural and forced convection. Natural convection is caused by density variations within the solidifying alloys. Forced convection was produced by electromagnetic stirring. The conventional X-ray radioscopic experiments with sufficient spatial resolution (5-10 µm) deliver simultaneous information of both the dendrite structure and the flow patterns ahead of the solidification front and especially near the mushy zone. Melt convection alters the solutal field near the solidification front leading to different microstructures or even to the formation of freckle defects. The coarsening stage of dendritic structure is characterized by transformation of the sidearm morphology present after growth. The direct investigation of dendritic sidearm evolution during coarsening appears to be rather complex and impose high requirements with respect to the spatial and temporal resolution and sensitivity of the detector. The synchrotron imaging experiments with solidifying Ga-In alloys were performed at the BM20 and ID19 beamlines (ESRF, France) at a spatial resolution of < 1 µm. The present measurements provide real-time in-situ data on three phenomena that are of major importance in coarsening of dendrites: sidearm retraction, pinch-off and coalescence of neighboring sidearms. Using an advanced image analysis of high temporal and spatial resolution experimental data allows us to verify existing microstructural models.

Keywords: X-ray radiography; dendritic growth; melt flow; sidearm evolution

  • Lecture (Conference)
    32nd International Congress on High Speed Imaging and Photonics, 09.-12.10.2018, Twente, The Netherlands

Permalink: https://www.hzdr.de/publications/Publ-28274
Publ.-Id: 28274


In-situ observation of dendritic growth under the influence of electromagnetically driven flow

Shevchenko, N.; Keplinger, O.; Eckert, S.

Many studies have demonstrated that the application of electromagnetic stirring enhances the area of equiaxed grains and reduces the mean grain size (see e.g. [1-2]). It is widely accepted that flow-induced grain refinement and the CET (columnar to equiaxed transition) in metallic alloys is triggered by the appearance of additional dendrite fragments originating from the columnar front. The mechanism for grain multiplication by melt convection is supposed to be complex and is not fully understood until now.
The X-ray radiography was used for an in-situ study of the effect of electromagnetic stirring during the solidification of a Ga-25wt%In alloy in a Hele-Shaw cell [3]. The experimental setup was extended by a magnetic wheel, which allowed for controlled excitation of a melt flow in the liquid phase. The forced flow induces different effects on dendrite morphology, such as the uneven growth of primary trunks or lateral branches, remelting of single dendrites and also of lager dendrite ensembles, freckle formation, changes the inclination angle of the dendrites and leads to an increasing arm spacing. These effects are primarily governed by the convective redistribution of solute. Figure 1 demonstrates an interesting effect of "repairing" of a segregation channel (see the right-hand side part of Fig. 1a) after switching off the magnetic wheel (Fig 1b). It can be seen that an area with equiaxed or fine dendrites was formed instead of a segregation channel. The appearance of small equiaxed grains in the undercooled melt in the segregation pools is triggered by quick redistribution of solute after stopping the magnetic pump.
References
1. B. Willers et al, Materials Science and Engineering A 402 (2005) 55-65
2. T. Campanella et al, Metallurgical and Materials Transactions A 35 (2004) 3201-3210
3. N. Shevchenko et al, Journal of Crystal Growth 417 (2015) 1-8

Keywords: Electromagnetic stirring; solidification; X-ray radiography; freckle formation; Ga-In alloy

  • Lecture (Conference)
    9th International Symposium on Electromagnetic Processing of Materials (EPM2018), 14.-18.10.2018, Awaji, Hyogo, Japan

Permalink: https://www.hzdr.de/publications/Publ-28273
Publ.-Id: 28273


Pd catalyzed cross-coupling of [11C]MeLi and its application in the synthesis and evaluation of a potential PET tracer for the vesicular acetylcholine transporter (VAChT)

Helbert, H.; Wenzel, B.; Deuther-Conrad, W.; Luurtsema, G.; Szymanskic, W.; Brust, P.; Feringa, B. L.; Dierckx, R. A. J. O.; Elsinga, P. H.

Introduction
The short half-life of 11C (t1/2 = 20.33 min) requires ultra-fast reactivity in order to perform efficient labelling of PET tracers. A recently discovered cross-coupling methodology1 enables the coupling between aryl bromides and organolithium reagents within seconds and therefore can be an attractive strategy to access 11C-labelled compounds. In this work several clinically relevant structures were labelled via this method. The scope of the reaction was further explored and expanded, allowing radiolabelling of highly reactive compounds, such as aldehydes. Then we focused our attention on the development of a new potential tracer for vesicular acetylcholine transporter (VAChT) which was enabled by this novel cross-coupling of [ 11C]MeLi.

Methods
[11C]MeLi was prepared via lithium-halogen exchange by trapping [11C]MeI in a solution of n-BuLi. The prepared [11C]MeLi was further reacted in a Pd catalyzed cross-coupling reaction with aryl bromides at r.t. for 4 minutes. After quench and evaporation of the solvent, the mixture was directly purified by HPLC. A series of synthesized vesamicol derivatives were subjected to affinity studies.

Scheme 1: Relevant structures for PET labelled via cross-coupling of [11C]MeLi

Results
Several clinically relevant structures with application in breast cancer imaging and early diagnosis of Alzheimer’s disease had been successfully labelled using this procedure (scheme 1). Employing this same methylation strategy, novel potential tracers for VAChT were synthesized and evaluated in vitro, identifying a compound with good selectivity for VAChT versus σ1 and σ2 and compared to established (-)FEOBV.

Table 1: In vitro affinities measured on rat VAChT (VAChT-PC12), n = 3; human σ1 (hS1-HEK293), n = 3; rat σ2 (rat liver), n = 2
Affinity (nM) (±)1-Me (±)2-Me (±)3-Me (-)3-Me (-)FEOBV
Ki(VAChT) 8.7 ± 0.1 7.2 ± 1.2 27 ± 18 28 ± 16 7 ± 2
Ki(σ1) 2.1 ± 0.5 5.3 ± 1.7 362 ± 36 382 ± 166 2275 ± 390
Ki(σ2) 373 ± 147 618 ± 257 1650 ± 650 >5000 2118 ± 1058
σ1/VAChT : σ2/VAChT 0.2 : 43 0.7 : 86 13 : 50 14 : >150 >300 : >300

Conclusion
A new labelling methodology was successfully applied to the synthesis of clinically interesting radiotracers, providing the purified target molecules in R.C.Y. ranging from 34% to 56% within 30 to 40 minutes (EOB). This procedure offers new opportunities in the development of novel tracers, illustrated by the synthesis of a novel VAChT tracer.

1Heijnen D, Tosi F, Vila C, Stuart M, Elsinga P, Szymanski W, Feringa B. Angew. Chem. Int. Ed. 2017, 56 (12), 3354-3359

  • Lecture (Conference)
    ISRS 2019, 26.05.-01.06.2019, Beijing, China
  • Lecture (Conference)
    Annual EANM congress 2019, 12.10.2019, Barcelona, Spanien

Permalink: https://www.hzdr.de/publications/Publ-28272
Publ.-Id: 28272


Characterization of Isostructural An(IV) Complexes with Hetero-donor Imine Ligands

Radoske, T.; Schöne, S.; Kaden, P.; Ikeda-Ohno, A.; Stumpf, T.

The coordination chemistry of actinides (An) serves as fundamental knowledge for chemical engineering and environmental science related to the nuclear industry.[1] However, as compared with other transition metals, the basic chemistry of An is far less explored. The chemistry of An is complicated by, e.g., various possible oxidation states ranging from II to VII for the early An. One possible approach to understand the chemical nature of the An series is the comparison of isostructural compounds containing different actinides with the same oxidation state.[2,3,4] With this approach, the relative changes observed among the An series could allow us to gain insight into their unique chemical nature, such as electronic properties originating from their f-electron orbitals. One major question remaining in the field of An chemistry is the degree of “covalency” across the An series.[5] In order to study the “covalency” across the An series, one would require to perform a systematic study on a wide series of An, including transuranium (TRU) elements. Nonetheless, precedent studies covering TRU elements are rather scarce. This background motivates us to perform the current study focusing on a systematic comparison of the isostructural An complexes (Th, U and Np).
In this study we investigate the coordination chemistry of tetravalent actinides (An(IV)), which is dominant particularly under anoxic environmental conditions.[1] Synthesis of their compounds and the experiments should be conducted under inert and water-free atmosphere. The ligands used in this study are a hetero-donor imine ligand of salen and its derivatives (Fig. 1). These ligands have a capability to coordinate to metal ions tetradentately and exhibit both the hard- (oxygen) and medium-donor (nitrogen) characters, which could be a simple analog of natural occurring organic molecules. The eightfold coordination, which is often preferred for An complexes, can be readily achieved with these ligands by coordination of two ligand molecules. Salen and its derivatives have also been employed as a framework for catalytic and extraction agents.[6,7]

  • Lecture (Conference)
    Plutonium Futures 2018, 11.09.2018, San Diego, Vereinigte Staaten von Amerika

Permalink: https://www.hzdr.de/publications/Publ-28271
Publ.-Id: 28271


Actinide Bonding – Comparative Study of Isostructural An(IV) Imine Complexes

Radoske, T.; Kaden, P.; Schöne, S.; Ikeda-Ohno, A.; Stumpf, T.

Because of their unique electronic properties originating from 5f-orbitals, the coordination chemistry of actinides (An) is still an attractive research field in terms not only of nuclear engineering but also of basic chemistry. In particular, the early An show profound complex chemistry due to a wide variety of possible oxidation states ranging from +II to +VII, which is in contrast to the dominant trivalent state for their chemical analog of lanthanides. The aim of our research activities is to gain knowledge about the interaction of An with a variety of hard- and soft-donor ligands, eventually providing a comprehensive understanding of the electronic nature of actinide compounds. The ligands used in this study possess both O- (i.e. hard) and N-donor (soft) containing functionalities (Fig.1) and could also be considered as a simplified model of naturally relevant organic O/N-donor ligands.
A series of single crystals of [AnIV(Lp)2] complexes were synthesized from the tetrachloride compounds of An = Th, U and Np. SC-XRD measurements on the obtained crystals reveal their crystal structures, all showing the eight-fold coordination of the metal centre with the ligands on their primary coordination sphere, forming a trigonal dodecahedral geometry around the metal centre.
1H-NMR spectra of the dissolved complexes [ThIV(Le)2], [UIV(Le)2], [CeIV(Le)2] and the pure ligand in solution were recorded. The observed shifts show unique features when comparing isostructural diamagnetic compounds of lanthanides and actinides, which can not be explained by charge density differences.

  • Lecture (Conference)
    ISNSC - 10th International Symposium on Nano and Supramolecular Chemistry 2018, 10.07.2018, Dresden, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-28270
Publ.-Id: 28270


Atomic-level thermodynamics and kinetics in solids: Examples for Si, Ge, and SiC

Posselt, M.

In this talk examples of atomistic simulations on thermodynamics and kinetics in Si, Ge, and SiC are presented.

Keywords: Atomic-level simulations; thermodynamics; Si; Ge; SiC

  • Lecture (others)
    Seminar "Topical Problems in Theoretical Physics", 28.11.2018, Chemnitz, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-28269
Publ.-Id: 28269


Age and genesis of polymetallic veins in the Freiberg district, Erzgebirge, Germany: constraints from radiogenic isotopes

Ostendorf, J.; Henjes-Kunst, F.; Seifert, T.; Gutzmer, J.

The Freiberg mining district in the Erzgebirge hosts three principal types of polymetallic veins. These are (1) the quartz-bearing polymetallic sulfide type, (2) the carbonate-bearing polymetallic sulfide type, and (3) the barite-fluorite-sulfide type. We investigated the genesis of each vein-type using Rb-Sr sphalerite geochronology, Sm-Nd fluorite geochronology, and Pb, Sr, and Nd isotope systematics of ore and gangue minerals. Field relationships and the Rb-Sr and Pb isotope systematics of sulfides from quartz-bearing polymetallic sulfide veins and carbonate-bearing polymetallic sulfide veins confirm their close genetic affiliation and yield a combined Rb-Sr errorchron age of 276 ± 16 Ma. The high mean squared weighted deviation (MSWD) value of 42 on the regression is considered to reflect initial isotopic heterogeneity, which is probably related to fluid-rock interaction during the hydrothermal mineralization process. Although some sphalerites from barite-fluorite-sulfide veins have strongly disturbed Rb-Sr isotope systematics, six sphalerites and one co-genetic fahlore yield a robust isochron age of 121.3 ± 4.2 Ma with an MSWD of 2.9. This age is supported by a fluorite Sm-Nd isochron age of 101 ± 18 Ma (MSWD = 1.3). The new ages and radiogenic isotope data place robust constraints on the long-held hypothesis that veins in the Freiberg district formed during two hydrothermal events. The Lower Permian age of first stage quartz-bearing polymetallic sulfide veins and carbonate-bearing polymetallic sulfide veins coincides with post-Variscan crustal reorganization and Rotliegend volcanism. The Mid-Cretaceous age of second stage barite-fluorite-sulfide veins coincides with opening of the North Atlantic Ocean during the break-up of Pangea.

Keywords: Erzgebirge; Freiberg district; Pb isotopesRb-Sr sphalerite dating; Sm-Nd fluorite dating; Vein-type deposit

Permalink: https://www.hzdr.de/publications/Publ-28268
Publ.-Id: 28268


Cerebral perfusion changes in presymptomatic genetic frontotemporal dementia: a GENFI study

Mutsaerts, H. J. M. M.; Mirza, S. S.; Petr, J.; Thomas, D. L.; Cash, D. M.; Bocchetta, M.; de Vita, E.; Metcalfe, A. W.; Shirzadi, Z.; Robertson, A. D.; Carmela Tartaglia, M.; Mitchell, S. B.; Black, S. E.; Freedman, M.; Tang-Wai, D.; Keren, R.; Rogaeva, E.; van Swieten, J.; Laforce, R. J.; Tagliavini, F.; Borroni, B.; Galimberti, D.; Rowe, J. B.; Graff, C.; Frisoni, G. B.; Finger, E.; Sorbi, S.; de Mendonça, A.; Rohrer, J. D.; Macintosh, B. J.; Masellis, M.

Genetic forms of frontotemporal dementia are most commonly due to mutations in three genes, C9orf72, GRN or MAPT, with presymptomatic carriers from families representing those at risk. While cerebral blood flow shows differences between frontotemporal dementia and other forms of dementia, there is limited evidence of its utility in presymptomatic stages of frontotemporal dementia. This study aimed to delineate the cerebral blood flow signature of presymptomatic, genetic frontotemporal dementia using a voxel-based approach. In the multi-centre GENetic Frontotemporal dementia Initiative (GENFI) study, we investigated cross-sectional differences in arterial spin labeling MRI-based cerebral blood flow between presymptomatic C9orf72, GRN or MAPT mutation carriers (n=107) and non-carriers (n=113), using general linear mixed-effects models and voxel-based analyses. Cerebral blood flow within regions of interest derived from this model was then explored to identify differences between individual gene carrier groups and to estimate a timeframe for the expression of these differences. The voxel-based analysis revealed a significant inverse association between cerebral blood flow and the expected age of symptom onset in carriers, but not non-carriers. Regions included the bilateral insulae/orbitofrontal cortices, anterior cingulate/paracingulate gyri, and inferior parietal cortices, as well as the left middle temporal gyrus. For all bilateral regions, associations were greater on the right side. After correction for partial volume effects in a region of interest analysis, the results were found to be largely driven by the C9orf72 genetic subgroup. These cerebral blood flow differences first appeared approximately 15 years before the expected symptom onset determined on an individual basis. Cerebral blood flow was lower in presymptomatic mutation carriers closer to and beyond their expected age of symptom onset in key frontotemporal dementia signature regions. These results suggest that arterial spin labeling MRI may be a promising non-invasive imaging biomarker for the presymptomatic stages of genetic frontotemporal dementia.

Keywords: genetic frontotemporal dementia; arterial spin labeling; cerebral blood flow; presymptomatic biomarker

Permalink: https://www.hzdr.de/publications/Publ-28267
Publ.-Id: 28267


Sub-gap optical response in the Kitaev spin-liquid candidate α-RuCl3

Reschke, S.; Mayr, F.; Widmann, S.; Krug Von Nidda, H.-A.; Tsurkan, V.; Eremin, M. V.; Do, S.-H.; Choi, K.-Y.; Wang, Z.; Loidl, A.

We report detailed optical experiments on the layered compound α-RuCl3 focusing on the THz and sub-gap optical response across the structural phase transition from the monoclinic high-temperature to the rhombohedral low-temperature structure, where the stacking sequence of the molecular layers is changed. This type of phase transition is characteristic for a variety of tri-halides crystallizing in a layered honeycomb-type structure and so far is unique, as the low-temperature phase exhibits the higher symmetry. One motivation is to unravel the microscopic nature of THz and spin-orbital excitations via a study of temperature and symmetry-induced changes. The optical studies are complemented by thermal expansion experiments. We document a number of highly unusual findings: A characteristic two-step hysteresis of the structural phase transition, accompanied by a dramatic change of the reflectivity. A complex dielectric loss spectrum in the THz regime, which could indicate remnants of Kitaev physics. Orbital excitations, which cannot be explained based on recent models, and an electronic excitation, which appears in a narrow temperature range just across the structural phase transition. Despite significant symmetry changes across the monoclinic to rhombohedral phase transition and a change of the stacking sequence, phonon eigenfrequencies and the majority of spin-orbital excitations are not strongly influenced. Obviously, the symmetry of a single molecular layer determines the eigenfrequencies of most of these excitations. Only one mode at THz frequencies, which becomes suppressed in the high-temperature monoclinic phase and one phonon mode experience changes in symmetry and stacking. Finally, from this combined terahertz, far- and mid-infrared study we try to shed some light on the so far unsolved low energy (<1 eV) electronic structure of the ruthenium 4d5 electrons in α-RuCl3.

Downloads:

Permalink: https://www.hzdr.de/publications/Publ-28266
Publ.-Id: 28266


From curvilinear magnetism to shapeable magnetoelectronics

Makarov, D.

In this talk I will Review our activities on curvilinear magnetism and shapeable magnetoelectronics.

Keywords: curvilinear magnetism; shapeable magnetoelectronics

  • Invited lecture (Conferences)
    Seminar at the Department of Physics, University of Konstanz, 22.01.2019, Konstanz, Germany

Permalink: https://www.hzdr.de/publications/Publ-28265
Publ.-Id: 28265


Highly compliant planar Hall effect sensor with sub 50 nT sensitivity

Granell, P. N.; Wang, G.; Cañon Bermudez, G. S.; Kosub, T.; Golmar, F.; Steren, L.; Fassbender, J.; Makarov, D.

Next generation of flexible appliances such as soft robots aim to become fully autonomous and will require ultra-thin and flexible navigation modules, body tracking and relative position monitoring systems, which typically include magnetic field sensors as key building blocks. Although there is a great progress in the field of shapeable magnetoelectronics [1], there is no technology available which can enable sensitivities to magnetic fields lower than 1 μT (below the geomagnetic field) in a mechanically compliant form factor. To address this challenging task we introduced a new fundamental effect towards magnetic field sensing --the planar Hall effect (PHE) [2-5]-- in the field of shapeable magnetoelectronics. We demonstrate that even when prepared on mechanically imperceptible 6-μm-thick polymeric foils, magnetic field sensors based on the planar Hall effect have a remarkable sensitivity of 0.86 V/T and are capable of detecting magnetic fields in the range of sub 50 nT. Furthermore, these sensors can be bent to a radius of 1 mm without any degradation of their electrical resistance and shows excellent cyclic bending performance with only 0.3% resistance variation after more than 150 bending cycles. The application potential of the device is showcased in two examples of an angle and proximity sensors. For the latter, we demonstrate that the compliant PHE sensor is able to detect small magnetic stray fields of magnetically functionalized objects as needed for conventional metrology as well as point of care diagnostics. High sensitivity of the prepared sensing devices combined with a remarkable simplicity of fabrication, is a step forward in the realization of cost efficient flexible magnetoelectronic devices, with possible application in soft robotics, interactive devices for virtual- and augmented reality [6,7] and point of care platforms for the detection of magnetic objects [8].
References: [1] D. Makarov, Applied Physics Reviews, Vol. 3, p.011101 (2016)
[2] F. G. West, Journal of Applied Physics, Vol. 34, p.1171 (1963)
[3] C. Goldberg, Physical Review, Vol. 94, p.1121 (1954)
[5] A. Schuhl, Applied Physics Letters, Vol. 66, p.2751 (1995)
[5] V. Mor, Journal of Applied Physics, Vol. 111 (2012)
[6] G. S. Cañón Bermúdez, Science Advances, Vol. 4 (2018)
[7] M. Melzer, Nature Communications, Vol. 6 (2015)
[8] G. Lin, Lab Chip, Vol. 14, p.4050 (2014)

Keywords: magnetic field sensors; flexible electronics

  • Lecture (Conference)
    The 2019 Joint MMM-Intermag Conference, 14.-18.01.2019, Washington DC, USA

Permalink: https://www.hzdr.de/publications/Publ-28264
Publ.-Id: 28264


Droplet-based magnetofluidic platforms for detection and analytics

Makarov, D.

The development of next-generation biosensing technologies has picked up momentum in the past decade. Particularly, among a variety of biosensing principles, magnetic biosensing technologies based on magnetic particles and magnetic field sensors have attracted growing attention due to the unprecedented advantages brought by this unique sensing format.
Our contribution to this exciting field of research and technology includes the development of a compact droplet-based magnetofluidic platform encompassing integrated novel functionalities, e.g. analytics in a flow cytometry format [1-3], magnetic barcoding [4] and sorting of magnetically encoded emulsion droplets [5,6]. We put forth a novel high-capacity indexing scheme based on multiphase microfluidic networks for large-scale screening applications [5,6] and realized flexible microfluidic platform with integrated magnetoresistive sensorics [4]. The technology on how to integrate high-performance magnetic field sensors into multi-functional self-assembled tubular architectures [7-9] for lab-in-a-tube concept [10] will be discussed. These features are crucial to address the needs of modern medical research, e.g. drug discovery [11].
These developments will be outlined in my talk.


[1] G. Lin, D. Makarov et al., “Magnetoresistive emulsion analyzer”. Sci. Rep. 3, 2548 (2013).
[2] G. Lin, D. Makarov et al., “Magnetofluidic platform for multidimensional magnetic and optical barcoding of droplets”. Lab Chip 15, 216 (2015).
[3] D. Karnaushenko, D. Makarov et al., “Monitoring microbial metabolites using an inductively coupled resonance circuit”. Sci. Rep. 5, 12878 (2015).
[4] G. Lin, D. Makarov et al., “A highly flexible and compact magnetoresistive analytic device”. Lab Chip 14, 4050 (2014).
[5] G. Lin, D. Makarov et al., “Magnetic suspension array technology: Controlled synthesis and screening in microfluidic networks”. Small 12, 4553 (2016).
[6] W. Song, D. Makarov et al., “Encoding micro-reactors with droplet chains in microfluidics”. ACS Sensors 2, 1839 (2017).
[7] I. Mönch, D. Makarov et al., “Rolled-up magnetic sensor: Nanomembrane architecture for in-flow detection of magnetic objects”. ACS Nano 5, 7436 (2011).
[8] D. Karnaushenko, D. Makarov et al., “Self-assembled on-chip integrated giant magneto-impedance sensorics”. Adv. Mater. 27, 6582 (2015).
[9] T. Ueltzhöffer, D. Makarov et al., “Magnetically patterned rolled-up exchange bias tubes: A paternoster for superparamagnetic beads”. ACS Nano 10, 8491 (2016).
[10] E. J. Smith, D. Makarov et al., “Lab-in-a-tube: ultracompact components for on-chip capture and detection of individual micro-/nanoorganisms”. Lab Chip (Tutorial Review) 12, 1917 (2012).
[11] G. Lin, D. Makarov et al., “Magnetic sensing platform technologies for biomedical applications”. Lab Chip (Critical Review) 17, 1884 (2017).

Keywords: droplet Fluidics; millifluidics; magnetic field sensors

  • Invited lecture (Conferences)
    The 2019 Joint MMM-Intermag Conference, 14.-18.01.2019, Washington DC, USA

Permalink: https://www.hzdr.de/publications/Publ-28263
Publ.-Id: 28263


Exchange-driven chiral effects in curvilinear magnetism: theoretical abstraction or experimental observable

Makarov, D.

In this talk I will Review our recent exterimental and theoretical activities on curvilinear nanomagnets.

Keywords: curved magnetic thin films; curvilinear magnetism

  • Invited lecture (Conferences)
    Workshop „Topological Phenomena in Quantum Materials“, 04.-05.12.2018, Dresden, Germany

Permalink: https://www.hzdr.de/publications/Publ-28262
Publ.-Id: 28262


Shapeable magnetoelectronics with sensitivities to geomagnetic fields and below

Makarov, D.

The recent rapid advance and eagerness of portable consumer electronics stimulate the development of functional elements towards being lightweight, flexible, and wearable. Next generation flexible appliances aim to become fully autonomous and will require ultra-thin and flexible navigation modules, body tracking and relative position monitoring systems. Key building blocks of navigation and position tracking devices are magnetic field sensors.
Although there is a remarkable progress in the field of shapeable magnetoelectronics [1], there is no technology available which can enable sensitivities to geomagnetic fields of 50 µT and, ultimately, magnetic fields of smaller than 1 µT in a mechanically compliant form factor. If available, these devices would contribute greatly to the realization of high-performance on-skin interactive electronics [2,3] and point of care applications [4].
Here, I will review two technological platforms allowing to realize not only mechanically imperceptible electronic skins, which enable perception of the geomagnetic field (e-skin compasses) [4], but also enable sensitivities down to ultra-small fields of sub-50 nT [6]. We demonstrate that e-skin compasses allow humans to orient with respect to earth’s magnetic field ubiquitously. Furthermore, biomagnetic orientation enables novel interactive devices for virtual and augmented reality applications. We showcase this by realizing touchless control of virtual units in a game engine using omnidirectional magnetosensitive skins.

[1] D. Makarov et al., Applied Physics Reviews 3, 011101 (2016).
[2] G.S. Canon Bermudez, D. Makarov et al., Science Advances 4, eaao2623 (2018).
[3] M. Melzer, D. Makarov et al., Nature Communications 6, 6080 (2015).
[4] G. Lin, D. Makarov et al., Lab Chip 14, 4050 (2014).
[5] G.S. Canon Bermudez, D. Makarov et al., Nature Electronics, in press.
[6] P.N. Granell, D. Makarov et al., npj Flexible Electronics, in press.

Keywords: flexible electronics; magnetic field sensors

  • Invited lecture (Conferences)
    2018 International Workshop on Nanomembrane Origami Technology, 10.-11.11.2018, Shanghai, China

Permalink: https://www.hzdr.de/publications/Publ-28261
Publ.-Id: 28261


Observation of charge density waves in free-standing 1T-TaSe2 monolayers by transmission electron microscopy

Börner, P. C.; Kinyanjui, M. K.; Björkman, T.; Lehnert, T.; Krasheninnikov, A. V.; Kaiser, U.

While bulk 1T-TaSe2 is characterized by a commensurate charge density wave (CCDW) state below 473K, the stability of the CCDW state in a 1T-TaSe2 monolayer, although theoretically predicted, has not been experimentally confirmed so far. As charge density waves and periodic lattice distortions (PLDs) always come together, we evaluate the PLD in a 1T-TaSe2 monolayer from low-voltage aberration-corrected high-resolution transmission electron microscopy experiments. To prevent fast degradation of 1T-TaSe2 during exposure to the electron-beam, a 1T-TaSe2/graphene heterostructure was prepared. We also perform the image simulations based on atom coordinates obtained using density functional theory calculations. From the agreement between the experimental and simulated images, we confirm the stability of the CCDW/PLD in a monolayer 1T-TaSe2/graphene heterostructure at room temperature in the form of a 13 13 superstructure. At the same time, we find that in comparison to multi-layer structures, the superstructure is less pronounced.

Keywords: 1T-TaSe2; graphene; TEM; first-principles calculations

Downloads:

Permalink: https://www.hzdr.de/publications/Publ-28260
Publ.-Id: 28260


Reversible superdense ordering of lithium between two graphene sheets

Kühne, M.; Börrnert, F.; Fecher, S.; Ghorbani-Asl, M.; Biskupek, J.; Samuelis, D.; Krasheninnikov, A. V.; Kaiser, U.; Smet, J. H.

Many carbon allotropes can act as host materials for reversible lithium uptake1,2, thereby laying the foundations for existing and future electrochemical energy storage. However, insight into how lithium is arranged within these hosts is difficult to obtain from a working system. For example, the use of in situ transmission electron microscopy3–5 to probe light elements (especially lithium)6,7 is severely hampered by their low scattering cross-section for impinging electrons and their susceptibility to knock-on damage8. Here we study the reversible intercalation of lithium into bilayer graphene by in situ low-voltage transmission electron microscopy, using both spherical and chromatic aberration correction9 to enhance contrast and resolution to the required levels. The microscopy is supported by electron energy-loss spectroscopy and density functional theory calculations. On their remote insertion from an electrochemical cell covering one end of the long but narrow bilayer, we observe lithium atoms to assume multi-layered close-packed order between the two carbon sheets. The lithium storage capacity associated with this superdense phase far exceeds that expected from formation of LiC6, which is the densest configuration known under normal conditions for lithium intercalation within bulk graphitic carbon10. Our findings thus point to the possible existence of distinct storage arrangements of ions in two-dimensional layered materials as compared to their bulk parent compounds.

Keywords: Li storage; graphene; TEM; first-principles caclulations

Downloads:

Permalink: https://www.hzdr.de/publications/Publ-28259
Publ.-Id: 28259


Epitaxial Mn5Ge3 (100) layer on Ge (100) substrates obtained by flash lamp annealing

Xie, Y.; Yuan, Y.; Wang, M.; Xu, C.; Hübner, R.; Grenzer, J.; Zeng, Y.; Helm, M.; Zhou, S.; Prucnal, S.

Mn5Ge3 thin films have been demonstrated as promising spin-injector materials for germanium-based spintronic devices. So far, Mn5Ge3 has been grown epitaxially only on Ge (111) substrates. In this letter, we present the growth of epitaxial Mn5Ge3 films on Ge (100) substrates. The Mn5Ge3 film is synthetized via sub-second solid-state reaction between Mn and Ge upon flash lamp annealing for 20 ms at the ambient pressure. The single crystalline Mn5Ge3 is ferromagnetic with a Curie temperature of 283 K. Both the c-axis of hexagonal Mn5Ge3 and the magnetic easy axis are parallel to the Ge (100) surface. The millisecond-range flash epitaxy provides a new avenue for the fabrication of Ge-based spin-injectors fully compatible with CMOS technology.

Keywords: Mn5Ge3; epitaxial thin film; ferromagnetism; spintronic devices

Permalink: https://www.hzdr.de/publications/Publ-28258
Publ.-Id: 28258


First Series of Tetravalent Thorium-, Uranium- and Neptunium-Amidinate Complexes

Schöne, S.; Kaden, P.; Patzschke, M.; Roesky, P. W.; Stumpf, T.; März, J.

Actinides (An) can possess a variety of different oxidation states, which typically range from +III to +VI for the early actinides Th-Cm. They have unique electronic properties originating from the 5f-orbitals, what makes their coordination chemistry a fascinating area of research for both, the nuclear engineering but also for fundamental chemistry. Thorium (Th), uranium (U), neptunium (Np) and plutonium (Pu) can form highly charged cations with the oxidation state of four (An4+), which is the dominant one under reductive conditions. Furthermore, An(IV) are of particular interest for the coordination chemistry because of their strong interaction with ligands.
Hence, the overall aim of our investigations is a deep understanding of the interaction mechanisms between tetravalent An (An(IV)) and ligands bearing soft donor atoms, such as nitrogen (N). Thus, we focused on the synthesis and characterization of a series of An(IV) complexes with the N-donor ligand N,N’-Diisopropylbenzamidine (iPr2BA) both in solution and in solid state.
The structures of the synthesised complex series were determined by single-crystal X-ray diffraction (SC-XRD), showing the An(IV) coordinated by three iPr2BA molecules and one chloro ligand in a monocapped octahedral coordination geometry. This is the very first example of an An(IV) complex series including Np(IV) as a transuranium element with an amidinate ligand. The isostructural complexes allow a direct comparison of the binding situation of the An(IV) across the series. Quantum chemical calculation strongly supported the experimental results to to further study the electronic structure of the complexes.
NMR-spectroscopic investigations of the dissolved complexes in toluene-d8 showed significant chemical shifts due to considerable effects of the paramagnetic metal centres U(IV) and Np(IV) compared to the diamagnetic reference [Th(iPr2BA)3Cl].

Keywords: actinide; amidinate; coordination chemistry; thorium; uranium; neptunium; NMR; SC-XRD

  • Invited lecture (Conferences)
    10th International Conference on f-Elements (ICFE-10), 03.-07.09.2018, Lausanne, Schweiz

Permalink: https://www.hzdr.de/publications/Publ-28257
Publ.-Id: 28257


Coordination Chemistry of Tetravalent Actinides: Series & Trends

Schöne, S.; Radoske, T.; Kloditz, R.; Köhler, L.; Kaden, P.; Patzschke, M.; Roesky, P. W.; Stumpf, T.; März, J.

The coordination chemistry of actinides (An) using model ligands helps to deeply understand their bonding situation on a molecular level. However, the basic An chemistry is still little explored. Characteristic of An is a huge variety of possible oxidation states, typically ranging from II to VII for early An. A suitable approach to explore the fundamental phico-chemical properties of An is to study a series of isostructural An compounds in the same oxidation state. Observed changes in e.g. the binding situation or magnetic effects among the An series could deliver insight into their unique electronic properties mainly origination from the f-electrons. A question still remaining in An chemistry is the degree of "covalency". However, studies covering TRU elements are rather scarce. Against this background, we are strongly motivated to perform a systematic comparison of isostructural An complexes (Th, U and Np).
In this study we investigate the coordination chemistry of tetravalent actinides (An(IV)) for two major reasons: a) the series of An(IV) is the largest accessible one within the early actinides, and b) the tetravalent state is the dominant one particularly under anoxic conditions. The ligands used in this study range from hard- (oxygen) and medium- (nitrogen) to pure soft-donor (carbon) character, according to Pearsons's HSAB concept. Due to the expected changes in orbital overlap between the metal and ligand, the formed complexes could further provide us a deep insight into the electronic situation of the actinides.
The An(IV) complexes are characterised in solution by NMR-, IR- and UV-vis spectroscopy as well as in the solid-state by SC_XRD. The acquired experimental results are further supported by quantum chemical calculations with a focus on the electronic structure of the complexes.

Keywords: actinide; coordination chemistry; thorium; uranium; neptunium

  • Invited lecture (Conferences)
    ISNSC - 10th International Symposium on Nano and Supramolecular Chemistry 2018, 08.-13.07.2018, Dresden, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-28256
Publ.-Id: 28256


Synthesis and Characterization of U(IV) Imidazol-2-ylidene Complexes

Köhler, L.; März, J.; Patzschke, M.; Kaden, P.; Monkowius, U.

In the field of actinide coordination chemistry, it is assumed that ligands bearing soft donor atoms, according to Pearson’s hard-soft-acid-base concept, such as sulphur, phosphorous or carbon lead to stable complexes. Furthermore, due to the expected strong orbital overlap between the metal and ligand, the formed complexes would provide us a deep insight into the electronic situation of the actinides. However, the majority of published actinide compounds still focusses on complexes with hard donor atoms such as oxygen.
A few examples of actinide-carbene complexes reported in the literature emphasise the remarkable strong σ donor properties of the carbon donor ligands, making the complexes e.g. excellent catalysts in organic synthesis1. Of particular interest are N-heterocyclic carbenes (NHCs) based on an imidazole-2-ylidene backbone, also known as “Arduengo carbenes”. For instance, the stability and electronic properties of these ligands can be easily tuned by synthetic introduction of suitable substituents at the nitrogen atoms.
The aim of this study is the synthesis of tetravalent actinide (An(IV)) complexes with soft-donor carbene ligands according to Figure 1 and the characterisation of the formed complexes in solution by NMR-, IR- and UV-vis spectroscopy as well as the solid-state characterisation with the help of single crystal X-ray diffraction. The acquired experimental results are further supported by quantum chemical calculations to further study the electronic structure of the complexes.

Keywords: actinide; coordination chemistry; carbene; uranium

  • Poster
    ISNSC - 10th International Symposium on Nano and Supramolecular Chemistry 2018, 08.-12.07.2018, Dresden, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-28255
Publ.-Id: 28255


Coordination Chemistry of Uranium (U(IV) and -(VI)) with Bidentate N-donor Ligands

März, J.; Schöne, S.; Radoske, T.; Patzschke, M.; Stumpf, T.; Ikeda-Ohno, A.

The bidentate N-donor ligands 2,2’-bipyridine (bipy) and 1,10-phenanthroline (phen) have attracted considerable attention in the field of coordination chemistry over the last decades because of their remarkable stability towards a wide variety of transition metals1. The coordination chemistry of uranium (U) has been explored with these N-donor ligands as well with a primary focus on its hexavalent state (U(VI) as UO₂2+). To the contrary, much less attention has been paid for the lower oxidation states, such as a tetravalent state (U(IV)). Here we present a systematic study on the coordination chemistry of U(IV) and -(VI) with bipy and phen under different chemical conditions, such as different solvents and changing the metal / ligand ratio.

In this study we succeeded to obtain a series of U(IV) complexes with U:ligand ratios of 1:1 and 1:2, all of which show an eight-fold coordinated uranium centre. In addition to the ligand, chloro and methanolato ligands are coordinating to the metal centre for charge compensation. Interestingly, the complexation between U(IV) and the ligand does occur even in protic solvents, in which the ligand is expected to be protonated. We also obtained another series of U(VI) complexes with both bipy and phen, underlining the versatile coordination chemistry of uranyl (UO22+). That is, the coordination between uranyl and the ligand depends strongly on the pH of the solvent used. For instance, in media with lower pH mononuclear complexes are formed, showing the uranyl unit in an unusually bent geometry.3 On the other hand, dinuclear uranyl arrangements with hydroxo-brinding are dominated in the media with higher pH, as shown in the right of Fig. 1. As illustrated in Fig. 1, bipy and phen are forming isostructural complexes both with U(IV) and- (VI).

Keywords: uranium; coordination chemistry; N-donor ligand; bipyridine; phenanthroline

  • Lecture (Conference)
    RadChem 2018, 13.-18.05.2018, Mariánské Lázně, Tschechien

Permalink: https://www.hzdr.de/publications/Publ-28254
Publ.-Id: 28254


Recovery of gallium from wafer fabrication industry wastewaters by Desferrioxamine B and E using reversed-phase chromatography approach

Jain, R.; Fan, S.; Kaden, P.; Tsushima, S.; Foerstendorf, H.; Barthen, R.; Lehmann, F.; Pollmann, K.

Gallium (Ga) is a critical element in developing renewable energy generation and energy efficient systems. The supply of Ga is at risk and needed recycling technologies for its availability in future. This study demonstrated the recovery of Ga3+ from low gallium concentrated wafer fabrication industry wastewaters using the siderophores desferrioxamine B (DFOB) and desferrioxamine E (DFOE). The complexation of Ga3+ by DFOB and DFOE was through hydroxamate group as demonstrated by infrared spectroscopy, nuclear magnetic resonance and density functional theory calculations. The high selectivity of DFOB/E towards Ga3+ was observed due to the formation of highly stable complex. Indeed, due to the formation of such high stability complex, the DFOB and DFOE were able to successfully complex 100% Ga in the two different wastewater from wafer fabrication industry. For the recovery of the siderophores, a high rate of decomplexation of Ga (>90%) was achieved upon addition of 6 times excess of ethylenediaminetetraacetic acid (EDTA) at pH of 3.5. More than 95% of Ga-DFOB and Ga-DFOE complex were recovered with purity (% of Ga moles in comparison to total moles of metals) of 70.4 and 94.9%, respectively by application of a C18 reversed-phase chromatography column. A preliminary cost-calculation demonstrated that acetonitrile consumption and desferrioxamines are major cost input for the technology. This study, for the first time, demonstrated a technical solution to the recovery of Ga3+ from the low concentrated wastewater based on siderophores and reversed-phase chromatography. A German patent application had been filed for this technology.

Keywords: Metal recovery; recycling; resource efficiency; cost-benefit; wastewater

Permalink: https://www.hzdr.de/publications/Publ-28253
Publ.-Id: 28253


Pulsating dissolution of crystalline matter

Fischer, C.; Lüttge, A.

Fluid-solid reactions result in dissolution or precipitation reactions. The prediction of the related material flux
from or to the reacting surface, its variations and changes with time are of interest to a wide array of disciplines.
Reaction rate maps that are derived from sequences of topography maps illustrate the spatial distribution of
reaction rates across the crystal surface [1]. Here we present dissolution rate maps that reveal the existence
of rhythmic pulses of the material flux from the crystal surface. This observation leads to a change in our
understanding of the way crystalline matter dissolves. Rhythmic fluctuations of the reactive surface site density
and potentially concomitant oscillations in the fluid saturation imply spatial and temporal variability in surface
reaction rates. Knowledge of such variability could aid attempts to upscale microscopic rates and predict reactive
transport through changing porous media.
[1] Fischer, C., Luttge, A., 2017. Beyond the conventional understanding of water–rock reactivity. Earth and
Planetary Science Letters 457, 100-105.

  • Lecture (Conference)
    EGU 2018 - European Geosciences Union General Assembly 2018, 08.-13.04.2018, Wien, Österreich

Permalink: https://www.hzdr.de/publications/Publ-28252
Publ.-Id: 28252


Dissolution rate variability of sandstone calcite cement

Pedrosa, E. T.; Fischer, C.; Lüttge, A.

For a holistic understanding of the long-term usage and safety analysis of reservoir rocks it is crucial to understand the fundamental mineral reactions and its control mechanisms. Kinetic quantification of the processes involved with fluid-rock interactions are especially important for predicting the evolution of pore space in rocks subjected to fluid injection, such as in CO2-sequestration and hydrocarbon exploration techniques.
The calcite cement selected for this study belongs to a fluvial-aeolian Rotliegend succession exposed near Bebertal (Flechtinge High, Germany) that was deposited in the same conditions as those that form the prolific gas reservoirs of the Southern Permian Basin1,2. Optical microscopy, SEM-BSE images and Cathodoluminescence analysis of the unreacted samples showed that two types of cement were present, although the calcite cement patches were composed of single crystals. We hypothesized that these different types of cement would react differently to fluid input. We used polished thick-sections of plug samples for dissolution experiments in a flow-through cell using a 2 mmol Na2CO3 solution (pH = 8.6, T≈ 21°C), for 7 reaction intervals (3 to 32 hours). Before and after each experiment the sample’s topography changes were mapped using a vertical scanning interferometer (VSI). High-resolution surface maps are subsequently used to calculate surface dissolution rates3.
After experiments, VSI images revealed an increase of the surface roughness in the cement patches. Detailed analysis of the rate dissolution variability in between the calcite cement patches and the intravariability of each cement patch related to chemical composition variability in the samples will be presented.
1Fischer, C., Gaupp, R., Dimke, M., Sill, O., 2007. A 3D high resolution model of bounding surfaces in aelian-fluvial deposits: An outcrop analogue study from the Permian Rotliegend, Northern Germany. Journal of Petroleum Geology, 30(3), 257–273.
2Fischer, C.; Dunkl, I.; von Eynatten, H.; Wijbrans, J. R.; Gaupp, R., 2012. Products and timing of diagenetic processes in Upper Rotliegend sandstones from Bebertal (North German Basin, Parchim Formation, Flechtingen High, Germany). Geological Magazine, 149 (5), 827-840.
3Luttge, A., and Bolton, E., 1999. An interferometric study of the dissolution kinetics of anorthite : The role of reactive surface area. American Journal of Science, 299, 652–678.

  • Lecture (Conference)
    GeoBonn 2018, 02.-06.09.2018, Bonn, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-28251
Publ.-Id: 28251


Precipitation and dissolution of cement minerals in sandstone: Opportunities and limitations of pore and plug scale flow analysis for reactive transport modelling approaches

Kulenkampff, J.; Karimzadeh, L.; Fischer, C.

Reservoir properties of sandstones are controlled by precipitation and dissolution reactions at the pore walls. Both, the formation and dissolution of cement minerals are responsible for the complex pattern formation of porosity and permeability in reservoir rocks.
At the scale of drilled core sections (plugs), experimental and analytical approaches utilize positron emission tomography (PET) with radiotracers (Kulenkampff et al. 2016). Resulting spatiotemporal concentration distributions provide quantitative insight into fluid flow and diffusion parameters. The sensitivity is in the picomolar range of the utilized radiotracers and the spatial resolution is about 1 mm. Thus, mechanistically-important surface features such as etch pits or growth hillocks and their evolution during reaction are not yet part of the direct analysis of the flow field.
Here, we present an approach based on existing information about the complex crystal surface morphology and rate evolution (Fischer& Luttge 2017). We utilize artificial materials that are produced by 3D printing capabilities. Such an approach using PET analysis of sequences of machined surfaces in flow-through experiments provides quantitative insight into the local stability vs. temporal heterogeneity of fluid flow close to reacting surfaces. The measured flow velocity data from PET are implemented into reactive transport models and compared to existing small-scale calculations. We discuss the resulting size and complexity of surface rate patterns.

Fischer, C. and A. Luttge (2017). Beyond the conventional understanding of water–rock reactivity. Earth and Planetary Science Letters, 457: 100-105
J. Kulenkampff, M. Gründig, A. Zakhnini and J. Lippmann-Pipke (2016): Geoscientific process monitoring with positron emission tomography (GeoPET). Solid Earth, 7: 1217-1231

  • Lecture (Conference)
    Interpore 2018, 14.-17.05.2018, New Orleans, USA

Permalink: https://www.hzdr.de/publications/Publ-28250
Publ.-Id: 28250


Surface-Functionalized Mesoporous Nanoparticles as Heterogeneous Supports To Transfer Bifunctional Catalysts into Organic Solvents for Tandem Catalysis

Zhang, N.; Hübner, R.; Wang, Y.; Zhang, E.; Zhou, Y.; Dong, S.; Wu, C.

The combination of chemo- and biocatalysts offers a powerful platform to address synthetic challenges in chemistry, particularly in synthetic cascades. However, transferring both catalysts into organic solvents remains technically difficult because of the enzyme inactivation and catalyst precipitation. Herein, we designed a facile approach using functionalized mesoporous silica nanoparticles (MSN) to transfer chemo- and biocatalysts into a variety of organic solvents. As a proof-of-concept, two distinct catalysts, palladium nanoparticles (Pd NPs) and Candida antarctica lipase B (CalB), were stepwise loaded into separate locations of the mesoporous structure, which not only provided catalysts with heterogeneous supports for the recycling but also avoided their mutual inactivation. Moreover, mesoporous particles were hydrophobized by surface alkylation, resulting in a tailor-made particle hydrophobicity, which allowed bifunctional catalysts to be dispersed in eight organic solvents. Eventually, these attractive material properties provided the MSN-based bifunctional catalysts with remarkable catalytic performance for cascade reaction synthesizing benzyl hexanoate in toluene. With a broader perspective, the success of this study opens new avenues in the field of multifunctional catalysts where a plethora of other chemo- and biocatalysts can be incorporated into surface-functionalized materials ranging from soft matters to porous networks for synthetic purposes in organic solvents.

Keywords: multifunctional biocatalyst; mesoporous silica nanoparticles (MSN); palladium nanoparticles; lipase CalB; cascade reaction

Permalink: https://www.hzdr.de/publications/Publ-28249
Publ.-Id: 28249


Strong Variation Of Electronic Properties Of MoS2 And WS2 Nanotubes In Presence Of External Electric Fields

Zibouche, N.; Philipsen, P.; Kuc, A.

Transition-metal dichalcogenides attracted a huge international research focus from the point of two-dimensional materials. These materials exist also as nanotubes, how- ever, they have been mostly studied for their lubricant properties. Despite their inter- esting electronic properties, quite similar to their 2D counterparts, nanotubes remain much less explored. Like in 2D materials, electronic properties of nanotubes can be strongly modulated by external means, such as strain or electric field. Here, we report on the effect of external electric fields on the electronic properties of MoS2 and WS2 nanotubes, using density functional theory. We show that the electric field induces a strong polarization in these nanotubes, what results in a nearly linear decrease of the band gaps with the field strength and eventually in a semiconductor-metal transi- tion. In particular for large tube diameters, this transition can occur for field strengths between 1 - 2 V nm−1. This is an order of magnitude weaker than fields required to close the band gaps in the corresponding 2D mono- and bilayers of transition-metal dichalcogenides. We also observe splittings of the degenerate valence and conduction band states due to the Stark effect. Accordingly, such nanotubes could be used in na- noelectronics as logical switches, even at moderate field strengths that can be achieved experimentally, for example, by applying a gate voltage.

Downloads:

Permalink: https://www.hzdr.de/publications/Publ-28248
Publ.-Id: 28248


Trace element geochemistry of sphalerite in contrasting hydrothermal fluid systems of the Freiberg district, Germany: insights from LA-ICP-MS analysis, near-infrared light microthermometry of sphalerite-hosted fluid inclusions, and sulfur isotope geochemistry

Bauer, M. E.; Burisch, M.; Ostendorf, J.; Krause, J.; Frenzel, M.; Seifert, T.; Gutzmer, J.

The historic silver mining district of Freiberg (Germany) comprises hydrothermal vein-style mineralization of Permian and Cretaceous age. We compare sphalerite compositions with associated ore-forming fluids and constrain the behavior of critical metals such as In, Ge, and Ga in contrasting hydrothermal environments. Fluid inclusion studies reveal that the Permian veins formed due to boiling and cooling of a low-salinity (0 to 6% eq. w[NaCl]) magmatic-hydrothermal fluid at 350 to 230 °C. In contrast, Cretaceous veins formed by mixing of highly saline (17 to 24% eq. w[NaCl + CaCl2] and variable Na/(Na + Ca) ratios) brines at low temperatures (~ 120 °C). Sulfides of the Permian ore stage have a narrow range of δ34SVCDT from − 2.3 to + 0.9‰, while the sulfides of the Cretaceous stage have a large scatter and significantly more negative δ34SVCDT values (− 30.9 to − 5.5‰), supporting the different nature of the hydrothermal systems. Contrasting fluid systems and ore-forming mechanisms correspond to markedly different trace element systematics in sphalerite. Permian sphalerite is significantly enriched in In (up to 2500 μg/g In) relative to two sphalerite generations of Cretaceous veins. The latter have higher Ge (up to 2700 μg/g Ge) and Ga (up to 1000 μg/g Ga) concentrations. The observed trace element systematics of different sphalerite generations imply that In is enriched in high-temperature, low- to intermediate-salinity fluids with a significant magmatic-hydrothermal fluid component, while Ge and Ga are more concentrated in low-temperature, high-salinity crustal fluids with no obvious magmatic-hydrothermal affiliation.

Keywords: Sphalerite; Indium; Germanium; Gallium; Critical metals; EPMA; LA-ICP-MS; Fluid inclusions; Near-infrared light microthermometry; Sulfur isotopes; Geothermometer; Erzgebirge

Downloads:

  • Secondary publication expected

Permalink: https://www.hzdr.de/publications/Publ-28247
Publ.-Id: 28247


Indium and selenium distribution in the Neves-Corvo deposit, Iberian Pyrite Belt, Portugal

Carvalho, J. R. S.; Relvas, J. M. R. S.; Pinto, A. M. M.; Frenzel, M.; Krause, J.; Gutzmer, J.; Pacheco, N.; Fonseca, R.; Santos, S.; Caetano, P.; Reis, T.; Goncalves, M.

High concentrations of indium (In) and selenium (Se) have been reported in the Neves-Corvo volcanic-hosted massive sulfide deposit, Portugal. The distribution of these ore metals in the deposit is complex as a result of the combined effects of early ore-forming processes and late tectonometamorphic remobilization. The In and Se contents are higher in Cu-rich ore types, and lower in Zn-rich ore types. At the deposit scale, both In and Se correlate positively with Cu, whereas their correlations with Zn are close to zero. This argues for a genetic connection between Cu, In and Se in terms of metal sourcing and precipitation. However, re-distribution and re-concentration of In and Se associated with tectonometamorphic deformation are also processes of major importance for the actual distribution of these metals throughout the whole deposit. Although minor roquesite and other In-bearing phases were recognized, it is clear that most In within the deposit is found incorporated within sphalerite and chalcopyrite. When chalcopyrite and sphalerite coexist, the In content in sphalerite (avg. 1400 ppm) is, on average, 2–3 times higher than in chalcopyrite (avg. 660 ppm). The In content in stannite (avg. 1.3 wt.%) is even higher than in sphalerite, but the overall abundance of stannite is subordinate to either sphalerite or chalcopyrite. Selenium is dispersed widely between many different ore minerals, but galena is the main Se-carrier. On average, the Se content in galena is ~50 times greater than in either chalcopyrite (avg. 610 ppm) or sphalerite (avg. 590 ppm). The copper concentrate produced at Neves-Corvo contains very significant In (+Se) content, well above economic values if the copper smelters recovered it. Moreover, the high In content of sphalerite from some Cu-Zn ores, or associated with shear structures, could possibly justify, in the future, a selective exploitation strategy for the production of an In-rich zinc concentrate.

Keywords: Neves-Corvo; indium; selenium

Downloads:

Permalink: https://www.hzdr.de/publications/Publ-28246
Publ.-Id: 28246


A spectroscopic study of trivalent cation (Cm3+ and Eu3+) sorption on monoclinic zirconia (ZrO2)

Eibl, M.; Virtanen, S.; Pischel, F.; Bok, F.; Lönnrot, S.; Shaw, S.; Huittinen, N.

Hypothesis:
Zirconia (ZrO2) formed by corrosion of zircalloy, can immobilize radioactive contaminants (e.g. actinides) in repositories for spent nuclear fuel (SNF). The presence of organic and inorganic carbon at the highly reactive ZrO2 surface impacts the adsorption of these metal ions and their surface speciation.
Experiments:
Sorption of Eu3+ and Cm3+ on zirconia was studied in batch-sorption experiments, and via laser spectroscopy (TRLFS). Two zirconia solids with varying carbon content were utilized. The influence of carbon impurities on the ZrO2 surface charge was investigated via zeta-potential measurements. Batch data was collected for various Eu3+ concentrations, while the pH-dependent Cm3+ surface speciation was studied with TRLFS. The spectroscopic sorption data was modeled using the Diffuse Double Layer (DDL) model.
Findings:
The ZrO2 surface charge measurements yielded a pHIEP of 6 which was influenced by the presence of inorganic and organic carbon species. The pH-dependent sorption of Eu3+ showed a maximum sorption above pH 5.5, with no impact of the carbon concentration. The speciation of the trivalent metal, however, was different in the presence of intrinsic organic carbon in the sample, resulting in the formation of an organic Cm3+-complex on the surface. The sorption data was well described by our DDL model.

Keywords: Cm3+; Eu3+; zirconia (ZrO2); organic impurity; laser spectroscopy (TRLFS); sorption; surface complexation modeling

Downloads:

  • Secondary publication expected

Permalink: https://www.hzdr.de/publications/Publ-28245
Publ.-Id: 28245


Bestimmung der Input Funktion für das kinetische Modelling von (+)-[18F]Flubatine

Patt, M.; Tiepolt, S.; Sattler, B.; Hoepping, A.; Smits, R.; Deuther-Conrad, W.; Becker, G. A.; Steinbach, J.; Brust, P.; Sabri, O.

Der Abstract wird nachgereicht.

  • Lecture (Conference)
    56. Jahrestagung der DGN, 18.-21.04.2018, Bremen, Deutschland
  • Abstract in refereed journal
    Nuklearmedizin 56(2018), V10

Permalink: https://www.hzdr.de/publications/Publ-28244
Publ.-Id: 28244


C-11 Markierung von zwei neuen Liganden für den Alpha7-Subtyp des nikotinischen Acetylcholinrezeptor (nAChR)

Patt, J. T.; Deuther-Conrad, W.; Peters, D.; Barthel, H.; Brust, P.; Sabri, O.; Patt, M.

Abstract wird nachgereicht.

  • Lecture (Conference)
    56. Jahrestagung der DGN, 18.-21.04.2018, Bremen, Deutschland
  • Abstract in refereed journal
    Nuklearmedizin 56(2018), V24

Permalink: https://www.hzdr.de/publications/Publ-28243
Publ.-Id: 28243


Pages: [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48] [49] [50] [51] [52] [53] [54] [55] [56] [57] [58] [59] [60] [61] [62] [63] [64] [65] [66] [67] [68] [69] [70] [71] [72] [73] [74] [75] [76] [77] [78] [79] [80] [81] [82] [83] [84] [85] [86] [87] [88] [89] [90] [91] [92] [93] [94] [95] [96] [97] [98] [99] [100] [101] [102] [103] [104] [105] [106] [107] [108] [109] [110] [111] [112] [113] [114] [115] [116] [117] [118] [119] [120] [121] [122] [123] [124] [125] [126] [127] [128] [129] [130] [131] [132] [133] [134] [135] [136] [137] [138] [139] [140] [141] [142] [143] [144] [145] [146] [147] [148] [149] [150] [151] [152] [153] [154] [155] [156] [157] [158] [159] [160] [161] [162] [163] [164] [165] [166] [167] [168] [169] [170] [171] [172] [173] [174] [175] [176] [177] [178] [179] [180] [181] [182] [183] [184] [185] [186] [187] [188] [189] [190] [191] [192] [193] [194] [195] [196] [197] [198] [199] [200] [201] [202] [203] [204] [205] [206] [207] [208] [209] [210] [211] [212] [213] [214] [215] [216] [217] [218] [219] [220] [221] [222] [223] [224] [225] [226] [227] [228] [229] [230] [231] [232] [233] [234] [235] [236] [237] [238] [239] [240] [241] [242] [243] [244] [245] [246] [247] [248] [249] [250] [251] [252] [253] [254] [255] [256] [257] [258] [259] [260] [261] [262] [263] [264] [265] [266] [267] [268] [269] [270] [271] [272] [273] [274] [275] [276] [277] [278] [279] [280] [281] [282] [283] [284]