Contact

Porträt Dr. Klingner, Nico; FWIZ-N

Dr. Nico Klingner

Focused Ion Beams (FIB) including SEM, LMAIS, GFIS (HIM) and ECR Plasma
n.klingnerAthzdr.de
Phone: +49 351 260 2524
+49 351 260 3676

Introduction

Focused ion beams (FIB) are promising tools in micro- and nanotechnology as well as in material analytics. Characteristic properties are the Nanometer spot size, the energy range from some eV up to 200 keV, the high current density and a broad spectrum of ion species. In commercial FIB systems Ga liquid metal ion sources (LMIS) are usually employed, but in some rare cases also liquid metal alloy ion sources (LMAIS) are used. FIB systems allow to create structures of arbitrary shape with dimensions on the nm scale.

Loading of liquid metal alloy ion source emit­ter with liquid Gold-Silicon alloy.

Emission test of a gold-silicon liquid metal alloy ion source

Production

Foto: Periodic Table of Elements available for focused ion beams ©Copyright: Dr. Nico Klingner

Periodic table of elements with elements available in a FIB

The ion fine beam laboratory in the institute has equipment and extensive experience for the development and production of liquid metal hairpin-type ion sources for different source materials like :

Au73Ge27, Au82Si18, Ce80C20, Co36Nd64, Er69Ni31, Sn74Pb26, In14Ga86, Ga38Bi62, Ga35Bi60Li5 as well as new sources on demand ...

Test und characterization

The following parameters are determined for the test and characterisation of the sources:

  • current-voltage characteristics, emission stability, lifetime and emitter-temperature behaviour, long-term stability.
  • Mass spectra
  • Angular distribution and angular intensity by means of a rotating Faraday cylinder
  • Ion energy distribution as well as energy shift of each emitted component of the source through a mass filter and a retarding field energy analyzer

Instrumentation

  • TIBUSSII - Orsay Physics NanoSpace system equiped with a 5 nm SEM, a 7 nm mass-separated Liquid Metal Alloy Ion Source FIB and a 17 nm mass-separated Plasma FIB
  • 2x Orsay Physics CANION Z31Mplus mass-separated FIBs (semi-kommerziell), which can provide various ion species using in-house developed ion sources, for dedicated research Topics
  • Carl Zeiss NVision 40 CrossBeam Ga-FIB for standard applications like ion beam lithography or TEM lamella preparation
  • Carl Zeiss ORION NanoFab, 2x Carl Zeiss ORION Plus Helium Ion Microscope He/Ne-FIB
  • Hitachi Ion Milling System ArBlade 5000 for sample crosssectioning, 500µA of 10 keV Ar, sputtering of > 1 mm / h
  • Leica EM TXP Target Surfacing System for target preparation like milling, sawing, grinding, and polishing of samples with an integrated stereomicroscope

Current projects

Gallium Oxide Fabrication with Ion Beams GoFIB (05/2022 – 05/2025)

GoFIB (Reference Number: project9659), press release

Gallium oxide is a novel ultra-wide band gap material, and the rationale is that its thin film fabrication technology is immature. In particular, the metastability conditions are difficult to control during sequential deposition of different polymorphs with existing techniques. However, the polymorphism may turn into a significant advantage if one can gain control over the polymorph multilayer and nanostructure design. Our objective is to develop a method for the controllable solid state polymorph conversion of gallium oxide assisted by ion irradiation, capitalizing on encouraging preliminary data. This fabrication method may pave the way for several potential applications (e.g. in power electronics, optoelectronics, thermoelectricity, batteries) and we will test the corresponding functionalities during the project. Thus, we envisage multiple positive impacts and potential benefits across a wide range of stakeholders.

Former Projects

All publications

Recent publications

2024

Transport of dust across the Solar System: Constraints on the spatial origin of individual micrometeorites from cosmic-ray exposure

J. Feige, A. Airo, D. Berger, D. Brückner, A. Gärtner, M. Genge, I. Leya, F. Habibi Marekani, L. Hecht, N. Klingner, J. Lachner, X. Li, S. Merchel, J. Nissen, A. B. C. Patzer, S. Peterson, A. Schropp, C. Sager, M. D. Suttle, R. Trappitsch, J. Weinhold

Involved research facilities

Related publications

Permalink: https://www.hzdr.de/publications/Publ-38222


2023

Roadmap for focused ion beam technologies

K. Höflich, G. Hobler, F. I. Allen, T. Wirtz, G. Rius, A. Krasheninnikov, M. Schmidt, I. Utke, N. Klingner, M. Osenberg, L. McElwee-White, R. Córdoba, F. Djurabekova, I. Manke, P. Moll, M. Manoccio, J. M. de Teresa, L. Bischoff, J. Michler, O. de Castro, A. Delobbe, P. Dunne, O. V. Dobrovolskiy, N. Freese, A. Gölzhäuser, P. Mazarov, D. Koelle, W. Möller, F. Pérez-Murano, P. Philipp, F. Vollnhals, G. Hlawacek

Involved research facilities

Related publications

Permalink: https://www.hzdr.de/publications/Publ-37049


Universal radiation tolerant semiconductor

A. Azarov, J. G. Fernández, J. Zhao, F. Djurabekova, H. He, R. He, Ø. Prytz, L. Vines, U. Bektas, P. Chekhonin, N. Klingner, G. Hlawacek, A. Kuznetsov

Involved research facilities

Related publications

Downloads

Permalink: https://www.hzdr.de/publications/Publ-36900


Direct magnetic manipulation of a permalloy nanostructure by a focused cobalt ion beam

J. Pablo-Navarro, N. Klingner, G. Hlawacek, A. Kakay, L. Bischoff, R. Narkovic, P. Mazarov, R. Hübner, F. Meyer, W. Pilz, J. Lindner, K. Lenz

Involved research facilities

Related publications

Downloads

  • Secondary publication expected from 26.10.2024

Permalink: https://www.hzdr.de/publications/Publ-36822


2022

Wafer-scale nanofabrication of telecom single-photon emitters in silicon

M. Hollenbach, N. Klingner, N. Jagtap, L. Bischoff, C. Fowley, U. Kentsch, G. Hlawacek, A. Erbe, N. V. Abrosimov, M. Helm, Y. Berencen, G. Astakhov

Involved research facilities

Related publications

Permalink: https://www.hzdr.de/publications/Publ-35071


Differential evolution optimization of Rutherford back-scattering spectra

R. Heller, N. Klingner, N. Claessens, C. Merckling, J. Meersschaut

Involved research facilities

Related publications

Permalink: https://www.hzdr.de/publications/Publ-34563


Epitaxial lateral overgrowth of tin spheres driven and directly observed by helium ion microscopy

N. Klingner, K.-H. Heinig, D. Tucholski, W. Möller, R. Hübner, L. Bischoff, G. Hlawacek, S. Facsko

Involved research facilities

Related publications

Downloads

Permalink: https://www.hzdr.de/publications/Publ-34525


Laser-induced ionization with liquid metal ion sources and two-color sculpted laser fields

F. Machalett, B. Ying, P. Wustelt, L. Bischoff, N. Klingner, W. Pilz, M. Kübel, A. M. Sayler, T. Stöhlker, G. G. Paulus

Involved research facilities

Related publications

  • Contribution to external collection
    in: Jahresbericht Helmholtz-Institut Jena 2021, Jena: Helmholtz-Institut Jena, Fröbelstieg, 2022, 60-60

Permalink: https://www.hzdr.de/publications/Publ-34427


Sustainable Bioengineering of Gold Structured Wide-Area Supported Catalysts for Hand-Recyclable Ultra-Efficient Heterogeneous Catalysis

C. S. Bhatt, D. S. Parimi, T. K. Bollu, H. U. Madhura, N. Jacob, R. Korivi, S. S. Ponugoti, S. Mannathan, S. Ojha, N. Klingner, M. Motapothula, A. K. Suresh

Involved research facilities

Related publications

Permalink: https://www.hzdr.de/publications/Publ-34270


Dysprosium Liquid Metal Alloy Ion Source For Magnetic Nanostructures

L. Bischoff, N. Klingner, P. Mazarov, K. Lenz, R. Narkovic, W. Pilz, F. Meyer

Involved research facilities

Related publications

Permalink: https://www.hzdr.de/publications/Publ-34127


Quantitative nanoscale imaging using transmission He ion channelling contrast: Proof-of-concept and application to study isolated crystalline defects

S. Tabean, M. Mousley, C. Pauly, O. de Castro, E. Serralta Hurtado De Menezes, N. Klingner, G. Hlawacek, T. Wirtz, S. Eswara

Involved research facilities

Related publications

Permalink: https://www.hzdr.de/publications/Publ-32753