Ion Induced Nanostructures

Irradiation of a solid with energetic ions leads to the removal of surface material. This process is called ion erosion or sputtering and is a common tool for surface modification. It is widely spread in industry as a simple technique to roughen, smoothen, or clean technical surfaces. Furthermore, the energy deposited by the continuous ion impact drives the surface out of equilibrium inducing many processes on the surface and the sub-surface region (see figure below).


Ioneninduzierte Oberflächenprozesse 

We are studying these processes during the interaction of low energy (10 eV – 50 keV) ions with materials, especially for the controlled modification and nano-patterning of their surfaces.

Our main research topics are: 

Siliziumoberfläche nach 500 eV Ar+ Sputtern unter 67° 3D AFM Bild von CaF2 Pits HIM Trimer

Recent Publications:

  • E. Gruber, R.A. Wilhelm, R. Pétuya, V. Smejkal, R. Kozubek, A. Hierzenberger, B.C. Bayer, I. Aldazabal, A.K. Kazansky, F. Libisch, A.V. Krasheninnikov, M. Schleberger, S. Facsko, A.G. Borisov, A. Arnau, and F. Aumayr, Ultrafast electronic response of graphene to a strong and localized electric field, Nat Comms 7, 13948 (2016) [doi: 10.1038/ncomms13948].
  • A.S. El-Said, R.A. Wilhelm, R. Heller, M. Sorokin, S. Facsko, and F. Aumayr, Tuning the Fabrication of Nanostructures by Low-Energy Highly Charged Ions, Phys. Rev. Lett. 117, 126101 (2016) [doi:10.1103/PhysRevLett.117.126101].
  • L. Bischoff, P. Mazarov, L. Bruchhaus, and J. Gierak, Liquid metal alloy ion sources—An alternative for focussed ion beam technology, Appl. Phys. Rev. 3, (2016) [10.1063/1.4947095].
  • F. Roeder, G. Hlawacek, S. Wintz, R. Huebner, L. Bischoff, H. Lichte, K. Potzger, J. Lindner, J. Fassbender, and R. Bali, Direct Depth- and Lateral- Imaging of Nanoscale Magnets Generated by Ion Impact, Sci. Rep. 5, (2015) [10.1038/srep16786].
  • R.A. Wilhelm, E. Gruber, V. Smejkal, S. Facsko, and F. Aumayr, Charge-state-dependent energy loss of slow ions. I. Experimental results on the transmission of highly charged ions, Phys. Rev. A 93, 052708 (2016) [doi:10.1103/PhysRevA.93.052708].
  • R.A. Wilhelm and W. Möller, Charge-state-dependent energy loss of slow ions. II. Statistical atom model, Phys. Rev. A 93, 052709 (2016) [10.1103/PhysRevA.93.052709].
  • R.A. Wilhelm, E. Gruber, R. Ritter, R. Heller, A. Beyer, A. Turchanin, N. Klingner, R. Hübner, M. Stöger-Pollach, H. Vieker, G. Hlawacek, A. Gölzhäuser, S. Facsko, and F. Aumayr, Threshold and efficiency for perforation of 1 nm thick carbon nanomembranes with slow highly charged ions, 2D Mater. 2, 1 (2015) [10.1088/2053-1583/2/3/035009].
  • M. Buljan, S. Facsko, I.D. Marion, V.M. Trontl, M. Kralj, M. Jerčinović, C. Baehtz, A. Muecklich, V. Holy, N. Radic, and J. Grenzer, Self-assembly of Ge quantum dots on periodically corrugated Si surfaces, Appl. Phys. Lett. 107, 203101 (2015) [doi:10.1063/1.4935859].
  • X. Ou, K.-H. Heinig, R. Hübner, J. Grenzer, X. Wang, M. Helm, J. Fassbender, and S. Facsko, Faceted nanostructure arrays with extreme regularity by self-assembly of vacancies, Nanoscale 7, 18928 (2015) [doi:10.1039/C5NR04297F].
  • R.A. Wilhelm, A.S. El-Said, F. Krok, R. Heller, E. Gruber, F. Aumayr, and S. Facsko, Highly charged ion induced nanostruc-tures at surfaces by strong electronic excitations, Prog. Surf. Sci. 90, 377 (2015) [doi:10.1016/j.progsurf.2015.06.001].
  • R.A. Wilhelm, E. Gruber, R. Ritter, R. Heller, S. Facsko, and F. Aumayr, Charge Exchange and Energy Loss of Slow Highly Charged Ions in 1 nm Thick Carbon Nanomembranes, Phys. Rev. Lett. 112, 153201 (2014) [doi:10.1103/PhysRevLett.112.153201].
  • M. Engler, F. Frost, S. Müller, S. Macko, M. Will, R. Feder, D. Spemann, R. Hübner, S. Facsko, and T. Michely, Silicide induced ion beam patterning of Si(001), Nanotechnology 25, 115303 (2014) [doi:10.1088/0957-4484/25/11/115303].
  • B. Teshome, S. Facsko, A. Keller, Topography-controlled alignment of DNA origami nanotubes on nanopatterned surfaces, Nanoscale (2014) [doi:10.1039/c3nr04627c].
  • X. Ou, A. Keller, M. Helm, J. Fassbender, and S. Facsko, Reverse Epitaxy of Ge: Ordered and Faceted Surface PatternsPhys. Rev. Lett. 111, 016101 (2013) [doi:10.1103/PhysRevLett.111.016101].
  • R. Ritter, R. A. Wilhelm, M. Stöger-Pollach, R. Heller, A. Mucklich, U. Werner, H. Vieker, A. Beyer, S. Facsko, et al., Fabrication of nanopores in 1 nm thick carbon nanomembranes with slow highly charged ions, Appl. Phys. Lett. 102, 063112 (2013) [doi:10.1063/1.4792511].
  • L. Bischoff, R. Böttger, P. Philipp and B. Schmidt (2013), Nanostructures by mass-separated FIB, in FIB Nanostructures (Lecture Notes in Nanoscale Science and Technology, vol. 20), ed. Z. Wang, Peking, Berlin, Springer, 465-525.
  • R. Böttger, K.-H. Heinig, L. Bischoff, B. Liedke and S. Facsko (2013), From holes to sponge at irradiated Ge surfaces with increasing ion energy - an effect of defect kinetics?, Appl. Phys. A (Rap. Commun.) 113, 53-59.
  • R. Böttger, K.-H. Heinig, L. Bischoff, B. Liedke, R. Hübner and W. Pilz (2013), Silicon nanodot formation and self-ordering under bombardment with heavy Bi3 Ions, Phys. Stat. Solidi RRL 7, 501-505.
  • R. Boettger, A. Keller, L. Bischoff, and S. Facsko, Mapping the local elastic properties of nanostructured germanium surfaces: from nanoporous sponges to self-organized nanodots, Nanotechnology 24, 115702 (2013) [doi:10.1088/0957-4484/24/11/115702].


Dr. Gregor Hlawacek

Ion Microscopy
Ion Induced Nanostructures
Phone: +49 351 260 3409