Dr. Axel Renno
Department of Analytics
Phone: +49 351 260 - 3274

Eye catcher


Super-SIMS (SIMS = Secondary ion mass spectrometry) - also called Accelerator-SIMS or Trace Element AMS (TREAMS)  - is an ultrasensitive analytical method for the determination of stable elements and isotopes.

Actually, a Super-SIMS-Set-up is developed at the HZDR ion beam centre by connecting a conventional SIMS-source (Cameca IMS 6f, formerly installed at the Helmholtz-Zentrum Potsdam Deutsches GeoForschungsZentrum GFZ) to a 6 MV tandem accelerator. A similar set-up has been yet realised at the ETH Zürich.

Super-SIMS am IBC

Due to the acceleration of the extracted sample ions to MeV-energies and their charge reversal from negative to positive ions, Super-SIMS can reach about 2 to 3 orders of magnitude lower detection limits  (up to 10-12 or ppt, highly depending on analyte and matrix) as conventional SIMS.

The HZDR Super-SIMS will be part of an anticipated HGF-SIMS-Network called SIGMA. Other partners are the Helmholtz Centre for Environmental Reasearch in Leipzig (NanoSIMS & TOF-SIMS under installation) and the GFZ Potsdam (High-resolution 1280-HR SIMS under installation).

Anticipated characteristics:

  • Measurable Elements:
    all but noble gases
  • Lateral resolution:
    • 10 - 20 µm
    • 3 µm (minimum beam size)
  • Scanning area: < some mm2  
  • Detection limits: 10-9 -10-12 (ppb - ppt)
  • Analysing depth (max.): some hundreds µm
  • Depth resolution: ~ 5 nm


  • only solid and vacuumstable samples
  • destructive
  • standard/reference materials needed


To reach the SIMS-lab please call:


lab:  +49-351-260-3590

sample preparation:  +49-351-260-3591

Cesium ion source - SIMS.

How does Super-SIMS work?

A sputter source is used to focus a Cs+-beam onto a as smooth as possible sample surface. The extracted negative ions (elements or molecules) of keV-energy are electrostatically and magnetically separated leading to a mass resolution (m/Δm) of about 5000. A first isobar suppression is gained right in the ion source, if these do not form any negative ions (e.g. no formation of Mg- when analysing Al).

Super-SIMS-source (actually at GFZ).

Selected ions with the correct energy, mass and charge are  injected into the 6 MV accelerator and accelerated to the positively charged high-voltage terminal. Negative ions are passing an area filled with argon gas, thus, loosing electrons from the outer shell. Thereby, all existing molecules are destroyed. The henceforth multiple-positively charged ions (e.g. Al3+) are accelerated a second time in the direction of the other end of the accelerator, which is on ground potential.

6 MV Beschleuniger

6 MV tandem accelerator.

At the so-called high-energy site all ions are again magnetically and electrostatically separated before they are finally detected by Faraday-Cups (major elements) and gas ionisations detectors (trace elements, respectively.

Gas ionisation counter.

For further information, do not hesitate to contact Axel Renno.

Some milestones

August 2013 - "First stone laying" of the Super-SIMS House-in-house

Grundstein Super-SIMS Haus-in-Haus

The Super-SIMS source leaves Potsdam


Das Sekundärionenmassenspektrometer (SIMS) des Deutschen GeoForschungsZentrums GFZ zieht von Potsdam nach Dresden um.

Further reading

A. Wallner, K. Melber, S. Merchel, U. Ott, O. Forstner, R. Golser, W. Kutschera, A. Priller, P. Steier, Stable Platinum Isotope Measurements in Presolar Nanodiamonds by TEAMS, Nucl. Instr.Meth. Phys. Res. B 294 (2013) 496-502.

S. Matteson, Issues and opportunities in accelerator mass spectrometry for stable isotopes, Mass Spectrometry Reviews 27 (2008) 470-484.

E. J. von Wartburg, Messung von Isotopenverhältnissen stabiler Spurenelemente mit Beschleuniger-Sekundärionen-Massenspektrometrie, Dissertation, ETH Zürich (2007).

C. Maden, The Potential of Accelerator Secondary Ion Mass Spectrometry in Environmental Sciences, Dissertation, ETH Zürich (2003).

S. Merchel, U. Ott, S. Herrmann, B. Spettel, T. Faestermann, K. Knie, G. Korschinek, G. Rugel, A. Wallner, Presolar nanodiamonds: faster, cleaner, and limits on Platinum-HL, Geochim. Cosmochim. Acta 67 (2003), 4949-4960.

F. D. McDaniel, Trace Element Accelerator Mass Spectrometry. Characterization of Materials (2002).

R.M. Ender, Analyse von Spurenelementen mit Beschleuniger-Sekundärionen-Massenspektrometrie, Dissertation, ETH Zürich (1997).

S. Massonet, Ch. Faude, E. Nolte, S. Xu, ACCELERATOR MASS SPECTROMETRY WITH STABLE ISOTOPES AND PRIMORDIAL RADIONUCLIDES FOR MATERIAL ANALYSIS AND BACKGROUND DETECTION, 14th Conference on Applications of Accelerators in Research and Industry, CAARI '96, Denton, Texas (1996).

F .D. McDaniel, Development of sample charge compensation for the University of North Texas Accelerator Mass Spectrometry facility for characterization of impurities in semiconductor materials, Final Progress Report, ONR Grant No. N00014-90-J-1691 (1994).

F. D. McDaniel, S. Matteson, J. M. Anthony, D. L. Weathers, J. L. Duggan, D. K. Marble, I. Hassan, Z. Y. Zhao, A. M. Arrale, Y. D. Kim, Trace element analysis by accelerator mass spectrometry, J. Radioanal. Nucl. Chem. 167 (1993) 423-432.

F. D. McDaniel, S. Matteson, D. L. Weathers, J. L. Duggan, D. K. Marble, I. Hassan, Z. Y. Zhao, J. M. Anthony, Radionuclide dating and trace element analysis by accelerator mass spectrometry, J. Radioanal. Nucl. Chem. 60 (1992) 119-140.

J. M. Anthony, D. J. Donahue, A. J. T. Jull, Super Sims for Ultrasensitive Impurity Analysis, MRS Proceedings 69 (1986) 311-316.