Abteilung für Reaktiven Transport
In der Abteilung Reaktiver Transport untersuchen wir die Heterogenität der Reaktivität von Materialoberflächen, insbesondere bei Sorptions- und Lösungsreaktionen. Wir verwenden experimentelle und numerische Methoden zur Quantifizierung und Vorhersage von Oberflächenreaktionsraten. Transport in komplexen porösen Materialien ist ein weiterer wichtiger Aspekt unserer Arbeit. Wir entwickeln konservative und reaktive Radionuklidtracer mit Hilfe unseres Zyklotronlabors und wenden die Positronen-Emissions-Tomographie (PET) an. Wir entwickeln und verwenden numerische Methoden zur Transportanalyse auf der Porenskala und darüber hinaus. Unsere Forschung wird durch Anwendungen in der nuklearen Sicherheitsforschung motiviert und vorangetrieben und stellt wichtige Verbindungen zu den Erd-, Umwelt- und Materialwissenschaften her.
Neuste Publikation
Variability of fracture surface roughness in crystalline host rocks: implications for transport model simplifications
Zhou, W.; Kulenkampff, J.; Jara Heredia, D.; Schäfer, T.; Fischer, C.
Abstract
Variability in fracture geometry and its complex surface characteristics are major contributors to solute transport and retention effects in rocks such as granite. Understanding the effects of cross-scale fracture geometry on solute transport modeling is critical for reliable quantitative predictions in applications such as geothermal energy use and nuclear repository safety. Here, we systematically investigated the sensitivity of fracture surface topography variability to the flow field and solute transport behavior. Specifically, we investigated the role of multiscale fracture surface roughness in solute transport modeling. As a starting point, our study utilized a 3D fracture geometry derived from CT scans and employed COMSOL Multiphysics software for solute transport modeling. By introducing increasingly lower spatially resolved geometries, while maintaining a constant high resolution mesh for simulation calculations, we investigated the consequences for transport on surfaces composed of superimposed building blocks of different size and shape. The results indicate that fracture geometry simplifications with reduced spatial frequency information of well-defined, specific domains do not have a clear trend to alter the BTCs tailing. Instead, this type of model simplification can cause both increased and decreased tracer residence times, leading to misleading interpretations. We explain this by a complex superposition of surface building blocks of different sizes, such as single crystal surface pits, grain boundaries between crystals, and fracture curvature. For model sensitivity analyses, we suggest the use of concentration difference and acceleration maps to identify local transport heterogeneities introduced by geometric simplifications. In addition, we conclude that power spectral density (PSD) analysis provides a means of defining a range of surface spatial frequencies that helps to avoid oversimplification in geometric models of reactive transport.
Keywords: rock fracture; solute transport modeling; non-Fickian transport; multiscale roughness
Verknüpfte Publikationen
-
Variability of fracture surface roughness in crystalline host rocks …
ROBIS: 38787 HZDR-primary research data are used by this (Id 41245) publication -
Variability of fracture surface roughness in crystalline host rocks …
RODARE: 2739 HZDR-primary research data are used by this (Id 41245) publication
-
Applied Geochemistry 186(2025), 106401
DOI: 10.1016/j.apgeochem.2025.106401
Permalink: https://www.hzdr.de/publications/Publ-41245
Team
Leitung/ Sekretariat | |||||
Name | Geb./Raum | +49 351 260 | Position/Aufgaben | ||
---|---|---|---|---|---|
Prof. Dr. Cornelius Fischer | L9.3/212 | 4660 | c.fischer![]() | Abteilungsleiter | |
Katrin Gerstner | L9.3/217 | 4601 | k.gerstner![]() | Sekretariat / Administration Reaktiver Transport / Experimentelle Neuroonkologische Radiopharmazie | |
Nadja Pedrosa Gil | L9.3/221 | 4690 | n.pedrosa-gil![]() | Administrative Mitarbeiterin Reaktiver Transport Administrative Mitarbeiterin Experimentelle Neuroonkologische Radiopharmazie | |
Mitarbeiter | |||||
Name | Geb./Raum | +49 351 260 | Position/Aufgaben | ||
Sieglinde Holzknecht | L9.3/222 | 4664 | s.holzknecht![]() | Doktorandin | |
Dr. Johannes Kulenkampff | L9.3/202 | 4663 | j.kulenkampff![]() | Wissenschaftlicher Mitarbeiter | |
Dr. Marcel Lindemann | L9.3/318 | 4671 | m.lindemann![]() | Wissenschaftlicher Mitarbeiter | |
Dr. habil. Holger Lippold | L9.3/401 | 4672 | h.lippold![]() | Wissenschaftlicher Mitarbeiter | |
Jing Liu | L9.3/211 | 4692 | j.liu![]() | Doktorandin | |
Dagmar Lösel | L9.3/402 | 4673 | d.loesel![]() | Chemisch-technische Assistentin | |
Dr. Alexander Mansel | a.mansel![]() | Wissenschaftlicher Mitarbeiter | |||
Jann Schöngart | L9.3/222 | 4658 | j.schoengart![]() | Doktorand | |
Claudia Schößler | L9.3/402 | 4674 | c.schoessler![]() | Chemielaborantin | |
Wenyu Zhou | L9.3/222 | 4664 | w.zhou![]() | Doktorand | |
Weitere Mitarbeiter | |||||
Name | Geb./Raum | +49 351 260 | Position/Aufgaben | ||
Dr. Karsten Franke | L9.3/318 | 4629 | k.franke![]() | Wissenschaftlicher Mitarbeiter |