Konstruktionswerkstoffe
Die Sicherheit kerntechnischer Anlagen wird maßgeblich durch das mechanische Werkstoffverhalten unter extremen Betriebsbedingungen (Neutronenbestrahlung, hohe Temperaturen) bestimmt. Im Rahmen des Programms NUSAFE (Nuclear Waste Management, Safety and Radiation Research) der Helmholtz-Gemeinschaft untersuchen wir skalenübergreifend das Schädigungs- und Bruchverhalten von bestrahlten Reaktorwerkstoffen. Im Fokus stehen die
- Untersuchung von Langzeitbestrahlungseffekten in Reaktordruckbehälterstähle laufender und neuer Reaktoren im Hinblick auf Laufzeitverlängerung
- Beurteilung der Bestrahlungstoleranz innovativer Werkstoffe für zukünftige Reaktorkonzepte einschließlich Kernfusion
(e.g. ferritisch/martensitische Chromstähle, oxiddisperionsverfestigte Stähle, neuartige Hochentropielegierungen)
Das methodische Spektrum erlaubt die Betrachtung der gesamten Wirkungskette von Bestrahlungseffekten auf der nm-Skala bis zum makroskopischen mechanischen Werkstoffverhalten. Ziel ist es, Bestrahlungseffekte zu erkennen, besser zu verstehen und zu mildern. Mit den heißen Zellen zur Untersuchung neutronenbestrahlter Materialien und dem Ionenstrahlzentrum für Ionenbestrahlungsexperimente verfügt das HZDR über eine einzigartige Infrastruktur.
Unsere Expertise:
- Bruchmechanische Prüfung bestrahlter Werkstoffe
- Nano-/Mikrostrukturcharakterisierung bestrahlter Stähle
- Ionenbestrahlung zur Emulation neutroneninduzierter Defekte
Laufende Projekte
- Innovative structural materials for fission and fusion
(INNUMAT, EU, HORIZON-EURATOM, 2022-2026) - European Database for Multiscale Modelling of Radiation Damage
(ENTENTE, EU-H2020-Euratom, 2020-2024) - Fracture mechanics testing of irradiated RPV steels by means of sub-sized specimens
(FRACTESUS, EU-H2020-Euratom, 2020-2024) - Structural Materials research for safe Long Term Operation of LWR NPPs
(STRUMAT-LTO, EU-H2020-Euratom, 2020-2024) - Untersuchungen zum Ausheilverhalten von Reaktordruckbehälterstählen bei niedrigen Temperaturen
(WetAnnealing, BMWI, 2020-2025) - Physical modelling and modelling-oriented experiments for structural materials 2
(IOANIS2, EERA-JPNM Pilotprojekt, 2023 - 2027, Koordinator HZDR) - In-situ experiments for nuclear applications
(INSITEX, EERA-JPNM Pilotprojekt, 2023 - 2027) - On the use of small punch as high-throughput screening technique to extract mechanical properties of ion irradiated materials
(SHERPA, EERA-JPNM Pilotprojekt, 2023 - 2027)
Neuste Publikation
International Round Robin on Ion Irradiation of Alloy T91 and Comparison with Neutron Irradiation
Was, G. S.; Cabet, C.; Kaden, C.; Hernández Mayoral, M.; Pareige, C.; Bhattacharyya, D.; David, C.; Hardie, C.; Terentyev, D.; Weber, W.; Wei, T.; Naab, F.; Pauly, V.
Abstract
An international collaboration was established as a Coordinated Research Project (CRP) under the IAEA and entitled Accelerator Simulation and Theoretical Modelling of Radiation Effects-II (SMoRE-II). It was created to determine, by way of a Round Robin process, the degree to which ion irradiations produced the same irradiated microstructure when conducted in different labs on the same alloy and provided with the same irradiation protocol. The Round Robin consisted of 13 participating organizations from 9 IAEA member states with ion irradiations conducted at all CRP partner sites on samples of a single alloy (T91) from a single billet with the same thermal-mechanical history, and with a specific protocol for conducting the irradiations. Of the 14 parameters specified for the ion irradiations, only 1 of 12 facilities was able to follow the protocol exactly. Major differences included vacuum pressure, temperature measurement and control, beam mode (raster-scanning vs. steady beam), and dosimetry. The microstructure features characterized were the sizes and number densities of cavities,
dislocation loops, precipitates, and the radiation induced segregation. While loop size and
number density appeared to correlate with carbon content, no such correlation was identified
for cavities. The divergence from the irradiation protocol undoubtedly affected the irradiated
microstructure with carbon contamination occurring in most cases. The cavity, dislocation loop
and precipitate microstructures all fell within the range of that in the literature. Additionally, a
T91 sample that was irradiated to 47 dpa at 376°C in the BOR-60 reactor was selected for
comparison of the microstructure to those in the Round Robin study.
Keywords: Round Robin; ion irradiation; IAEA CRP; microstructure; neutron irradiation; ion beam analysis
Beteiligte Forschungsanlagen
- Ionenstrahlzentrum DOI: 10.17815/jlsrf-3-159
Verknüpfte Publikationen
- DOI: 10.17815/jlsrf-3-159 is cited by this (Id 41287) publication
-
Journal of Nuclear Materials 616(2025), 156065
DOI: 10.1016/j.jnucmat.2025.156065
Permalink: https://www.hzdr.de/publications/Publ-41287
Team
Leitung | |||||
| Name | Geb./Raum | +49 351 260 | |||
|---|---|---|---|---|---|
| Dr. Eberhard Altstadt | 801/P151 | 2276 | e.altstadt | ||
| Dr. Cornelia Kaden | 801/P102 | 3431 | c.kaden@hzdr.de, c.heintze | ||
Mitarbeiter | |||||
| Name | Geb./Raum | +49 351 260 | |||
| Dr. Frank Bergner | 801/P150 | 3186 | f.bergner | ||
| Dr. Paul Chekhonin | 801/P146 | 2149 | p.chekhonin | ||
| Vanessa Dykas | 801/P105 | 3363 | v.dykas | ||
| Mario Houska | 801/P148 | 2242 | m.houska | ||
| Jens Pietzsch | 801/P032 | 2814 3550 | jens.pietzsch | ||
| Dr. Andreas Ulbricht | 801/P146 | 3155 | |||
| Wolfgang Webersinke | 801/P148 | 2766 2129 | w.webersinke | ||
| Tilo Welz | 801/P032 | 2814 | t.welz | ||

