Practical trainings, student assistants and theses
Offer | All | School practical training | Master theses | Research Assistant | Student practical training | Volunteer internship | Diploma theses | | Student Assistant | Compulsory internship |
---|---|
Institute/ Dep. | FWD | FWDF | FWDF-P | FWG | FWGA-X | FWGP | FWGR | FWIO-T | FWIZ-N | FWOG | FWPC | FWU | |
Formatting | Table | |
Sample preparation for both XRF and (handheld) LIBS measurements (Id 455)
Bachelor theses / Master theses / Diploma theses
X-ray fluorescence analysis (XRF) is a standard method to analyse a wide range of elements. Unfortunately, light elements (Z<11) are hard or impossible to analyse using XRF. On the other hand, LIBS (Laser induced breakdown spectroscopy) is able to analyse these elements. Especially the analysis of Lithium in solid samples is an urgent and currently needed topic. We aim to combine the two methods by developing an integrated workflow using fused beads, which is a standard technique for XRF sample preparation, for XRF analysis of the major elements and subsequent LIBS analysis for elements like e.g. Li.
Besides the development of a simple procedure to produce fused beads appropriate for both methods, calibration for both XRF and LIBS have to be implemented. The outcome of this (Master’s, Bachelor’s) thesis should be a as simple as possible workflow (including sample preparation), a sufficient number of reference materials (by e.g. mixing pure components), calibrations for XRF and LIBS, respectively and an evaluation of the desired method’s limitations. Motivated students of analytical chemistry, geosciences or adequate subjects are addressed.
Department: X-ray and bulk analytics
Contact: Dr. Möckel, Robert, Ebert, Doreen, Dr. Renno, Axel
Online application
Please apply online: english / german
Student internship, research assistant, school practical training, master/diploma thesis, compulsory internship (Id 407)
School practical training / Student practical training / Bachelor theses / Master theses / Diploma theses / Student Assistant / Compulsory internship / Volunteer internship / Research Assistant
At Helmholtz-Zentrum Dresden-Rossendorf (HZDR), over 1,500 employees from more than 70 nations are conducting cutting-edge research in the fields of ENERGY, HEALTH, and MATERIALS to address the major challenges facing society today.
The Center for Advanced Systems Understanding (CASUS), founded in Görlitz in 2019, is a German-Polish interdisciplinary research center focusing on data-intensive digital systems.
CASUS offers student internships in a wide range of scientific fields. You are welcome to apply and join CASUS if you are interested in gaining knowledge in the following research areas:
- Theoretical Chemistry
- Earth System Science
- Systems Biology
- Digital Health
- Computational Radiation Physics
- Theory of complex systems
- Dynamics of Complex Living Systems
- Machine Learning for Infection and Disease
Institute: CASUS
Contact: Dr. Mir Hosseini, Seyed Hossein, Mazur, Weronika, Dr. Calabrese, Justin, Dr. Martinez Garcia, Ricardo, Dr. Bussmann, Michael, Dr. Cangi, Attila, PD Dr. Kuc, Agnieszka Beata, Dr. Yakimovich, Artur, Dr. Knüpfer, Andreas, Dr. Hecht, Michael
Requirements
- Student in computer science, physics, chemistry, or related fields
- Student already enrolled at the university in Germany, Poland or Czech Republic (close exchange and attendance in the office preferable and combined with the moblie working from Germany combinable)
- Eager to learn new skills
- Strong motivation to work in a collaborative environment
- Preliminary experience in code development is an advantage
- Excellent communication skills in English and/or German or Polish
Conditions
- A vibrant research community in an open, diverse and international work environment
- Scientific excellence and extensive professional networking opportunities
- A wide range of qualification opportunities
- We support a good work-life balance with the possibility of part-time employment, mobile working and flexible working hours
- Either an immediate start or a start in 2024 is possible
Online application
Please apply online: english / german
Automatisierte Auswertung von 1D- und 2D-Ramanspektroskopischen Meßreihen (Id 393)
Bachelor theses / Master theses / Diploma theses
1D- und 2D-Ramanspektroskopische Meßreihen oder auch Maps liefern detaillierte ortsaufgelöste chemische Informationen über die untersuchten Proben. Damit kann z. B. die Komponentenverteilung in Stoffgemischen quantitativ bestimmt oder die Homogenität einphasiger Proben gezeigt werden. Andererseits lassen sich lokale Strukturveränderungen, Spannungszustände, Stapelfolgenänderungen in 2D-Materialien und Punktdefekte charakterisieren. Voraussetzung dabei ist eine möglichst engmaschige Datenerfassung bis hin zur Auflösungsgrenze der verwendeten Laserstrahlung sowie eine große Anzahl an Messpunkten. Mit modernen Spektrometern sind Messzeiten im Sekundenbereich gut realisierbar. Die Umsetzung der spektroskopischen in eine chemische Information erfordert dann die Extraktion von Parametern wie Schwingungsfrequenz, Intensität und Linienbreite durch Spektrenanpassung. Die Gerätesoftware bietet dafür nur eingeschränkte Möglichkeiten.
Im Rahmen einer Graduierungsarbeit soll in Zusammenarbeit mit dem HZDR-Rechenzentrum ein Auswertealgorithmus für die automatisierte Auswertung von 1D- und 2D-Ramanspektroskopischen Meßreihen entwickelt, an Beispielen getestet und dokumentiert werden.
Department: Nanomaterials and Transport
Contact: Dr. Krause, Matthias
Requirements
1. Studium der Werkstoffwissenschaften, Physik oder Chemie
2. Interesse, Freude und Befähigung für wissenschaftliche Arbeit
3. Grundkenntnisse in Programmierung und sicherer Umgang mit Büro- und wissenschaftlicher Software
4. Sehr gute Englisch-Kenntnisse
Conditions
Die Arbeit ist in die umfangreichen Aktivitäten der Abteilung Nanoelektronik (FWIO) zu 2D-Werkstoffen eingebettet. Sie kann jederzeit aufgenommen werden.
Online application
Please apply online: english / german
Internship on experimental investigation of aerosol propagation (Id 381)
Student practical training / Bachelor theses / Compulsory internship / Volunteer internship
Background:
Currently, there is a broad discussion whether ventilation by frequent window opening is sufficient for providing a sufficient amount of fresh air or if technical air purification devices based on e.g. HEPA filters are better solutions for public spaces. Furthermore, there is another discussion ongoing, whether a well-guided laminar flow or a high degree of mixing within a room is more beneficial. The latter, on the one hand distributes the potentially virus-laden aerosols in the whole room, but on the other hand reduces the peak concentrations of these aerosols clouds by magnitudes.
Objectives:
The objective is to perform aerosol propagation experiments and to estimate the potential aerosol inhalation of people in dynamic situations. To achieve this, an aerosol generator will be used in a demonstrator room under different flow conditions. The data from different scenarios will be processed in order to obtain a transference function that can relate the aerosol source with the aerosol receivers.
Tasks:
- Literature survey
- Aerosol experiments in different scenarios.
- Post-processing of the results.
Department: Experimental Thermal Fluid Dynamics
Contact: Radhakrishnakumar, Subhadrakutty
Requirements
- Student of natural sciences or engineering
- Willingness to conduct experimental work
Conditions
Duration:
4-6 months
Remuneration:
According to HDZR guidelines
Online application
Please apply online: english / german
Medizinische Chemie/ Organische Synthese neuer Radioliganden für die Krebsdiagnostik und -therapie (Id 295)
Student practical training / Bachelor theses / Master theses
Wir beschäftigen uns mit der Entwicklung von PET-Radiotracern, die Rezeptoren im Tumormikromilieu (TME = tumor microenvironment) für die Diagnostik und Therapie von Krebs sichtbar machen. Dazu werden geeignete tumoraffine Leitstrukturen identifiziert (niedermolekulare organische Moleküle, Peptide und Peptidomimetika), synthetisiert und mit einem geeigneten Radionuklid kovalent (z. B. Fluor-18, Iod-123) oder über einen Chelator (z. B. Gallium-68, Lutetium-177) markiert. Diese Radioliganden werden in vitro an Tumorzelllinien und in vivo im Tiermodell hinsichtlich einer Anwendung in der Nuklearmedizin getestet. Langfristiges Ziel ist die Translation der entwickelten Radiotracer in die Klinik als Diagnosewerkzeug (PET/CT) oder nach Markierung mit einem Beta- oder Alphastrahler für die Endoradiotherapie von Tumorerkrankungen.
Im Rahmen eines Studentenpraktikums oder einer Bachelor- oder Masterarbeit sollen organische Wirkstoffmoleküle synthetisiert und für eine anschließende radiochemische Markierung modifiziert werden. Die neuen Radioliganden werden dann biologisch in vitro und in vivo untersucht.
Department: Medical Radiochemistry
Contact: Dr. Stadlbauer, Sven, Sachse, Frederik
Requirements
- Studium der Chemie
- Gute Noten in organischer Synthesechemie
- Fähigkeit sich in ein interdisziplinäres Wissenschaftler-Team einzugliedern
- Bereitschaft zum Umgang mit Radioaktivität
- Gute Kenntnisse der deutschen und englischen Sprache
Conditions
- Beginn nach Absprache jederzeit möglich
- Praktikumsdauer mind. 4 Wochen, mit möglichst täglicher Anwesenheit
Online application
Please apply online: english / german
Materials for new solar power plants (Id 241)
Bachelor theses / Master theses / Diploma theses
Turmkraftwerke stellen die neueste Generation von Anlagen zur solarthermischen Elektroenergieerzeugung dar (s. Abbildung). Großflächige Spiegelanordnungen konzentrieren Sonnenlicht auf einen zentralen Absorber, wo es in Wärmeenergie umwandelt wird, die dann auf ein Wärmeträgermedium übertragen wird. Gegenüber der Photovoltaik hat die Solarthermie den inhärenten Vorteil, Energie zu speichern und bei Bedarf bereit zu stellen. Die Herausforderung für die weitere Erhöhung des Wirkungsgrades von Solarkraftwerken besteht in der Entwicklung von Werkstoffen mit einer Temperaturstabilität bis zu 800 °C an Luft.
Im Rahmen von Graduierungsarbeiten und Hilfstätigkeiten sollen thermisch stabile Beschichtungen für die Kernkomponenten von Solarturmkraftwerken entwickelt und getestet werden. Dabei kommen modernste in situ und ex situ Methoden wie Magnetronsputtern, Ellipsometrie, UV-vis-NIR-FTIR-Reflektometrie und Ramanspektroskopie zur Anwendung.
Zu diesem Themenbereich werden u. a. die folgenden Aufgabenstellungen angeboten:
i) Schichtabscheidung und Optimierung der optischen und elektrischen Eigenschaften von transparenten leitfähigen Oxiden für Solarkraftwerke;
ii) Entwicklung von neuartigen Absorber- und Wärmespeicherwerkstoffen für Solarkraftwerke;
iii) Design und Simulation von solarselektiven Beschichtungen für Solarkraftwerke.
Zur Charakterisierung der untersuchten Materialien stehen modernste in situ und ex situ Analysemethoden zur Verfügung. Die Arbeiten können jederzeit aufgenommen werden.
Department: Nanomaterials and Transport
Contact: Dr. Krause, Matthias
Requirements
1. Studium der Werkstoffwissenschaften, Physik oder Chemie
2. Interesse, Freude und Befähigung für experimentelle wissenschaftliche Arbeit
3. Grundkenntnisse in Programmierung und sicherer Umgang mit Büro- und wissenschaftlicher Software
4. Sichere Englischsprachkenntnisse (fließend oder besser)
Conditions
Internationale Forschungsumgebung, ortsübliche Aufwandsentschädigung