Practical trainings, student assistants and theses
Offer | All | School practical training | | Research Assistant | Student practical training | Volunteer internship | Diploma theses | Bachelor theses | Student Assistant | Compulsory internship |
---|---|
Institute/ Dep. | FSPR | FWDF | FWDF-E | FWDF-P | FWG | FWGA-X | FWGB-A | FWGP | FWGR | FWGR-H | FWIO-T | FWIZ-N | FWPC | FWU | |
Formatting | Table | |
Smart Transport: Development of an automated unloading device for autonomous logistics shuttles (Id 468)
Bachelor theses / Master theses / Diploma theses / Compulsory internship
Die Schließung von Stoffkreisläufen ist eine der gesellschaftlichen Herausforderung unserer Zeit und die Voraussetzung für eine nachhaltige Kreislaufwirtschaft. Hierfür ist es notwendig, eine neue Generation adaptiver und entsprechend modularisierter Aufbereitungssysteme zu etablieren, die mit Hilfe von Industrie4.0 flexibel Rohstoffe aller Art aus komplexen Materialströmen wie z. B. Elektronikschrott zurückgewinnen können. Das setzt eine konsequente Digitalisierung und die Anbindung adaptiver und flexibler Ressourcentechnologien voraus. Mit Hilfe der geplanten Zerkleinerungs- und Trennanlagen soll die Einsatzbreite verschiedener Technologien untersucht, verglichen und spezifiziert werden. Ein shuttlebasiertes Logistiksystem verbindet die unterschiedlichen verfahrenstechnischen Maschinen. Im Rahmen dieser Arbeit soll hierzu eine automatisierte Abkippvorrichtung für die Shuttles entwickelt und getestet werden.
Die wesentlichen Aufgabenpunkte der Arbeit:
- Recherche zum Stand der Technik, zu Vor- und Nachteilen sowie zur wirtschaftlichen Betrachtung verschiedener Lösungen
- Konstruktion als Variantenstudie und Aufbau der Vorzugsvariante
- Experimentelle Phase mit Test und Bestimmung der Einsatzgrenzen (prototypische Umsetzung) sowie Ableiten von Verbesserungsmaßnahmen
- Auswertung, Darstellung und Dokumentation der Ergebnisse in einer Arbeit
Department: Automation, Digitization
Contact: Töpfer, Florian, Dr. Storch, Thomas
Requirements
- Gute Konstruktionskenntnisse in CAD-Software
- Bastlerisches Geschick
- Selbstständiges und zuverlässiges Arbeiten
Conditions
- Studentische Arbeit, sofern möglich in Vollzeit
- Starttermin: in Absprache
- Finanzierung: Vergütung nach HZDR-internen Regelungen
Online application
Please apply online: english / german
Smart Transport: Development of an automated unloading device for autonomous logistics shuttles (Id 467)
Bachelor theses / Master theses / Diploma theses / Compulsory internship
Die Schließung von Stoffkreisläufen ist eine der gesellschaftlichen Herausforderung unserer Zeit und die Voraussetzung für eine nachhaltige Kreislaufwirtschaft. Hierfür ist es notwendig, eine neue Generation adaptiver und entsprechend modularisierter Aufbereitungssysteme zu etablieren, die mit Hilfe von Industrie 4.0 flexibel Rohstoffe aller Art aus komplexen Materialströmen wie z. B. Elektronikschrott zurückgewinnen können. Das setzt eine konsequente Digitalisierung und die Anbindung adaptiver und flexibler Ressourcentechnologien voraus. Mit Hilfe der geplanten Zerkleinerungs- und Trennanlagen soll die Einsatzbreite verschiedener Technologien untersucht, verglichen und spezifiziert werden. Ein shuttlebasiertes Logistiksystem verbindet die unterschiedlichen verfahrenstechnischen Maschinen. Im Rahmen dieser Arbeit soll hierzu eine automatisierte Abkippvorrichtung für die Shuttles entwickelt und getestet werden.
Aufgabenpunkte der Arbeit:
- Recherche zum Stand der Technik, Vor- und Nachteilen sowie zur wirtschaftlichen Betrachtung verschiedener Lösungen
- Konstruktion von Konzepten und Aufbau einer Vorzugsvariant
- Experimentelle Phase (Test und Bestimmung der Einsatzgrenzen (prototypische Umsetzung), Ableiten von Verbesserungsmaßnahmen)
- Auswertung, Darstellung und Dokumentation der Ergebnisse
Department: Automation, Digitization
Contact: Dr. Storch, Thomas, Töpfer, Florian
Requirements
- Gute Kenntnisse in CAD-Anwendungen
- Bastlerisches Geschick
- Selbstständiges und zuverlässiges Arbeiten
Online application
Please apply online: english / german
Smart Transport: Development of an automated unloading device for autonomous logistics shuttles (Id 466)
Bachelor theses / Master theses / Diploma theses / Compulsory internship
Die Schließung von Stoffkreisläufen ist eine der gesellschaftlichen Herausforderung unserer Zeit und die Voraussetzung für eine nachhaltige Kreislaufwirtschaft. Hierfür ist es notwendig, eine neue Generation adaptiver und entsprechend modularisierter Aufbereitungssysteme zu etablieren, die mit Hilfe von Industrie 4.0 flexibel Rohstoffe aller Art aus komplexen Materialströmen wie z. B. Elektronikschrott zurückgewinnen können. Das setzt eine konsequente Digitalisierung und die Anbindung adaptiver und flexibler Ressourcentechnologien voraus. Mit Hilfe der geplanten Zerkleinerungs- und Trennanlagen soll die Einsatzbreite verschiedener Technologien untersucht, verglichen und spezifiziert werden. Ein shuttlebasiertes Logistiksystem verbindet die unterschiedlichen verfahrenstechnischen Maschinen. Im Rahmen dieser Arbeit soll hierzu eine automatisierte Abkippvorrichtung für die Shuttles entwickelt und getestet werden.
Aufgabenpunkte der Arbeit:
- Recherche zum Stand der Technik, Vor- und Nachteilen sowie zur wirtschaftlichen Betrachtung verschiedener Lösungen
- Konstruktion von Konzepten und Aufbau einer Vorzugsvariant
- Experimentelle Phase (Test und Bestimmung der Einsatzgrenzen (prototypische Umsetzung), Ableiten von Verbesserungsmaßnahmen)
- Auswertung, Darstellung und Dokumentation der Ergebnisse
Department: Automation, Digitization
Contact: Dr. Storch, Thomas, Töpfer, Florian
Requirements
- Gute Kenntnisse in CAD-Anwendungen
- Bastlerisches Geschick
- Selbstständiges und zuverlässiges Arbeiten
Online application
Please apply online: english / german
Hydrometallurgical Recovery of Vanadium from Titaniferous Magnetite-Bearing Resources (Id 465)
Master theses / Compulsory internship / Volunteer internship
Vanadium is a strategic metal with growing demand in high-strength steel alloys, aerospace applications, and energy storage systems-particularly vanadium redox flow batteries (VRFBs). With increasing interest in sustainable metal recovery, alternative sources such as titaniferous magnetite-bearing ores are gaining attention due to their vanadium potential.
We are offering a combined internship and master thesis project focused on investigating and optimizing hydrometallurgical processes such as leaching, solvent extraction and membrane separation for the selective extraction and recovery of vanadium from a titaniferous magnetite-bearing resource at various experimental conditions
Department: Hydrometallurgy
Contact: Dr. Patil, Ajay Bhagwan, Dr. Kelly, Norman, Viswamsetty, Lakshmi Kanth
Requirements
- Background in metallurgy, chemical/process engineering, materials science, or a related discipline.
- Strong interest in mineral processing, extractive metallurgy, and sustainable resource management.
- Laboratory experience in leaching, solvent extraction, or similar techniques is highly appreciated.
Conditions
- Conduct literature review on titaniferous magnetite resources and applications in vanadium recovery
- Develop a selective and efficient hydrometallurgical route for vanadium recovery
- Generate process data supporting the utilization of low-grade titaniferous magnetite resources
- Prepare a comprehensive thesis report and, if possible, present findings at relevant conferences or workshops
- Duration: 6 months
- Start Date: Start in July 2025 is possible
- Funding: Remuneration according to HZDR internal regulations
Online application
Please apply online: english / german
Selective Recovery of Lithium from Battery Waste Using Novel Crown Ethers and Calix[n]arenes Through Hydro- and Biometallurgical Approaches (Id 462)
Master theses
Lithium is in high global demand due to its suitability for a wide range of applications, particularly in rechargeable batteries for the electronics sector. This is attributed to its low mass and high energy density, which enable compact battery designs and efficient recharging capabilities of lithium-ion accumulators. In the battery electric vehicle (BEV) sector, lithium is particularly difficult to replace. Between 2010 and 2100, an estimated increase of 20 million metric tons (Mt) is expected in this field, representing a remarkable 21% rise from the 107,000 tons produced just one year earlier. This trend might be ascribed to the increasing development and demand for lithium-ion batteries in the electric vehicle sector. Currently, lithium is mined from brines, pegmatites, or sedimentary rocks. However, its limited supply, coupled with significant environmental and political challenges associated with traditional production methods, necessitates the development of alternative technologies for lithium recovery. One promising approach is the recovery of lithium from spent batteries or battery waste. This method not only helps address the global supply-demand gap but also conserves natural resources and reduces environmental impact by minimizing the need for new mining activities. Furthermore, recycling lithium from used batteries supports the creation of a circular economy, ensuring a sustainable and resilient supply chain for this critical material. However, the development of a highly lithium-selective and cost-effective materials is still challenging due to its chemical properties. The analogues of organic ligands such as crown ethers and calix[n]arens are found to be most effective for the lithium recovery due to their distinctive features, including ring size and functional attaching groups. The objective of this thesis is to design and develop various crown ethers and calix[n]arenes for the selective recovery of lithium from different battery waste solutions. The developed crown ethers and calix[n]arenes will be tested for complexation with lithium ions using various analytical techniques followed by its application in bioionflotation and liquid-liquid extraction.
Key Responsibilities:
- Conduct literature research on crown ethers and calix[n]arenes for the recovery of lithium through hydro- and biometallurgical process
- Design and conduct laboratory experiments using synthesized crown ethers and calix[n]arenes with different hydrometallurgical and biometallurgical parameters
- Optimize experimental conditions for high recovery rates for lithium and other valuable metals
- Prepare a thesis report and present findings at conferences or workshops
Department: Process Metallurgy
Contact: Dr. Patil, Ajay Bhagwan, Dr. Kelly, Norman, Dr. Chakankar, Mital Vivek
Requirements
- Bachelor's degree in Chemistry, Chemical Engineering, Biotechnology, Environmental Engineering or related field
- Good oral and written communication skills in English or German
- Ability to work independently and systematically
Conditions
- Duration: 6 months
- Start Date: Start in April 2025 is possible
- Funding: Remuneration according to HZDR internal regulations
Online application
Please apply online: english / german
Treatment of emerging pollutants like pharmaceuticals and PFAS by bioflotation in combination with hydrodynamic cavitation (Id 460)
Master theses / Diploma theses / Compulsory internship
Emerging pollutants, such as pharmaceuticals and per- and polyfluoroalkyl substances (PFAS), pose significant environmental and health risks due to their persistence and bioaccumulation. Conventional treatment methods often fail to effectively remove these contaminants from water systems. This master’s thesis focuses on an advanced hybrid approach combining bioflotation with hydrodynamic cavitation (HC) to enhance pollutant removal efficiency. The study aims to evaluate the effectiveness of this method in degrading or separating pharmaceuticals and PFAS from contaminated water and optimizing process parameters.
Tasks:
- Selection of suitable bioflotation agents and hydrodynamic cavitation parameters for pollutant removal
- Characterization of treated water samples using analytical techniques such as HPLC and TOC analyser
- Optimization of bioflotation and cavitation conditions to enhance removal efficiency
Institute: Helmholtz Institute Freiberg for Resource Technology
Contact: Dr. Chakankar, Mital Vivek, Dr. Kumar, Amit
Requirements
- Field of study: Chemistry, Chemical Engineering or related field
- Experience in organic chemistry, knowledge of the techniques to synthesize compounds and to characterize them; experience in coordination chemistry, biochemistry and/or technical chemistry is advantageous
- Good oral and written communication skills in English or German
- Ability to work independently and systematically
Conditions
- Working in a multi-disciplinary team
- Working place HZDR: Location Dresden and Freiberg (HIF)
- Start date: Either an immediate start or a start in Spring 2025 is possible
- Duration of the internship or thesis according to the study regulations, but at least 4 months
- Remuneration according to HZDR internal regulations, scholarship holders (e.g., ERASMUS+) are welcome
Online application
Please apply online: english / german
Experimental investigation of aerosol propagation and aerosol inhalation dose (Id 457)
Master theses / Diploma theses / Compulsory internship / Volunteer internship
Currently, there is a broad discussion whether ventilation by frequent window opening is sufficient for providing a sufficient amount of fresh air or if technical air purification devices based on e.g. HEPA filters are better solutions for public spaces. Furthermore, there is another discussion ongoing, whether a well-guided laminar flow or a high degree of mixing within a room is more beneficial. The latter, on the one hand distributes the potentially virus-laden aerosols in the whole room, but on the other hand reduces the peak concentrations of these aerosols clouds by magnitudes.
Department: Particle dynamics
Contact: Cavagnola, Marco Alejandro, Radhakrishnakumar, Subhadrakutty
Requirements
The objective is to perform aerosol propagation experiments and to estimate the potential aerosol inhalation of people in dynamic situations. To achieve this, an aerosol generator will be used in a demonstrator room under different flow conditions. The data from different scenarios will be processed in order to obtain a transference function that can relate the aerosol source with the aerosol receivers.
Online application
Please apply online: english / german
Sample preparation for both XRF and (handheld) LIBS measurements (Id 455)
Bachelor theses / Master theses / Diploma theses
X-ray fluorescence analysis (XRF) is a standard method to analyse a wide range of elements. Unfortunately, light elements (Z<11) are hard or impossible to analyse using XRF. On the other hand, LIBS (Laser induced breakdown spectroscopy) is able to analyse these elements. Especially the analysis of Lithium in solid samples is an urgent and currently needed topic. We aim to combine the two methods by developing an integrated workflow using fused beads, which is a standard technique for XRF sample preparation, for XRF analysis of the major elements and subsequent LIBS analysis for elements like e.g. Li.
Besides the development of a simple procedure to produce fused beads appropriate for both methods, calibration for both XRF and LIBS have to be implemented. The outcome of this (Master’s, Bachelor’s) thesis should be a as simple as possible workflow (including sample preparation), a sufficient number of reference materials (by e.g. mixing pure components), calibrations for XRF and LIBS, respectively and an evaluation of the desired method’s limitations. Motivated students of analytical chemistry, geosciences or adequate subjects are addressed.
Department: X-ray and bulk analytics
Contact: Dr. Möckel, Robert, Ebert, Doreen, Dr. Renno, Axel
Online application
Please apply online: english / german
Optimization of innovative Heat Exchangers equipped with advanced structures by CFD for sCO2 power cycles (Id 454)
Master theses
Storing energy is a promising solution to address the intermittent nature of renewables sources and to increase their share in the energy mix. Indeed, during periods of surplus production, energy can be stored as heat and later released to a power cycle when demand peaks. Since the involved temperatures are high to store a maximum of energy, power cycles with supercritical CO2 (sCO2) show higher efficiency than any traditional power cycle. Hence, each component of the system must be carefully optimized, with this work focusing specifically on the heat exchangers.
Printed Circuit Heat Exchangers (PCHEs) have drawn attention as potential heat exchangers for sCO2 power cycles for the past 40 years, due to the compact design and high thermal efficiency. The channels have a characteristic cross-flow section in the order of 1 mm2 and they exhibit a large variety of shapes, ranging from straight channels to more complex shapes like airfoils fins. The optimization of such heat exchangers is a promising topic to improve processes within the energy system. However, most optimization algorithms are based on Nusselt number and friction factor correlations, which limited to simple designs and are not suitable for the complex geometry.
For this reason, developing a Computational Fluid Dynamics (CFD)-aided optimization algorithm is essential to maximize the heat transfer performance, while minimizing pressure drop, especially when no established correlation exists. The first step will involve the creation of a Python or MATLAB script to automatically generate and mesh the geometries in Ansys. Next, the model will be validated by an objective function or experimental data from the literature. Ideally, the algorithm would be extend to handle more complex geometries.
Department: Thermal energy technology
Contact: Guille-Bourdas, Alexandre Florian
Requirements
- Academic studies in the field of process engineering, chemical engineering, mechanical engineering or comparable fields of study
- Knowledge of thermodynamics, heat and mass transfer phenomena
- Knowledge of Python or MATLAB
- Knowledge of Ansys Package
Conditions
- Duration: 6 months
- Funding: Remuneration according to HZDR internal regulations
- Start Date: As soon as possible
Online application
Please apply online: english / german
F3AST for Focused ion beam induced deposition (Id 450)
Master theses / Diploma theses
Focused ion beam induced deposition (FIBID) allows the high resolution 3D printing of insulating, conducting, semiconducting and superconducting nanostructures with nearly arbitrary shape. However, while being similar to focused electron beam induced deposition (FEBID) the physical processes are different enough that successful printing strategies from FEBID can not be transferred one to one to the FIBID process. FEBID 3D Algorithm for Stream File generation (F3AST) is a software package developed by our partners at the Vienna University of Technology (TU Wien) that has been successfully used to predict growth parameters for FEBID. The package is agnostic to the underlying charged particle technique and should be capable—potentially with some minor modifications—to also be used for the FIBID process.
The objective of this master thesis is to obtain calibration parameters for FIBID using the helium ion microscope (HIM). The HIM is a focused ion beam (FIB) technique that allows the imaging and fabrication of nanostructures with an optimum resolution in the sub-nanometer range. It utilizes a 0.5 nm wide focused beam of He ions to raster scan the surface. This beam of energetic (typically 10 keV to 30 keV) ions can be used for high resolution imaging and materials processing. After successful calibration of the model complex 3D nanostructures will be created to demonstrate the applicability of the
F3AST software for ion beam based 3D printing.
The researchers at the TU Wien will provide a modified version of the F3AST code able to generate input files for the FIBICS NPVE pattern generator. HIM and a W(CO)6 precursor gas will be used to grow simple 3D structures for the calibration of the software. HIM and scanning electron microscope (SEM) imaging will be used to obtain high resolution images of the nanostructures and extract the required geometrical parameters which will be feed to the F3AST software. Transmission electron microscope (TEM) investigations will be used to assess the composition of selected structures.
After successful completion of the calibration complex 3D structures will be grown and their fidelity will be qualitatively and where possible quantitatively evaluated.
Department: Ion Induced Nanostructures
Requirements
Bachelor in Physics or Materials Science
Ability to work in a nanotechnology lab using delicate equipment
Ability to create simple scripts using python or similar languages
Presentation and office skills
Conditions
You will be embedded in the ion induced nanostructures group (FWIZ-N) at the ion beam center (IBC) of the HZDR.
Links:
Online application
Please apply online: english / german
Numerical simulation of fibre-laden drops – mandatory internship or final thesis (Master, Diplom) opportunity (Id 448)
Master theses / Diploma theses / Compulsory internship
Understanding the behaviour of fibre-laden drops is critical due to their presence in various industrial applications, including microelectronics fabrication, portable medical devices, and biofuel production. Our work focuses on the numerical simulation of fibre-laden drops, specifically investigating a single long deformable fibre within a drop impacting a solid substrate. The study aims to elucidate the dynamic interactions between the fibre and the drop. Key objectives include determining the changes in drop dynamics due to the fibre and observing fibre deformation upon impact.
This work will involve computational fluid dynamics (CFD), particularly finite volume methods, with a focus on interface tracking using the Volume of Fluid approach. The simulation will incorporate surface wettability to enhance our understanding of elasto-capillary interactions, offering insights relevant to real-world applications.
We are seeking a motivated student with prior experience in CFD (preferably OpenFOAM) or similar modelling software.
Department: Particle dynamics
Contact: Radhakrishnakumar, Subhadrakutty, Dr. Lecrivain, Gregory
Requirements
- Enrolled in a degree program such as Process Engineering, Mechanical Engineering, or Computational Modelling and Simulation
- Strong interest in particle-fluid dynamics and numerical simulations
- Preliminary experience in CFD, ideally with OpenFOAM
- Basic coding skills, preferably in C++
Conditions
- Immediate start possible
- Duration of internship or thesis as per university regulations
- Remuneration available, scholarship holders (e.g. ERASMUS+) are welcome
Online application
Please apply online: english / german
Student internship, research assistant, school practical training, master/diploma thesis, compulsory internship (Id 407)
School practical training / Student practical training / Bachelor theses / Master theses / Diploma theses / Student Assistant / Compulsory internship / Volunteer internship / Research Assistant
At Helmholtz-Zentrum Dresden-Rossendorf (HZDR), over 1,500 employees from more than 70 nations are conducting cutting-edge research in the fields of ENERGY, HEALTH, and MATERIALS to address the major challenges facing society today.
The Center for Advanced Systems Understanding (CASUS), founded in Görlitz in 2019, is a German-Polish interdisciplinary research center focusing on data-intensive digital systems.
CASUS offers student internships in a wide range of scientific fields. You are welcome to apply and join CASUS if you are interested in gaining knowledge in the following research areas:
- Theoretical Chemistry
- Earth System Science
- Systems Biology
- Digital Health
- Computational Radiation Physics
- Theory of complex systems
- Dynamics of Complex Living Systems
- Machine Learning for Infection and Disease
Institute: CASUS
Contact: Dr. Mir Hosseini, Seyed Hossein, Mazur, Weronika, Dr. Calabrese, Justin, Dr. Martinez Garcia, Ricardo, Dr. Bussmann, Michael, Dr. Cangi, Attila, PD Dr. Kuc, Agnieszka Beata, Dr. Yakimovich, Artur, Dr. Knüpfer, Andreas, Dr. Hecht, Michael
Requirements
- Student in computer science, physics, chemistry, or related fields
- Student already enrolled at the university in Germany, Poland or Czech Republic (close exchange and attendance in the office preferable and combined with the moblie working from Germany combinable)
- Eager to learn new skills
- Strong motivation to work in a collaborative environment
- Preliminary experience in code development is an advantage
- Excellent communication skills in English and/or German or Polish
Conditions
- A vibrant research community in an open, diverse and international work environment
- Scientific excellence and extensive professional networking opportunities
- A wide range of qualification opportunities
- We support a good work-life balance with the possibility of part-time employment, mobile working and flexible working hours
- Either an immediate start or a start in 2024 is possible
Online application
Please apply online: english / german
Automatisierte Auswertung von 1D- und 2D-Ramanspektroskopischen Meßreihen (Id 393)
Bachelor theses / Master theses / Diploma theses
1D- und 2D-Ramanspektroskopische Meßreihen oder auch Maps liefern detaillierte ortsaufgelöste chemische Informationen über die untersuchten Proben. Damit kann z. B. die Komponentenverteilung in Stoffgemischen quantitativ bestimmt oder die Homogenität einphasiger Proben gezeigt werden. Andererseits lassen sich lokale Strukturveränderungen, Spannungszustände, Stapelfolgenänderungen in 2D-Materialien und Punktdefekte charakterisieren. Voraussetzung dabei ist eine möglichst engmaschige Datenerfassung bis hin zur Auflösungsgrenze der verwendeten Laserstrahlung sowie eine große Anzahl an Messpunkten. Mit modernen Spektrometern sind Messzeiten im Sekundenbereich gut realisierbar. Die Umsetzung der spektroskopischen in eine chemische Information erfordert dann die Extraktion von Parametern wie Schwingungsfrequenz, Intensität und Linienbreite durch Spektrenanpassung. Die Gerätesoftware bietet dafür nur eingeschränkte Möglichkeiten.
Im Rahmen einer Graduierungsarbeit soll in Zusammenarbeit mit dem HZDR-Rechenzentrum ein Auswertealgorithmus für die automatisierte Auswertung von 1D- und 2D-Ramanspektroskopischen Meßreihen entwickelt, an Beispielen getestet und dokumentiert werden.
Department: Nanomaterials and Transport
Contact: Dr. Krause, Matthias
Requirements
1. Studium der Werkstoffwissenschaften, Physik oder Chemie
2. Interesse, Freude und Befähigung für wissenschaftliche Arbeit
3. Grundkenntnisse in Programmierung und sicherer Umgang mit Büro- und wissenschaftlicher Software
4. Sehr gute Englisch-Kenntnisse
Conditions
Die Arbeit ist in die umfangreichen Aktivitäten der Abteilung Nanoelektronik (FWIO) zu 2D-Werkstoffen eingebettet. Sie kann jederzeit aufgenommen werden.
Online application
Please apply online: english / german
Medizinische Chemie/ Organische Synthese neuer Radioliganden für die Krebsdiagnostik und -therapie (Id 295)
Student practical training / Bachelor theses / Master theses
Wir beschäftigen uns mit der Entwicklung von PET-Radiotracern, die Rezeptoren im Tumormikromilieu (TME = tumor microenvironment) für die Diagnostik und Therapie von Krebs sichtbar machen. Dazu werden geeignete tumoraffine Leitstrukturen identifiziert (niedermolekulare organische Moleküle, Peptide und Peptidomimetika), synthetisiert und mit einem geeigneten Radionuklid kovalent (z. B. Fluor-18, Iod-123) oder über einen Chelator (z. B. Gallium-68, Lutetium-177) markiert. Diese Radioliganden werden in vitro an Tumorzelllinien und in vivo im Tiermodell hinsichtlich einer Anwendung in der Nuklearmedizin getestet. Langfristiges Ziel ist die Translation der entwickelten Radiotracer in die Klinik als Diagnosewerkzeug (PET/CT) oder nach Markierung mit einem Beta- oder Alphastrahler für die Endoradiotherapie von Tumorerkrankungen.
Im Rahmen eines Studentenpraktikums oder einer Bachelor- oder Masterarbeit sollen organische Wirkstoffmoleküle synthetisiert und für eine anschließende radiochemische Markierung modifiziert werden. Die neuen Radioliganden werden dann biologisch in vitro und in vivo untersucht.
Department: Medical Radiochemistry
Contact: Dr. Stadlbauer, Sven, Sachse, Frederik
Requirements
- Studium der Chemie
- Gute Noten in organischer Synthesechemie
- Fähigkeit sich in ein interdisziplinäres Wissenschaftler-Team einzugliedern
- Bereitschaft zum Umgang mit Radioaktivität
- Gute Kenntnisse der deutschen und englischen Sprache
Conditions
- Beginn nach Absprache jederzeit möglich
- Praktikumsdauer mind. 4 Wochen, mit möglichst täglicher Anwesenheit
Online application
Please apply online: english / german
Materials for new solar power plants (Id 241)
Bachelor theses / Master theses / Diploma theses
Turmkraftwerke stellen die neueste Generation von Anlagen zur solarthermischen Elektroenergieerzeugung dar (s. Abbildung). Großflächige Spiegelanordnungen konzentrieren Sonnenlicht auf einen zentralen Absorber, wo es in Wärmeenergie umwandelt wird, die dann auf ein Wärmeträgermedium übertragen wird. Gegenüber der Photovoltaik hat die Solarthermie den inhärenten Vorteil, Energie zu speichern und bei Bedarf bereit zu stellen. Die Herausforderung für die weitere Erhöhung des Wirkungsgrades von Solarkraftwerken besteht in der Entwicklung von Werkstoffen mit einer Temperaturstabilität bis zu 800 °C an Luft.
Im Rahmen von Graduierungsarbeiten und Hilfstätigkeiten sollen thermisch stabile Beschichtungen für die Kernkomponenten von Solarturmkraftwerken entwickelt und getestet werden. Dabei kommen modernste in situ und ex situ Methoden wie Magnetronsputtern, Ellipsometrie, UV-vis-NIR-FTIR-Reflektometrie und Ramanspektroskopie zur Anwendung.
Zu diesem Themenbereich werden u. a. die folgenden Aufgabenstellungen angeboten:
i) Schichtabscheidung und Optimierung der optischen und elektrischen Eigenschaften von transparenten leitfähigen Oxiden für Solarkraftwerke;
ii) Entwicklung von neuartigen Absorber- und Wärmespeicherwerkstoffen für Solarkraftwerke;
iii) Design und Simulation von solarselektiven Beschichtungen für Solarkraftwerke.
Zur Charakterisierung der untersuchten Materialien stehen modernste in situ und ex situ Analysemethoden zur Verfügung. Die Arbeiten können jederzeit aufgenommen werden.
Department: Nanomaterials and Transport
Contact: Dr. Krause, Matthias
Requirements
1. Studium der Werkstoffwissenschaften, Physik oder Chemie
2. Interesse, Freude und Befähigung für experimentelle wissenschaftliche Arbeit
3. Grundkenntnisse in Programmierung und sicherer Umgang mit Büro- und wissenschaftlicher Software
4. Sichere Englischsprachkenntnisse (fließend oder besser)
Conditions
Internationale Forschungsumgebung, ortsübliche Aufwandsentschädigung