Kontakt

Porträt Dr. Müller, Katharina; FWOG

Photo: André Wirsig

Dr. Katharina Müller

Leiterin Grenzflächenprozesse
k.muellerAthzdr.de
Tel.: +49 351 260 2439

Soziale Medien

  Twitter-Logo

Abteilung Grenzflächenprozesse

Warum? Wie? Was?

Das oberste Ziel unserer von wissenschaftlicher Neugier getriebenen Forschung ist es, grundlegende und unabhängige Erkenntnisse über die (Geo-)Chemie und das Umweltverhalten langlebiger Radionuklide (RN) zu gewinnen. Eine herausragende und gesellschaftlich wichtige Anwendung ist die sichere Entsorgung radioaktiver Abfälle, um künftigen Generationen die Verantwortung für den Umgang mit "unserem" Erbe aus der Energieerzeugung in Kernreaktoren zu erleichtern.

Zu diesem Zweck liefern wir das radiochemische Wissen, nämlich strukturelle und mechanistische Daten wichtiger mobilisierender und immobilisierender Reaktionen von RN in Lösung, an Grenzflächen und in Festkörpern.

Unser besonderer Schwerpunkt liegt auf dem Einsatz einer Vielzahl etablierter und fortschrittlicher mikroskopischer und spektroskopischer Techniken, um Komplexbildungsreaktionen und Komplexstrukturen, die die Wechselwirkungen von RN in der Geosphäre bestimmen, genau zu beschreiben. Darüber hinaus untersuchen wir die Entstehung und chemische Speziation von Aktivierungsprodukten in Materialien aus Kernkraftwerken im Zusammenhang mit deren sicherer Stilllegung.

Als Teil einer Wertschöpfungskette bilden die abgeleiteten Strukturinformationen eine solide Grundlage für eine zuverlässige thermodynamische Beschreibung der untersuchten Systeme, die in thermodynamische Datenbanken integriert werden kann. Die thermodynamischen Arbeiten erfolgen in enger Zusammenarbeit mit der Abteilung Aktiniden-Thermodynamics.

Foto: Forschungsfelder der Abteilung Grenzflächenprozesse ©Copyright: Dr. Katharina Müller

Unsere Kernkompetenzen

  • Chemie langlebiger RN – Fachwissen im Umgang mit RN, von Spalt- und Aktivierungsprodukten bis hin zu Transuranen, und Zugang zu Strahlenschutzlabors.
  • Strukturelle Charakterisierung – Fachwissen in der Anwendung und Kopplung von spektroskopischen und mikroskopischen sowie Beugungstechniken für den Zugang zu molekularen Informationen.
  • Thermodynamische Beschreibung von RN-Komplexen – Verwendung makroskopischer, spektroskopischer und kalorimetrischer Informationen über Reaktant-Wasser-Grenzflächenphänomene als Grundlage für die Ableitung von Oberflächenkomplexierungsmodellen und deren thermodynamischen Parametern.

Forschungsgebiete

  • Koordinationschemie von RN in wässriger Lösung und in künstlichen menschlichen Bioflüssigkeiten, z. B.: RADEKOR-Projekt.
  • Molekulare Charakterisierung von RN Reaktionen an natürlichen und künstlichen Mineral-Wasser-Grenzflächen, z. B. im Projekt REDOX.
  • Einbau von Actiniden und Lanthaniden in feste Phasen, z. B.: AcE-Projekt.
  • Technetium Umweltchemie, z. B. Young Investigator Group TecRad.

Neuste Publikation

Effect of Ba(II), Eu(III), and U(VI) on rat NRK-52E and human HEK-293 kidney cells in vitro

Senwitz, C.; Butscher, D.; Holtmann, L.; Vogel, M.; Steudtner, R.; Drobot, B.; Stumpf, T.; Barkleit, A.; Heller, A.

Abstract

Heavy metals pose a potential health risk to humans when they enter the organism. Renal excretion is one of the elimination pathways and, therefore, investigations with kidney cells are of particular interest. In the present study, the effects of Ba(II), Eu(III), and U(VI) on rat and human renal cells were investigated in vitro. A combination of microscopic, biochemical, analytical, and spectroscopic methods was used to assess cell viability, cell death mechanisms, and intracellular metal uptake of exposed cells as well as metal speciation in cell culture medium and inside cells.

For Eu(III) and U(VI), cytotoxicity and intracellular uptake are positively correlated and depend on concentration and exposure time. An enhanced apoptosis occurs upon Eu(III) exposure whereas U(VI) exposure leads to enhanced apoptosis and (secondary) necrosis. In contrast to that, Ba(II) exhibits no cytotoxic effect at all and its intracellular uptake is time-independently very low. In general, both cell lines give similar results with rat cells being more sensitive than human cells.

The dominant binding motifs of Eu(III) in cell culture medium as well as cell suspensions are (organo-) phosphate groups. Additionally, a protein complex is formed in medium at low Eu(III) concentration. In contrast, U(VI) forms a carbonate complex in cell culture medium as well as each one phosphate and carbonate complex in cell suspensions. Using chemical microscopy, Eu(III) was localized in granular, vesicular compartments near the nucleus and the intracellular Eu(III) species equals the one in cell suspensions.

Overall, this study contributes to a better understanding of the interactions of Ba(II), Eu(III), and U(VI) on a cellular and molecular level. Since Ba(II) and Eu(III) serve as inactive analogs of the radioactive Ra(II) and Am(III)/Cm(III), the results of this study are also of importance for the health risk assessment of these radionuclides.

Keywords: Cytotoxicity; Radionuclides; Kidney cells; Heavy metal speciation; TRLFS; Chemical microscopy

Permalink: https://www.hzdr.de/publications/Publ-38876

Eine Liste an Publikationen befindet sich hier.


Forschungsgruppen

Derzeit laufende Drittmittelprojekte

  • Experimentell gestützte Berechnungen von Neutronenfeldern und den daraus resultierenden Aktivitäten in reaktorfernen Räumen (EBENE) 04/2024 – 09/2027, BMBF
  • Wechselwirkungen von Technetium mit Mikroorganismen, Metaboliten und an der Mineral-Wasser-Grenzfläche - Radioökologische Betrachtungen (TecRad) 07/2022 – 06/2027, BMBF
  • Redoxreaktivität von Selen in Mineralen (REDOX) 06/2022 – 05/2025, ANDRA
  • Speziation und Transfer von Radionukliden im Menschen unter besonderer Berücksichtigung von Dekorporationsmitteln (RADEKOR) 07/2020 – 12/2023, BMBF.
  • Grundlegende Untersuchungen zur Immobilisierung von Aktiniden mittels Einbau in endlagerrelevante Festphasen (AcE) 01/2021 – 12/2023, BMBF.
  • Entwicklung einer Methode zur Pre-Aktivitäts- und Dosisleistungsberechnung von reaktornahen Bauteilen auf Basis von Neutronenfluenzverteilungen (EMPRADO) 12/2018 –03/2024, BMBF.

Eine Übersicht der abgeschlossenen Projekte finden Sie hier.

Team

Leitung

NameGeb./Raum+49 351 260Email
Dr. Katharina Müller801/P2482439
k.muellerAthzdr.de

Mitarbeiter

NameGeb./Raum+49 351 260Email
Daniel Butscher801/P3523154
d.butscherAthzdr.de
Aline Chlupka801/P2033198
2518
2523
a.chlupkaAthzdr.de
Sebastian Friedrich801/P3523154
s.friedrichAthzdr.de
Dr. Norbert Jordan801/P2182148
n.jordanAthzdr.de
Stephan Weiß801/P3162758
2523
s.weissAthzdr.de
Maud Emilie Zilbermannm.zilbermannAthzdr.de

Einbau in Festphasen

NameGeb./Raum+49 351 260Email
Dr. Nina Maria Huittinen801/P2182148
n.huittinenAthzdr.de
Dr. Astrid Barkleit801/P2073136
2512
2518
a.barkleitAthzdr.de
Luiza Braga Ferreira dos Santos801/P2543487
l.bragaAthzdr.de

"TecRad" Wechselwirkung von Technetium mit Mikroorganismen, Metaboliten und an Mineral-Wasser-Grenzflächen - Radioökologische Betrachtungen

NameGeb./Raum+49 351 260Email
Dr. Natalia Mayordomo Herranz801/P2522076
n.mayordomo-herranzAthzdr.de
Caroline Börner801/P2542251
c.boernerAthzdr.de
Arkadz Bureika801/P2012434
a.bureikaAthzdr.de
Irene Cardaio801/P2542251
i.cardaioAthzdr.de
Vijay Kumar Saini801/P3523328
v.sainiAthzdr.de

Alumni

Name at HZDR Derzeitigte Institution
Isabelle Jessat Doktorandin ASML, Veldhoven, Netherlands
Quirina Isabella Roode-Gutzmer Doktorandin Wismut GmbH
Maximilian Demnitz Doktorand,
promoviert 2022
Eindhoven University of Technology, Department of Chemical Engineering and Chemistry, Het
Diana Marcela Rodriguez Hernandez Doktorandin,
promoviert 2021
Rotop Pharmaka GmbH
Henry Lösch Doktorand,
promoviert 2021
Strahlenschutz, Analytik & Entsorgung Rossendorf (VKTA)
Manuel Eibl Doktorand,
promoviert 2020
Avantgarde Labs GmbH
Susanne Lehmann Doktorandin,
promoviert 2020
Friedrich-Schiller-Universität Jena, Institut für Geowissenschaften